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1. Abelian and theta functions

Let V be a complex vector space, of dimension g, and Γ a lattice in V , that is, a
discrete subgroup of V which spans V as a real vector space. An abelian function
on V with respect to Γ is a meromorphic function on V which is Γ-periodic (note
that by the Liouville theorem, such a function cannot be holomorphic unless it is
constant). A theta function is a function on V which is holomorphic, but only
quasi-periodic with respect to Γ; that is, there exists for each γ ∈ Γ a holomorphic
map eγ : V → C such that

θ(z + γ) = eγ(z) θ(z) for all z ∈ V .

The theory of abelian and theta functions is a milestone of 19th century mathe-
matics. This is a long and beautiful story, which is outside the scope of this review;
a nice reference is [5]. The case g = 1 (elliptic functions) arose from classical prob-
lems (length of the ellipse, doubling the arc of the lemniscate); it was beautifully
worked out by Euler, Legendre, Abel, Jacobi and Weierstrass, among many others.
Their results are rich and deep. One of the highlights may be briefly summarized
as follows: the field of elliptic functions has transcendance degree 1 over C; in fact
it is the field of rational functions on a smooth plane cubic curve (depending on Γ).
Moreover any elliptic function can be written as the quotient of two theta functions.

The case of g ≥ 2 variables was studied by Abel and Jacobi in connection with the
theory of abelian integrals on curves of genus g. Riemann was the first to observe
that the theory could be built independently of algebraic curves [13]. Contrary to
the case g = 1, the existence of a nontrivial abelian function whose group of periods
is Γ imposes strong conditions on the lattice Γ. These are the Riemann bilinear
relations, which are expressed in modern language by the existence of a positive
hermitian form on V whose imaginary part takes integral values on Γ. Conversely,
if these conditions are satisfied, the field KΓ of abelian functions has transcendance
degree g over C; in fact, V/Γ is an algebraic (projective) variety, and KΓ is the
field of rational functions on this variety. In this case again any abelian function
can be written as the quotient of two theta functions (though this result was stated
by Riemann and Weierstrass, the first written proof seems to be due to Picard and
Poincaré [12]).

2. Complex tori and abelian varieties

A modern reader will immediately interpret an abelian function as a meromor-
phic function on the complex torus V/Γ, and a theta function as a section of a
certain line bundle on this torus. This point of view, however, is relatively recent.
In the case g = 2 it appears clearly in Picard’s work (see e.g. [11]). The general
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case is treated in a paper by Scorza [14], who seems to be the first to use the term
abelian variety. This was followed by Lefschetz’s paper [6], which is very close to
the modern formulation: he proves in particular that higher order theta functions
embed V/Γ in projective space (Lefschetz theorem) and that every hypersurface in
V/Γ is the zero locus of some theta function (Appell-Humbert theorem).

After these works the theory of theta functions and complex abelian varieties
was on a firm basis. It was a major achievement of Weil [15] to recast this highly
transcendental theory in a purely algebraic framework: an abelian variety (over an
arbitrary field) is just a connected, projective algebraic group. Remarkably a large
part of the theory extends (with some minor complications) to this more general set-
up; needless to say the extension is far from trivial. The definition of the Jacobian
of a curve C, for instance, requires a completely new idea: Weil constructs it by
glueing open pieces of the symmetric product C(g). The theta functions, however,
had to wait for another ingredient, the Heisenberg group.

3. The Heisenberg group

This new idea appeared in 1964 with a paper of Weil [16] and its reinterpretation
by Cartier [3]. According to [3], Weil’s purpose was “to throw the theta functions
away;” the result was a new interpretation of theta functions in terms of group
representations, which gives a powerful tool to study them and works also, with
appropriate modifications, in the algebraic set-up.

Let V be a real vector space, of even dimension 2n, with a non-degenerate
alternate form E. The Heisenberg group H(V ) is a central extension of V by the
unit circle; it can be defined as the set V × S1 with the multiplication law

(x, z)(x′, z′) = (x + x′, zz′eπiE(x,x′)) .

The wonderful property of H(V ) is that it admits a unique irreducible represen-
tation in a Hilbert space in which the center S1 acts by homotheties. Thus any
two different models for this representation will be canonically isomorphic (up to
a scalar). A complex structure on V such that E is the imaginary part of some
hermitian positive form gives rise in a natural way to such a model, the so-called
Fock space F . If we are given moreover a lattice Γ in V on which E takes integral
values, then Γ lifts as a subgroup of H(V ); theta functions appear naturally as
Γ-invariants in F – or rather in an enlarged space F−∞.

