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Abstract

In this paper we consider the multi-water-bag model for collisionless kinetic equations. The
multi-water-bag representation of the statistical distribution function of particles can be viewed
as a special class of exact weak solution of the Vlasov equation, allowing to reduce this latter
into a set of hydrodynamic equations while keeping its kinetic character. After recalling the link
of the multi-water-bag model with kinetic formulation of conservation laws, we derive different
multi-water-bag (MWB) models, namely the Poisson-MWB, the quasineutral-MWB and the
electromagnetic-MWB models. These models are very promising because they reveal to be very
useful for the theory and numerical simulations of laser-plasma and gyrokinetic physics. In this
paper we prove some existence and uniqueness results for classical solutions of these different
models. We next propose numerical schemes based on Discontinuous Garlerkin methods to solve
these equations. We then present some numerical simulations of non linear problems arising in
plasma physics for which we know some analytical results.

Keywords: water bag model, collisionless kinetic equations, Cauchy problem, hyperbolic systems
of conservation laws, discontinuous Galerkin methods, plasma physics.

AMS: 35Q99, 65M60, 82C80, 82D10.

1 Introduction

Vlasov equation is a difficult one mainly because of its high dimensionality. For each particle species
the distribution function f(r,v, t) is defined in a 6D phase space. The simplest (one spatial dimen-
sion, one velocity dimension) implies a 2D phase space. Can it be reduced to the sole configuration
space as in usual hydrodynamics ? In that last case the presence of collisions with frequency much
greater than the inverse of all characteristic times implies the existence of a local thermodynamic
equilibrium characterised by a density n(r, t), an average velocity u(r, t) and a temperature T (r, t).
A priori in a plasma the distribution function f(r,v, t) is an arbitrary function of r and v (and t
of course) and phase space is unavoidable.
An alternative approach is based on a water bag representation of the distribution function which
is not an approximation but rather a special class of initial conditions. Introduced initially by De-
Packh [24], Hohl, Feix and Bertrand [28, 8, 9] the water bag model was shown to bring the bridge
between fluid and kinetic description of a collisionless plasma, allowing to keep the kinetic aspect
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of the problem with the same complexity as the fluid model. Twenty years later, mathematicians
rediscover this fact with the kinetic formulation of scalar conservation laws. It was established
in [17, 18, 19, 33] that scalar conservation laws can be lifted as linear hyperbolic equations by
introducing an extra variable ξ ∈ R which can be interpreted as a scalar momentum or velocity
variable. The author of [19] proposed a numerical scheme, known as the transport-collapse method
to solve this linear kinetic equation and has proved, using BV estimates and Kruzhkov type analy-
sis, that this numerical solution converges to the entropy solution of scalar conservation laws. This
result was also shown in [59] using averaging lemmas [34, 35, 26, 16] without bounded variation
estimate. Right after, it was observed by the authors of [55, 49] that, without any approximations,
entropy solutions of scalar conservation laws can be directly formulated in kinetic style, known as
kinetic formulation. Its generalization to systems of conservation laws seems impossible except for
very peculiar systems ([20, 50, 60]) where the kinetic formulation of multibranch entropy solutions
have been developped. One of those system is the isentropic gas dynamics system with γ = 3 for
which, long time ago, the link with the Vlasov kinetic equation was pointed out in [9] as the so
called water bag model. Let us notice that the multibranch entropy solutions have been used for
multivalued geometric optics computations and multiphase computations of the semiclassical limit
of the Schrödinger equation [37, 38, 45, 39].
In this paper we deal with three different MWB models. The first one is the Poisson-multi-water-
bag model which corresponds to a special class of weak solution of the Vlasov-Poisson system and
thus constitutes a basic model in kinetic collisionless equations by which we must start. The second
model is the quasineutral-multi-water-bag model where the coupling between waves and particles
is obtained by equating the electrical potential to the particle density. This system is very fruitful
because it represents the parallel dynamic of particles subjected to a strong magnetic field as it
occurs in magnetic controlled fusion devices (tokamak) where gyrokinetic turbulence governs the
energy confinement time [51, 52, 12, 15]. The third model is the electromagnetic-multi-water-bag
model which is very useful in laser-plasma interaction because it supplies a physical explanation
for the formation of low frequency nonlinear coherent structures which are stable in long time, the
so-called KEEN (Kinetic Electron Electrostatic Nonlinear) waves [2, 1, 31, 13]. These modes which
have been observed in several simulations [2, 1, 31, 13] can be viewed as a non-steady variant of
the well-known Bernstein-Greene-Kruskal (BGK)[10] modes that describe invariant traveling elec-
trostatic waves in plasmas.

