NON-RATIONALITY OF THE S_6-SYMMETRIC QUARTIC THREEFOLDS

ARNAUD BEAUVILLE

Pour Alberto, à l’occasion de son 70e anniversaire

ABSTRACT. We prove that the quartic hypersurfaces defined by $\sum x_i = t \sum x_i^4 - (\sum x_i^2)^2 = 0$ in \mathbb{P}^5 are not rational for $t \neq 0, 2, 4, 6, \frac{10}{7}$.

1. INTRODUCTION

Let V be the standard representation of S_6 (that is, V is the hyperplane $\sum x_i = 0$ in \mathbb{C}^6, with S_6 acting by permutation of the basis vectors). The quartic hypersurfaces in $\mathbb{P}(V)$ ($\cong \mathbb{P}^4$) invariant under S_6 form the pencil

$$X_t : t \sum x_i^4 - (\sum x_i^2)^2 = 0, \quad t \in \mathbb{P}^1.$$

This pencil contains two classical quartic hypersurfaces, the Burkhardt quartic X_2 and the Igusa quartic X_4 (see for instance [H]); they are both rational.

For $t \neq 0, 2, 4, 6$ and $\frac{10}{7}$, the quartic X_t has exactly 30 nodes; the set of nodes N is the orbit under S_6 of $(1, 1, \rho, \rho, \rho^2, \rho^2)$, with $\rho = e^{2\pi i/3}$ ([vdG], §4). We will prove:

Theorem. For $t \neq 0, 2, 4, 6, \frac{10}{7}$, X_t is not rational.

The method is that of [B]: we show that the intermediate Jacobian of a desingularization of X_t is 5-dimensional and that the action of S_6 on its tangent space at 0 is irreducible. From this one sees easily that this intermediate Jacobian cannot be a Jacobian or a product of Jacobians, hence X_t is not rational by the Clemens-Griffiths criterion. We do not know whether X_t is unirational.

I am indebted to A. Bondal and Y. Prokhorov for suggesting the problem, to A. Dimca for explaining to me how to compute explicitly the defect of a nodal hypersurface, and to I. Cheltsov for pointing out the rationality of $X_{\frac{10}{7}}$.

2. THE ACTION OF S_6 ON $T_0(JX)$

We fix $t \neq 0, 2, 4, 6, \frac{10}{7}$, and denote by X the desingularization of X_t obtained by blowing up the nodes. The main ingredient of the proof is the fact that the action of S_6 on JX is non-trivial. To prove this we consider the action of S_6 on the tangent space $T_0(JX)$, which is by definition $H^2(X, \Omega^1_X)$.

Lemma 1. Let C be the space of cubic forms on $\mathbb{P}(V)$ vanishing along N. We have an isomorphism of S_6-modules $C \cong V \oplus H^2(X, \Omega^1_X)$.

Proof: The proof is essentially contained in [C]; we explain how to adapt the arguments there to our situation. Let $b : P \to \mathbb{P}(V)$ be the blowing-up of $\mathbb{P}(V)$ along N. The threefold X is the strict transform of X_t in P. The exact sequence

$$0 \to N_{X/P} \to \Omega^1_P|_X \to \Omega^1_X \to 0$$

1
gives rise to an exact sequence
\[0 \rightarrow H^2(X, O_X^1) \rightarrow H^3(X, N^*_X/P) \rightarrow H^3(X, O_P^1|_X) \rightarrow 0 \]
([C], proof of theorem 1), which is \(\mathcal{G}_6 \)-equivariant. We will compute the two last terms.

The exact sequence
\[0 \rightarrow \Omega^1_P(-X) \rightarrow \Omega^1_P \rightarrow \Omega^1_P|_X \rightarrow 0 \]
provides an isomorphism \(H^3(X, \Omega^1_P|_X) \cong H^4(P, \Omega^1_P(-X)) \), and the latter space is isomorphic to \(H^4(P(V), \Omega^1_{P(V)}(-4)) \) ([C], proof of Lemma 3). By Serre duality \(H^4(P(V), \Omega^1_{P(V)}(-4)) \) is dual to \(H^0(P(V), T_{P(V)}(-1)) \cong V \). Thus the \(\mathcal{G}_6 \)-module \(H^3(X, \Omega^1_P|_X) \) is isomorphic to \(V^* \), hence also to \(V \).

