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BIRATIONAL INVOLUTIONS OF P2* 

LIONEL BAYLEt AND ARNAUD BEAUVILLE* 

Introduction. This paper is devoted to the classification of the elements of 
order 2 in the group BirP2 of birational automorphisms of P2, up to conjugacy. 
This is a classical problem, which seems to have been considered first by Bertini [Be]. 
Bertini's proof is generally considered as incomplete, as well as several other proofs 
which followed. We refer to the introduction of [C-E] for a more detailed story and 
for an acceptable proof. However the result itself, as stated by these authors, is not 
fully satisfactory: since they do not exclude singular fixed curves, their classification 
is somewhat redundant. 

We propose in this paper a different approach, which provides a precise and 
complete classification. It is based on the simple observation that any birational 
involution of P2 is conjugate, via an appropriate birational isomorphism S --* P2, to 
a biregular involution cr of a rational surface 5. We are thus reduced to the birational 
classification of the pairs (5, cr), a problem very similar to the birational classification 
of real surfaces. This classification has been achieved by classical geometers [C]; the 
case of surfaces with a finite group of automorphisms has been treated more recently 
along the same lines by Manin1 [Ma]. 

These questions have been greatly simplified in the early SO's by the introduction 
of Mori theory. In our case a direct application of this theory shows that the minimal 
pairs (SjCr) fall into two categories, those which admit a a-invariant base-point free 
pencil of rational curves, and those with rk Pic^)0" = 1. The first case leads to 
the so-called De Jonquieres involutions; in the second case an easy lattice-theoretic 
argument shows that the only new possibilities are the celebrated Geiser and Bertini 
involutions. Any birational involution is therefore conjugate to one (and only one) of 
these three types. 

1. Biregular involutions of rational surfaces. We work over an algebraically 
closed field k of characteristic ^ 2. By a surface we mean a smooth, projective, 
connected surface over k. 

We consider pairs (5, cr) where 5 is a rational surface and a a non-trivial biregular 
involution of 5. We will say that (5, cr) is minimal if any birational morphism / : 
5 -¥ S' such that there exists a biregular involution a1 of 5' with focr = a'of is an 
isomorphism. 

Recall that an exceptional curve E on a surface 5 is a smooth rational curve with 
E2 = -1. 

LEMMA 1.1 The pair (5,cr) is minimal if and only if each exceptional curve E 
on S satisfies aE ^ E and E D aE ^ 0. 

Proof. If 5 contains an exceptional curve E with aE = E (resp. E fl aE = 0), 
consider the surface 5' obtained by blowing down E (resp. E U aE)] then a induces 
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an involution a1 of 5', so that (5, a) is not minimal. 
Conversely, suppose that (S,cr) is not minimal. There exists a pair (S^a') and 

a birational morphism / : 5 ~> 5' such that focr = a'of and / contracts some 
exceptional curve E. Then / contracts the divisor E 4- CJE, which therefore has 
negative square; this implies E • aE < 0, that is aE = E or E fl aE = 0. D 

The only piece of Mori theory we will need is concentrated in the following lemma; 
its proof follows closely that of [M], thm. 2.7. 

LEMMA 1.2 Let (S^a) be a minimal pair, with rk Pic(5)<7 > 1. Then S admits 
a base point free pencil stable under a. 

Proof. Let us first recall the standard notations of Mori theory. We denote by 
NE(S) the cone of effective divisor classes in Pic(S) <g) R, by NE(S) its closure, and 
by NE(S)K>O the intersection of NE(S) with the half-space defined by the condition 
Ks - x > 0. The cone theorem ([M], 1.5 and 2.1) imphes 

7fE{S) = NE(S)K>o + Y, ^[^ 

where £ is a countable set and C is a smooth rational curve with C2 = —1,0 or 1; 
moreover if C2 — 1 S is isomorphic to P2, and if C2 = 0 \C\ is a base point free pencil. 

Now project the situation onto the cr-invariant subspace Pic(5)CT 0 R. We get an 
equality (see [M], 2.6) 

NE(sy = 7?E(syK>0 + J2 R+tc + *c\, 

where JF is the subset of curves C G £ such that the ray R+[C + aC] is extremal in 
V\c{Sy 0 R. 