In order to introduce the water-bag model let us consider a 1D plasma (2D phase space (z, v))
in which at initial time the situation is as depicted in fig. 1. Between the two curves v+ and v−

we impose f(t, z, v) = A (A is a constant). For velocities bigger than v+ and smaller than v− we
have f(t, z, v) = 0.

According to phase space conservation property of the Vlasov equation, as long as v+ and v−

remain single valued function, f(t, z, v) remains equal to A for values of v such that v−(t, z) <
v < v+(t, z). Therefore the problem is entirely described by the two functions v+ and v−. Since a
hydrodynamic description involves n, u and P (respectively density, average velocity and pressure)
we can predict the possibility of casting the water bag model into the hydrodynamic frame with,
in addition, an automatically provided state equation.

Remembering that a particle on the contour v+ (or v−) remains on this contour the equations
for v+ and v− are (for instance for an electron plasma , E being the electric field and q the electric
charge)

Dtv
±(t, z) = ∂tv

±(t, z) +
�
v±∂zv

±
�
(t, z) =

q

m
E(t, z). (1)

We now introduce the density n(t, z) = A(v+ − v−) and the average (fluid) velocity u(t, z) =
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Figure 1: The water bag model in phase space

1
2(v+ + v−) into equations (1) by adding and subtracting these two equations. We obtain

∂tn+ ∂z(nu) = 0 (2)

∂tu+ u∂zu = − 1
mn

∂zP +
q

m
E (3)

Pn−3 =
m

12A2
· (4)

The equations (2)-(3)-(4) are respectively the continuity, Euler and state equation. This hydrody-
namic description of the water bag model was pointed out for the first time by Bertrand and Feix
[9] but the state equation (4) describes an invariant both in space and time while in the hydro-
dynamic model we obtain Dt(Pn−γ) = 0. It must be noticed that the physics in the two cases is
quite different [41].

Linearising equations (1) around and homogeneous equilibrium, i.e. v±(t, z) = ±a + w±(t, z)
for an electronic plasma yields the simple dispersion relation for a harmonic perturbation ω2 =
ω2

p + k2a2. Furthermore computing the thermal velocity

v2
th =

1
n0

∫ +∞

−∞
v2 f0(v) dv =

1
2a

∫ +a

−a
v2 dv =

a2

3

allows to recover exactly the Bohm-Gross dispersion relation ω2 = ω2
p + 3k2v2

th.
Thus it is very easy to construct the water bag associated to a homogeneous distribution function

characterised by a density n0 and a thermal velocity vth: we just have to choose the water bag
parameters (a and A) as follows

a =
√

3vth and A = n0/2a. (5)

Of course there is no Landau resonance since the phase velocity vϕ =
È
a2 + ω2

p/k
2 > a. To

recover the Landau damping (particle-wave interaction) the water bag has to be generalised into
the multiple water bag.

Let us notice that after a finite time, equations (1) or the system (2)-(3) could generate shocks,
namely discontinuous gradients in z for v±, n and u. Nevertheless the concept of entropic solution
is not well suited here because the existence of an entropy inequality means that a diffusion-
like (or collision-like) process in velocity occurs on the right hand side of the Vlasov equation.
This observation has been developped in the theory of kinetic formulation of scalar conservation
laws [18, 19, 55, 49, 50, 20]. In fact on the right hand side of these linear kinetic equations
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(free streaming term) appear the velocity derivatives of nonnegative bounded measure which is
the signature of diffusion-like processes in velocity. In order that the water-bag model should be
equivalent to the Vlasov equation (without any diffusion-like term on the right hand side of the
Vlasov equation) we must consider multivalued solution of the water-bag model beyond the first
singularity. The appearence of a singularity (discontinuous gradients in z due to the Burgers term)
is linked to appearance of trapped particles which is characterized by the formation of vortexes and
the development of the filamentation process in the phase space. In special cases such as the study
of nonlinear gyrokinetic turbulence in a cylinder [12], particles dynamic properties [43] imply that
the particles are not trapped but only passing.