Similarly the exact sequence \(0 \rightarrow \mathcal{O}_P(-2X) \rightarrow \mathcal{O}_P(-X) \rightarrow N^*_X/P \rightarrow 0 \) and the vanishing of \(H^4(P, \mathcal{O}_P(-X)) \) ([C], Corollary 2) provide an isomorphism of \(H^3(X, N^*_X/P) \) onto \(H^4(P, \mathcal{O}_P(-2X)) \), which is naturally isomorphic to the dual of \(C \) ([C], proof of Proposition 2). The lemma follows.

Lemma 2. The dimension of \(C \) is 10.

Proof: Recall that the defect of \(X_t \) is the difference between the dimension of \(C \) and its expected dimension, namely:
\[\text{def}(X_t) := \dim C - \left(\dim H^0(P(V), \mathcal{O}_{P(V)}(3)) - \# N \right). \]
Thus our assertion is equivalent to \(\text{def}(X_t) = 5 \).

To compute this defect we use the formula of [D-S], Theorem 1.5. Let \(F = 0 \) be an equation of \(X_t \) in \(P^4 \); let \(R := \mathbb{C}[X_0, \ldots, X_4]/(F'_0, \ldots, F'_4) \) be the Jacobian ring of \(F \), and let \(R^{sm} \) be the Jacobian ring of a smooth quartic hypersurface in \(P^4 \). The formula is
\[\text{def}(X_t) = \dim R_7 - \dim R^{sm}_7. \]
In our case we have \(\dim R^{sm}_7 = \dim R^{sm}_4 = 35 - 5 = 30 \); a simple computation with Singular (for instance) gives \(\dim R_7 = 35 \). This implies the lemma.

Proposition. The \(\mathcal{G}_6 \)-module \(H^2(X, O_X^1) \) is isomorphic to \(V \).

Proof: Consider the homomorphisms \(a \) and \(b \) of \(\mathbb{C}^6 \) into \(H^0(P(V), \mathcal{O}_{P(V)}(3)) \) given by \(a(e_i) = x^3_i \), \(b(e_i) = x_i \sum x^3_j \). They are both \(\mathcal{G}_6 \)-equivariant and map \(V \) into \(C \); the subspaces \(a(V) \) and \(b(V) \) of \(C \) do not coincide, so we have \(a(V) \cap b(V) = 0 \). By Lemma 2 this implies \(C = a(V) \oplus b(V) \), so \(H^2(X, O_X^1) \) is isomorphic to \(V \) by Lemma 1.

Remark. Suppose \(t = 2, 6 \) or \(10 \). Then the singular locus of \(X_t \) is \(N' \cup N'' \), where \(N' \) is the \(\mathcal{G}_6 \)-orbit of the point \((1, -1, 0, 0, 0, 0) \) for \(t = 2 \), \((1, -1, 1, -1, 1, -1) \) for \(t = 6 \), \((-5, 1, 1, 1, 1, 1) \) for \(t = 10 \). Since \(x^3_1 - x^3_0 \) does not vanish on \(N'' \), the space of cubics vanishing along \(N' \cup N'' \) is strictly contained in \(C \). By Lemma 1 it contains a copy of \(V \), hence it is isomorphic to \(V \); therefore \(H^2(X, O_X^1) \) and \(JX \) are zero in these cases. We have already mentioned that \(X_2 \) and \(X_4 \) are rational. The quartic \(X_{10} \) is rational: it is the image of the anticanonical map of \(P^3 \) blown up along 6 lines which are permuted by \(\mathcal{G}_6 \) (see [C-S], proof of Lemma 4.5, and the references given there). We do not know whether this is the case for \(X_6 \).
3. Proof of the theorem

To prove that X is not rational, we apply the Clemens-Griffiths criterion ([C-G], Cor. 3.26): it suffices to prove that JX is not a Jacobian or a product of Jacobians.

Suppose $JX \cong JC$ for some curve C of genus 5. By the Proposition S_6 embeds into the group of automorphisms of JC preserving the principal polarization; by the Torelli theorem this group is isomorphic to $\text{Aut}(C)$ if C is hyperelliptic and $\text{Aut}(C) \times \mathbb{Z}/2$ otherwise. Thus we find $\# \text{Aut}(C) \geq \frac{1}{2}6! = 360$. But this contradicts the Hurwitz bound $\# \text{Aut}(C) \leq 84(5 - 1) = 336$.

Now suppose that JX is isomorphic to a product of Jacobians $J_1 \times \ldots \times J_p$, with $p \geq 2$. Recall that such a decomposition is unique up to the order of the factors: it corresponds to the decomposition of the Theta divisor into irreducible components ([C-G], Cor. 3.23). Thus the group S_6 permutes the factors J_i, and therefore acts on $[1, p]$; by the Proposition this action must be transitive. But we have $p \leq \dim JX = 5$, so this is impossible.

References