Assume rk V\c(S)a > 1; let R = R+[L] be an extremal ray in Pic(S)0" 0 R. We 
have L2 < 0, because any element of NE(S)0' with positive square belongs to the 
interior of NE(S)cr ([M], Lemma 2.5). This leaves the following possibilities: 

a) R = R+[F], where |F| is a base point free pencil preserved by cr; 
(5) R~ R+[i5 + crE], where # is an exceptional curve and E • aE = 1; 
7) i? = R+[E + crE], where E is an exceptional curve and E = aE or 

EUaE = 0. 
If we assume moreover that the pair (5, a) is minimal, case 7) does not occur. In 

case a) the conclusion is clear. In case 0), put F = E + aE. We have F2 = 0 and 
h0(F) > 2 by Riemann-Roch; since E and aE do not move linearly, this implies that 
|JF| is a base point free pencil as required. D 

(1.3) Before stating our structure theorem for minimal pairs, let us recall two 
classical examples. Let S be a Del Pezzo surface of degree 2. The linear system | - Ks\ 
defines a double covering 5 ->- P2, branched along a smooth quartic curve (see [D]). 
The involution a which exchanges the two sheets of this covering is called the Geiser 
involution; it satisfies Pic(5)<7 0 Q ^ Pic(P2) 0 Q = Q. 

Similarly, let S be a Del Pezzo surface of degree 1. The map 5 -» P3 defined 
by the linear system | — 21^1 induces a degree 2 morphism of S onto a quadric cone 
Q C P3, branched along the vertex v of Q and a smooth genus 4 curve [D]. The 
corresponding involution, the Bertini involution, satisfies again rk Pk^S)^ = 1. 

THEOREM 1.4    Lei (S,a) be a minimal pair. One of the following holds: 
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(i) There exists a smooth P^fibration f : S —» P1 and a non-trivial involution r 
ofP1 such that foa = To/. 

(ii) There exists a fibration f : S —»• P1 such that foa = f; the smooth fibres of 
f are rational curves, on which a induces a non-trivial involution; any singular fibre 
is the union of two rational curves exchanged by a, meeting at one point 

(iii) 5 is isomorphic to P2. 
(iv) (5,cr) is isomorphic to P1 x P1 with the involution (x,y) i-* (y^x). 
(v) 5 is a Del Pezzo surface of degree 2 and a the Geiser involution. 
(vi) 5 is a Del Pezzo surface of degree 1 and a the Bertini involution. 

Proof. Assume first rk Pic(5)<r > 1. By lemma 1.2 S admits a cF-invariant pencil 
\F\ of rational curves. This defines a fibration / : S -> P1 with fibre F, and an 
involution r of P1 such that foa = Tof. If/is smooth this gives either (i) or a 
particular case of (ii). 

Let FQ be a singular fibre of /; it contains an exceptional divisor E. Since (5,(7) 
is minimal, we have aE ^ E and E • aE > 1. Thus E + aE < FQ and (E 4- aE)2 > 0, 
which implies FQ = E + aE and E • aE = 1. 

Let p be the intersection point of E and aE. The involution induced by a on the 
tangent space to S at p exchanges the directions of E and aE, hence has eigenvalues 
+1 and —1. It follows that there is a fixed curve of a passing through p; this curve 
must be horizontal, which forces the involution r to be trivial. Moreover the involution 
induced by a on a smooth fibre cannot be trivial, since the fixed curve of a must be 
smooth. This gives all the properties stated in (ii). 

Assume now rk Pic(5)<T = 1. Since Pic(5)or contains an ample class, it follows 
that — Ks is ample, that is, S is a Del Pezzo surface. If rk Pic(S) = 1 we get case (iii). 
If rk Pic(S) > 1, a acts as —1 on the orthogonal of Ks in Pic(S), or in other words 
—a is the orthogonal reflection with respect to Kg. Such a reflection is of the form 

x H^ x — 2j r-a:, with (a - a) G {1,2} and Ks proportional to a. If Ks is divisible, 
(a • a) 

S is isomorphic to P1 x P1, and we get case (iv) because a must act non-trivially 
on Pic(S). The remaining possibilities are Kg = 1 or 2. In these cases we have seen 
that the Geiser and Bertini involutions have the required properties (1.3); they are 
the only ones, since an automorphism 7 of 5 which acts trivially on Pic(5) is the 
identity (consider 5 as P2 blown up at 9 - d points in general position: 7 induces an 
automorphism of P2 which must fix these points). □ 

COMPLEMENT 1.5 Let us consider case (ii) more closely. Let Fi,... ,F5 be the 
singular fibres of /, and pi (1. < i < s) the singular point of F*. The fixed locus of a 
is a smooth curve C, which passes through pi,... ,ps; the covering C -> P1 induced 
by / is of degree 2, ramified at pi,... ,ps. This leads us to distinguish the following 
cases: 

(ii)sm: if / is smooth, we have s = 0 and C is the union of two sections of / which 
do not intersect. 