2 The Multi-Water-Bag model

This generalisation was straightforward [54, 4, 7]. Berk and Roberts [3] and Finzi [29] used a double
water bag model to study two stream instability in a computer simulation including the filamenta-
tion of the contours and their multivalued nature (a highly difficult problem from a programming
point of view).

Let us consider 2N contours in phase space labelled v+
j and v−j (where j = 1, · · · ,N ). Fig. 2

shows the phase space contours for a three-bag system (N = 3) where the distribution function
takes on three different constant values F1, F2 and F3.
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Figure 2: Multiple Water Bag: phase space plot for a three-bag model (left) and corresponding
MWB distribution function (right)

Introducing the bag heights A1, A2 and A3 as shown also in fig. 2 the distribution function
writes

f(t, z, v) =
N∑

j=1

Aj

�
H(v+

j (t, z)− v)−H(v−j (t, z)− v)
�
, (6)

where H is the Heaviside unit step function. Notice that some of the Aj can be negative. The
function (6) is a solution of the Vlasov equation in the sense of distribution theory, if and only if
the set of following equations are satisfied

∂tv
±
j + v±j ∂zv

±
j +

q

m
∂zφ = 0, j = 1, . . . ,N (7)

where φ is the electrical potential with E = −∂zφ. Let us now introduce for each bag j the density
nj , average velocity uj and pressure Pj as done above for the one-bag case nj = Aj(v+

j − v−j ),
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uj = (v+
j + v−j )/2 and Pjn

−3
j = m/(12A2

j ). For each bag j we recover the conservative form of the
continuity and Euler equation (isentropic gas dynamics equations with γ = 3) namely

∂tnj + ∂z(njuj) = 0 (8)

∂t(njuj) + ∂z

�
nju

2
j +

Pj

m

�
+

q

m
nj∂zφ = 0. (9)

The coupling between the bags is given by the total density
∑

j≤N nj through the Poisson equation
(Langmuir or high frequency plasma waves)

−∂2
zφ =

e

ε0

(
ni0 −

N∑
j=1

nj

)
, (10)

with e the elementary charge and ni0 a background of fixed ions, or through the quasi-neutral
equation (ion acoustic waves)

φ =
kBTe

ne0e

(
Zi

N∑
j=1

nj − ne0

)
, (11)

with Zi the number of charge, and where we have supposed that the electron density ne follows the
Maxwellian-Boltzmann distribution (adiabatic electrons) ne0 exp(eφ/(kBTe)) with eφ/(kBTe) � 1.
Linearising equations (8)-(10) for an electronic plasma around an homogeneous (density n0) equi-
librium i.e. v±j (t, z) = ±v0j + δv±j (t, z) with |δv±j | � v0j yields the dispersion relation

ε(k, ω) = 1−
ω2

p

n0

N∑
j=1

2v0jAj

ω2 − k2 v2
0j

= 0. (12)

If all Aj ’s are positive (single hump distribution function or unimodal function) this equation has
2N real frequencies located between ±v0j and ±v0j+1. The Landau damping is recovered as a phase
mixing process of real frequencies [54, 6] which is reminiscent of the Van Kampen-Case treatment
of the electronic plasma oscillations [58, 21].