Soon afterwards Mumford realized that this approach could be carried out in
a purely algebraic set-up, replacing V by a finite commutative group [9]. More
precisely, to any ample line bundle L on A he associates an algebraic group G(L),
which is a central extension of a finite commutative group by the multiplicative
group Gm. The group G(L) acts on H0(A, L), and this representation is again the
unique irreducible representation of G(L) on which Gm acts by homotheties. There
is a classical model for this representation, the Schrödinger model, which admits a
natural basis; thus the vector space H0(A, L) has a canonical basis (up to a scalar),
which plays the role of theta functions in any characteristic. Using this framework
Mumford obtains a very precise description of the graded ring

⊕
n H0(A, L⊗n), that

is, of the equations of A in the embedding defined by L or its multiples.
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4. The Fourier-Mukai transform

Mumford’s work gives a rather complete picture of the algebraic theory of abelian
varieties. Some refinements have been obtained since then along these lines, in par-
ticular by Koizumi, Kempf, Pareschi and Popa. However, perhaps the most influ-
ential progress since the seventies has been the discovery by Mukai of a remarkable
equivalence between the derived categories of an abelian variety and its dual [7].

The usual framework of the Fourier transform is the following. Suppose we
can associate to each locally compact abelian group G a space of complex-valued
functions C(G) on G, such that any group morphism p : G → H gives rise to pull-
back and push-down homomorphisms p∗ : C(H) → C(G) and p∗ : C(G) → C(H)
(take for instance C(G) = L1(G)). Let Ĝ := Hom(G, S1) denote the Pontryagin
dual of G, p and p̂ the projections of G × Ĝ onto G and Ĝ, and � : G × Ĝ →
S1 the natural pairing. Then the Fourier transform F : C(G) → C(Ĝ) is the
homomorphism defined by F(f) = p̂∗(p∗f · �).

Mukai observed that a very similar formula makes sense for an abelian variety
A and its dual Â . The space C(G) is replaced by the (bounded) derived category
D(A) (roughly, the category of bounded complexes of vector bundles on A up to
quasi-isomorphism), and the pairing � by the Poincaré line bundle P on A×Â. The
outcome is the Fourier-Mukai functor S : D(A) → D(Â), defined on an object E
of D(A) by S(E) = Rp̂∗(p∗E ⊗ P); it turns out to be an equivalence of category.

The Fourier-Mukai transform has been used by Mukai to get information about
vector bundles on A. But perhaps its main application has been outside of the
framework of abelian varieties: thanks to the work of Bondal, Orlov, Bridgeland
and others, the derived category is by now firmly established as an important
invariant of projective varieties. Here the relevance of the Fourier-Mukai transform
stems from the following theorem of Orlov: if X and X̂ are smooth projective
varieties, any fully faithful functor from D(X) to D(X̂) admitting an adjoint (in
particular, any equivalence of categories) is a Fourier-Mukai functor, that is, of the
form E �→ Rp̂∗(p∗E ⊗ P) for some object P of D(X × X̂) [10].

5. The book

The book under review contains three parts. Part I (analytic theory) introduces
theta functions on a complex torus V/Γ. The representation theory of the Heisen-
berg group is skillfully used, in particular to derive the functional equation of the
theta functions.

Part II contains the algebraic theory of abelian varieties; it begins with the theo-
rem of the cube, the construction of the dual abelian variety, the biduality (proved
using the biextensions introduced by Mumford and Grothendieck), and continues
with the Fourier-Mukai transform and Mumford’s theory of the Heisenberg group.

Part III is dedicated to Jacobians. They are constructed following Weil’s idea.
Fay’s trisecant identity is established with the help of the Cauchy-Szegö kernel. The
Torelli theorem is proved using the Fourier-Mukai transform, following a paper by
Beilinson and the author [1]. A last chapter surveys some more advanced topics:
Deligne’s symbol, the determinant bundle, the ‘strange duality’ which links the
moduli space of rank r vector bundles on a curve to the space of r-th order theta
functions.
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According to the author, the book is intended to “enhance the classical theory
with more recent ideas.” He has fully succeeded in carrying through this pro-
gramme. The book covers most of the classical theory of theta functions and
abelian varieties, and at the same time introduces the reader to such varied topics
as the Maslov index, mirror symmetry, biextensions, vector bundles on curves, and
Deligne’s symbol. This gives the book a personal touch, which makes it hardly
comparable to the other books on the subject.

As the author points out, the book is neither a textbook nor a reference book:
it does not claim to be exhaustive and is too advanced for a first reading. For a
textbook I would still advise a student to start with Mumford’s book [8], perhaps
completed by the chapter on Jacobians in [4]. For a reference book [2] is quite
complete (though the restriction to the complex case may be a drawback for the
readers more oriented towards arithmetical geometry).

However, I would definitely recommend this book to a reader already acquainted
with abelian varieties wishing to go beyond the basics of the subject. It is stimu-
lating and provocative and at the same time well-organized. Even the expert will
learn a lot from reading it.
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