(ii)^: if / is not smooth, C is a hyperelliptic curve of genus g > 0, and 
s = 2g + 2. D 

Theorem 1.4 is sufficient for our purpose, but it does not tell us which pairs in 
the list 1.4 are indeed minimal. Before answering that question we need to work out 
two more examples: 

EXAMPLES 1.6 a) Let Fi be the surface obtained by blowing up a point p € P2; 
projecting from p defines a P^bundle / : Fi —> P1.   Any biregular involution a of 
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Fi preserves this fibration, hence defines a pair (Fi,<7) of type (i) or (ii)5m. On the 
other hand a preserves the unique exceptional curve J^i of Fi, so the pair (Fi,(j) is 
not minimal: a induces a biregular involution of P2. In case (i) p lies on the fixed line 
of o", in case (ii)sm it is the isolated fixed point. 

b) Let Q be a smooth conic in P2, and p a point of P2 — Q. We define a birational 
involution of P2 by mapping a point x to its harmonic conjugate on the line <p,x> 
with respect to the two points of <p,x> flQ. It is not defined at p and at the two 
points g, r where the tangent line to Q passes through p. Let S be the surface obtained 
by blowing up p, q, r in P2; the above involution extends to a biregular involution cr of 
S, the De Jonquieres involution of degree 2. The projection from p defines a fibration 
5 -> P1 of type (ii) above, with 2 singular fibres. The pair (5, cr) is not minimal: if E 
denotes the exceptional curve above p, aE is the proper transform of the line <q,r>, 
so it does not meet E. Blowing down E and aE we get a pair (T, r) with rk Pic(T) = 2 
and rk Pic(T)r = 1; inspection of the list (1.4) shows that it is isomorphic to P1 x P1 

with the involution exchanging the two factors. 

PROPOSITION 1.7 The pairs (5, cr) in the list (1.4) are minimal, with the fol- 
lowing exceptions: 

Case (i): S S Fi 
Case (ii): S = Fi or 5 is P2 with 3 non-collinear points blown up and a is a De 

Jonquieres involution of degree 2. 

Proof The pairs (5,cr) in (iii) to (vi) have rk Pic(5)<T = 1 and therefore are 
minimal. The pairs (S,cr) of type (i) or (ii) have rk Pic(S)0" = 2; thus we have to 
eliminate the pairs of these types which can be obtained by blowing up either a fixed 
point or two conjugate points in a pair (T, r) of type (iii) to (vi). Let E be the 
corresponding exceptional divisor in 5 (which may be reducible), H the pull back to 
5 of the positive generator of Pic(T)r. The group Pic^S)* is spanned by the classes of 
H and E, with H • E = 0, H2 = 1 or 2, E2 = -1 or - 2. The ^invariant pencil F is 
linearly equivalent to pH - qE for some integers p, q which are non-negative (because 
|F| is base point free) and coprime (because F is not divisible). The condition F2 = 0 
implies p = q = 1, and E2 — -H2. Using F-Ks = -2 the only possibilities are 5 = P2 

with one fixed point blown up, or 5 = P1 x P1 with the involution exchanging the 
factors and two conjugate points blown up. □ 

2. Birational involutions of P2. The following simple observation provides 
the link between biregular involutions of rational surfaces and birational involutions 
of the plane: 

LEMMA 2.1 Let i be a birational involution of a surface Si. There exists a 
birational morphism f : S ->> 5i and a biregular involution aofS such that foa = Lof. 