Let us now introduce the electromagnetic-MWB in the framework of laser-plasma interaction.
We aim at describing the behaviour of an electromagnetic wave propagating in a relativistic electron
gas in a fixed neutralizing ion background. Here we consider a one-dimensional plasma in space
along the z-direction. Since nonlinear kinetic effects are important in laser-plasma interaction,
we choose a kinetic description for the plasma, which implies to solve a Vlasov equation for a
four-dimensional distribution function F = F(t, z, pz, p⊥)

∂F
∂t

+
pz

mγ

∂F
∂z

+ e

�
E +

p×B

mγ

�
· ∂F
∂p

= 0, (13)

where p = (pz, p⊥) is the momentum variable, (E,B) the electromagnetic field and γ the Lorentz
factor such that γ2 = 1+(p2

x +p2
y +p2

z)/m
2c2. We now reduce the four-dimensional Vlasov equation

to a two-dimensional Vlasov equation by using the invariants of the system. The Hamiltonian of a
relativistic particle in the electromagnetic field (E,B) for a one-dimensional spatial system reads
H = mc2

È
1 + (Pc − eA)2/(m2c2) + eφ(t, z) where φ is the electrostatic potential, A the vector

potential, and Pc the canonical momentum related to the particle momentum p by Pc = p + eA.
In order that the field is well determined by the potentials we have to add a gauge. We choose the
Coulomb gauge (divA = 0), which implies that A = A⊥(t, z). If we write the Hamilton equation
dPc/dt = −∂qH , then along the longitudinal z-direction of propagation of the electromagnetic
wave we have dPcz/dt = −∂zH , and for the transverse direction dPc⊥/dt = −∂⊥H = 0. The last
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equation means Pc⊥ = constant = Pc⊥ and Pc⊥ is no more an independent or free variable but a
parameter. Therefore the structure of the solution is of the form

F(t, z, pz, p⊥) =
∫

Pc⊥

f(t, z, pz,Pc⊥)δ(p⊥ − (Pc⊥ − eA⊥)) dPc⊥

where Pc⊥ has to be understood as a parameter or a label in f . Therefore, without loss of gen-
erality, we now consider a plasma initially prepared so that particles are divided into M bunches
of particles, each bunch i, 1 ≤ i ≤M, having the same initial perpendicular canonical momentum
Pc⊥ = Pc⊥,i. The i-particles have any longitudinal momentum pz with a distribution fi(t, z, pz).
The Hamiltonian of one particle of bunch i is given by Hi(t, z, pz) = mc2(γi(t, z, pz)− 1) + eφ(t, z)
with the corresponding Lorentz factor γ2

i = 1 + p2
z/(m

2c2) + (Pc⊥,i − eA⊥(t, z))2/(m2c2). Each
group i is described by a distribution function fi(t, z, pz) which must obey the Vlasov equations
∂tfi + [Hi, fi] = 0, i = 1, . . . ,M, where [·, ·] is the Poisson bracket in (z, pz) variables, namely
[ϕ,ψ] = ∂pzϕ∂zψ − ∂zϕ∂pzψ. Therefore the structure of the solution is now F(t, z, pz, p⊥) =∑M

i=1 fi(t, z, pz)δ(p⊥− (Pc⊥,i− eA⊥)), We now assume that each function fi(t, z, pz) has the struc-
ture of a multi-water-bag

fi(t, z, pz) =
N∑

j=1

Aij

�
H(p+

ij(t, z)− pz)−H(p−ij(t, z)− pz)
�

(14)

If we plug equation (14) into the Vlasov equations ∂tfi + [Hi, fi] = 0, i = 1, . . . ,M, we get, for
i = 1, . . . ,M and j = 1, . . . ,N , the following multi-water-bag equations

∂tp
±
ij +

p±ij

mγ±ij
∂zp

±
ij +

(
eEz +

1
2mγ±ij

∂z (Pc⊥,i − eA⊥(t, z))2
)

= 0

where γ±ij =
√

1 + p±
2

ij /(m2c2) + (Pc⊥,i − eA⊥(t, z))2/(m2c2). We now add the Maxwell equations
which couple the different fi through the scalar potential φ and the potential vector A⊥. The one-
dimensional wave-propagation model allows to separate the electric field into two parts, namely
E = Ezez +E⊥, where Ez = −∂zφ is a pure electrostatic field, which obeys Poisson’s equation, and
E⊥ = −∂tA⊥ is a pure electromagnetic field. In absence of any external magnetic field, B is purely
perpendicular and is given by B⊥ = ∇ × A⊥. The two others couple the fi. The Maxwell-Gauss
equation ∂zEz = ρ/ε0 becomes

∂zEz =
e

ε0

(M∑
i=1

ni(t, z)− n0

)

where the charge density ni of the bunch i is defined by

ni(t, z) =
∫ ∞

−∞
fi(t, z, pz) dpz =

N∑
j=1

Aij(p+
ij(t, z)− p−ij(t, z)).

The two Maxwell equations ∇× E⊥ + ∂tB⊥ = 0 and ∇×B⊥ = µ0(J⊥ + ε∂tE⊥) can be combined
to get the waves equation

∂2
tA⊥ − c2∂2

zA⊥ = µ0

M∑
i=1

J⊥,i

where J⊥,i is defined by

J⊥,i(t, z) =
e

m
(Pc⊥,i − eA⊥))

∫ ∞

−∞
fi(t, z, pz)

dpz

γi
=

e

m
(Pc⊥,i − eA⊥))

N∑
j=1

Aij

∫ p+
ij(t,z)

p−ij(t,z)

dpz

γi
.
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In the sequel we will consider the particular case M = 1, thus it corresponds to a cold plasma
distribution in the perpendicular direction. Since usually no streaming effects are considered we
take Pc⊥,1 = 0. Moreover we suppose that the relativistic effects are negligible, thus γ±i = 1 and
γ±ij = 1. If we use the relations ω2

p = e2n0/(mε0) and µ0ε0c
2 = 1, we then deal with the following

electromagnetic-MWB model

∂tv
±
j + v±j ∂zp

±
j +

e

m
∂z

�
φ+

e

2m
|A⊥|2

�
= 0 (15)

−∂2
zφ =

en0

ε0
(ρv − 1), ∂2

tA⊥ − c2∂2
zA⊥ = ω2

pA⊥ρv, ρv =
N∑

j=1

Aj(v+
j − v−j ) (16)

3 The Cauchy problem

We now present existence and uniqueness proofs of classical solutions for the multi-water-bag
models depicted in the previous section, namely the Poisson-multi-water-bag, the quasineutral-
multi-water-bag and the electromagnetic-multi-water-bag models.

3.1 The Poisson-MWB model

3.2 The case of a finite number of bag

In this section, we consider the initial value periodic problem

∂tv
±
j + v±j ∂zv

±
j + ∂zφ = 0, v±j (0, ·) = v±0j(·), j = 1, . . . ,N ,

−∂2
zφ =

N∑
j=1

Aj(v+
j − v−j )− 1 , (17)

with period Ω = 1, z ∈ R/Z. Therefore we have the following existence theorem.

Theorem 1 (Local classical solution). Assume v±0j ∈ Hm
p (Ω) with m > 3/2 and 1 ≤ j ≤ N ]. Then

for all N there exists a time T > 0 which depends only on ‖v±0j‖Hm
p

, N , Ω and A = maxj≤N |Aj |,
such that the system (17) admits a unique solution

v±j ∈ L∞(0, T ;Hm
p (Ω)) ∩ Lip(0, T ;Hm−1

p (Ω)), j = 1, . . . ,N
φ ∈ L∞(0, T ;Hm+2

p (Ω)) ∩ Lip(0, T ;Hm+1
p (Ω))

Proof. The proof is based on a fixed point argument (Banach’s fixed-point theorem). We first
rewrite the system (17). Using the Green function G(z, y), i.e. the fundamental solution of the
differential operator −∂2

z with periodic boundary conditions (−∂2
zG(z, y) = δ(z − y), G(0, y) =

G(1, y)), we can reconsider the problem (17) as

∂tv
±
j + v±j ∂zv

±
j = ∂zφ [ρv] ,

where

ρv =
N∑

j=1

Aj

�
v+
j (t, y)− v−j (t, y)