Proof There exists a birational morphism / : 5 -> 5i such that the rational map 
g = tof is everywhere defined (elimination of indeterminacies, see for instance [B], 
II.7); moreover, / is a composition 

f : S = Sn —^ 5n_i —y • • • —)- S2 —> Si , 

where ei : Si+i -> Si (1 < i < n — 1) is obtained by blowing up a point pi € Si. Since 
1 is not defined at pi, so is g-1 = /~1ot; by the universal property of blowing up 
[B, II.8], this implies thctt g factors as 5 —^ 52 -^» Si. Proceeding by induction we 
see that g factors as /ocr, where cr is a birational morphism; since foa2 = /, a is an 
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involution. D 

(2.2) We now consider birational involutions i : 5 —► 5, where S is a rational 
surface. We will say that two such involutions L : S —> S and L' : 5' —► 5' are 
birationally equivalent if there exists a birational map ip : S —► 5' such that ipot, = 
c'oip. In particular, two birational involutions of P2 are birationally equivalent if and 
only if they are conjugate in the group BirP2. 

Suppose that L fixes a curve C; then L' = (poLotp~l fixes the proper transform of 
C under ip, which is a curve birational to C except possibly if C is rational - in which 
case it may be contracted to a point. Let us define the normalized fixed curve of L 

to be the union of the normalizations of the non-rational curves fixed by i] it follows 
from the above discussion that this is an invariant of the birational equivalence class 
of i. 

(2.3) Lemma 2.1 tells us that any birational involution is birationally equivalent 
to a biregular involution a : S -> 5; moreover we can assume that the pair (5, a) is 
minimal. Therefore the classification of conjugacy classes of involutions in BirP2 is 
equivalent to the classification of minimal pairs (5, a) up to birational equivalence. 
We first recall the classical examples of such involutions: 

EXAMPLES 2.4 a) Let S be a Del Pezzo surface of degree 2 and a the Geiser 
involution (1.3). We consider S as the blow up of P2 along a set T of 7 points in 
general position [D], and denote by e : S —> P2 the blowing up map. The birational 
involution eocroe"1 is the classical Geiser involution of P2. It associates to a general 
point x € P2 the ninth intersection point of the pencil of cubics passing through J7 

and x. The normalized fixed curve is a non-hyperelliptic curve of genus 3. 
b) We define similarly the Bertini involution of P2 from the corresponding invo- 

lution on a Del Pezzo surface of degree 1 (1.3), obtained by blowing up a set G of 8 
points in general position in P2. It associates to a general point x G P2 the fixed 
point of the net of sextics in P2 passing through G and x and singular along G- Its 
normalized fixed curve is a non-hyperelliptic curve of genus 4, whose canonical model 
lies on a singular quadric. 

c) Let C C P2 be a curve of degree d > 2, and p a point of P2; we assume that C 
has an ordinary multiple point of multiplicity d — 2 at p and no other singularity. We 
associate to (C,p) the unique birational involution which preserves the lines through 
p and fixes the curve C: it maps a general point x £ P2 to its harmonic conjugate 
on the line < p, x > with respect to the two residual points of intersection of C with 
<p,x>. This is a De Jonquieres involution of degree d, with center p and fixed curve 
C (the case d = 2 was already considered in (1.6 b)). Its normalized fixed curve is a 
hyperelliptic curve1 of genus d — 2 for d > 3; it is empty for d = 2. 

(2.5) Finally let us recall that the P1- bundles over P1 are of the form 
Fn := Ppi(Opi © Opi(n)) for some integer n > 0. We have FQ = P1 x P1, and Fi 
is obtained by blowing up one point in P2. For n > 1 the fibration / : Fn —> P1 has 
a unique section En with negative square, and we have E12 = — n. 

Let F be a fibre of / and p a point of F. The elementary transformation centered 
at p consists in blowing up p and blowing down the proper transform of F; the surface 
obtained in this way is isomorphic to Fn_i if p £ En, to Fn+i if p e En or n = 0. 

Suppose moreover that we have a birational involution L of Fn which is regular in 
a neighborhood of F and fixes p. Then after performing the elementary transformation 

1 We consider by convention an elliptic curve as hyperelliptic. 
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at p we still get a birational involution of Fn±i which is regular in a neighborhood of 
the new fibre. 

THEOREM 2.6 Every non-trivial birational involution ofP2 is conjugate to one 
and only one of the following: 

- A De Jonquieres involution of a given degree d>2; 
- A Geiser involution; 
- A Bertini involution. 

Proof. The unicity assertion follows from (2.2). By (2.3) we must prove that 
the involutions of the list 1.4 are birationally equivalent to one of the above types. 
Cases (v) and (vi) give by definition the Geiser and Bertini involutions; we have seen 
in 1.6 b) that an involution of type (iv) is birationally equivalent to a De Jonquieres 
involution of degree 2. 

In case (hi), we choose a point p 6 P2 with ap^p and blow up p and crp; then we 
blow down the proper transform of the line <p,crp>, which is a cr-invariant exceptional 
curve. We obtain a pair (T,r) with T = P1 x P1 (by stereographic projection) and 
rk Pic(T)r = 1, hence of type (iv). 

In case (i), the surface S is isomorphic to Fn for some n > 0; the involution a 
has 2 invariant fibres, each of them containing at least 2 fixed points. One of these 
points does not lie on En, so performing successive elementary transformations we 
arrive at n = 1. As explained in 1.6 a) we conclude that a is birationally equivalent 
to a biregular involution of P2 (case (iv)). 

Let us treat case (ii)sm (1.5). Again by performing elementary transformations 
we can suppose that S is the surface Fi. The fixed locus of a is the union of Ei and 
a section which do not meet Ei. Blowing down Ei gives again case (iv). 

It remains to treat case (ii)^ for g > 0 (1.5). Blowing down one of the components 
in each singular fibre we get a surface Fn with a birational involution; the fixed curve 
C is embedded into Fn. Performing successive elementary transformations at general 
points of C leads to the same situation on Fi. The genus formula gives Ei • C = g. 

Assume that C is tangent to Ei at some point q of Fi. Performing an elementary 
transformation at #, then at some general point of C, we lower by 1 the order of 
contact of C and Ei at q. Proceeding in this way we arrive at a situation where 
Ei and C meet transversally at g distinct points. We blow down Ei to a point p of 
P2; the curve C maps to a plane curve C of degree g 4- 2, with an ordinary multiple 
point of multiplicity g at p and no other singularity. We get a birational involution 
of P2 which preserves the lines through p and admits C as fixed curve: this is the De 
Jonquieres involution with center p and fixed curve (7. D 

We can be more precise about the parameterization of each conjugacy class: 

PROPOSITION 2.7 The map which associates to a birational involution o/P2 its 
normalized fixed curve (2.2) establishes a one-to-one correspondence between: 

- conjugacy classes of De Jonquieres involutions of degree d and isomorphism 
classes of hyperelliptic curves of genus d — 2 (d>3); 

- conjugacy classes of Geiser involutions and isomorphism classes of non-hyper- 
elliptic curves of genus 3; 

- conjugacy classes of Bertini involutions and isomorphism classes of non-hyper- 
elliptic curves of genus 4 whose canonical model lies on a singular quadric. 

The De Jonquieres involutions of degree 2 form one conjugacy class. 

Proof. The result is clear for the Bertini involution: the canonical model of the 
genus 3 curve is a plane quartic; the double cover of the plane branched along that 
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quartic is a Del Pezzo surface of degree 2, which carries a canonical involution as 
explained in (1.3). Similarly the canonical model of a genus 4 curve lies on a unique 
quadric, so again we recover the Geiser involution by taking the double cover of this 
quadric branched along the curve and the singular point of the quadric. 

Let g > 1. A De Jonquieres involution of degree g + 2 is determined by a plane 
curve C of degree g + 2, with an ordinary multiple point p of multiplicity g and no 
other singularity1. The normalization C of C is a hyperelliptic curve of genus g, with 
g distinct points pi,... ,Pg mapped to p; the map C ->• C c—> P2 is given by the 
linear system \pi + ...+Pg + g^], where gl denotes the degree 2 linear pencil on C 
and pi,... ,Pg the points which are mapped to p. Blowing up p we can view C as 
embedded in Fi; we have Ei\c = Pi + • • • + Pg- This implies in particular crp; ^ pj 
for all pairs z,j, where a stands for the hyperelliptic involution on C. Let pg+i be 
any point of C such the points pi,.. .p5-j-i, api,... , crpp+1 are all distinct; performing 
an elementary transformation at pi, then at crp^+i, we get a birationally equivalent 
embedding C c—> Fi such that Ei \c = P2 + • • • +P0+1. Continuing in this way we see 
that all maps of C onto a plane curve of degree g + 2 with one ordinary #-uple point 
give rise to birationally equivalent involutions, so there is only one conjugacy class of 
De Jonquieres involutions with normalized fixed curve C. 

Finally any two degree 2 De Jonquieres involutions are conjugate by a linear 
isomorphism. D 
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