�
− 1, (18)

and
φ [ρv] (t, z) =

∫
Ω
G(z, y)ρv(t, y)dy, (19)
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with G(z, y) = z(1 − y) for 0 ≤ z < y and G(z, y) = y(1 − z) for y ≤ z ≤ 1. The regularity
properties of the solution of the Poisson equation in L2 imply that

‖φ[ρ]‖Hm
p (Ω) ≤ C(Ω) ‖ρ‖

H
max{m−2,0}
p (Ω)

. (20)

We now define the set WT as

WT :=
¦
w±j ∈ L∞(0, T ;Hm

p (Ω)) ∩ Lip(0, T ;Hm−1
p (Ω)) j = 1, . . . ,N |

sup
t∈[0,T ]

‖{w±j (t, ·)}j≤N ‖Hm := sup
t∈[0,T ]

N∑
j=1

‖w+
j (t, ·)‖Hm

p (Ω) + ‖w−j (t, ·)‖Hm
p (Ω) ≤ K‖{v±0j}j≤N ‖Hm


with K > 1 a numerical constant. We then define the iteration map F as follows. For any sequence
{w±j }j≤N ∈WT the image F({w±j }j≤N ) is the unique solution {v±j }j≤N of

∂tv
±
j + v±j ∂zv

±
j = ∂zφ [ρw] , (21)

with v±0j as initial condition. We first show that F maps WT onto itself for T small enough. If we
apply ∂α

z to (21) for α ≤ m and take the L2
p-scalar product with ∂α

z v
±
j then we get

1
2
d

dt
‖∂α

z v
±
j ‖

2
L2

p(Ω) +
∫
Ω
∂α

z (v±j ∂zv
±
j )∂α

z v
±
j dz =

∫
Ω
∂α+1

z φ [ρw] ∂α
z v

±
j dz. (22)

Let us estimate first the right hand side of (22). Applying Cauchy-Schwarz inequality and using
(20) we get ∣∣∣∣∫

Ω
∂α+1

z φ [ρw] ∂α
z v

±
j dz

∣∣∣∣ ≤ ‖∂α
z v

±
j ‖L2

p(Ω)‖∂α+1
z φ[ρw]‖L2

p(Ω)

≤ ‖∂α
z v

±
j ‖L2

p(Ω)‖ρw‖Hα−1
p (Ω)

≤ C(Ω, A)‖v±j ‖Hm
p (Ω)‖{w±j }j≤N ‖Hm (23)

We now estimate the second term of the left hand side of (22). Using Leibniz rules to evaluate
∂α

z (v±j ∂zv
±
j ) we have

∂α
z (v±j ∂zv

±
j ) = v±j ∂

α+1
z v±j +

α∑
k=1

�
α
k

�
∂k

z v
±
j ∂

α−k+1
z v±j . (24)

If we plug (24) into (22) the first part can be estimated as∣∣∣∣∫
Ω
v±j ∂

α+1
z v±j ∂

α
z v

±
j dz

∣∣∣∣ = 1
2

∣∣∣∣∫
Ω
v±j ∂z(∂α

z v
±
j )2dz

∣∣∣∣ ≤ 1
2
‖v±j ‖W 1,∞(Ω)‖v±j ‖

2
Hm

p (Ω).

Using the Cauchy-Schwarz inequality and the interpolation inequality (see Proposition 3.6, Chapter
13 of [57])

‖∂k−1
z ∂zf∂

α−k
z ∂zg‖L2

p(Ω) ≤ C(m)(‖∂zf‖L∞(Ω)‖g‖Hα
p (Ω) + ‖f‖Hα

p (Ω)‖∂zg‖L∞(Ω)), (25)

we obtain∣∣∣∣∣∣
∫
Ω
∂α

z v
±
j

α∑
k=1

�
α
k

�
∂k−1

z ∂zv
±
j ∂

α−k
z ∂zv

±
j dz

∣∣∣∣∣∣ ≤ C(m)‖v±j ‖
2
Hm

p (Ω)‖∂zv
±
j ‖L∞(Ω), (26)

≤ C(m)‖v±j ‖
3
Hm

p (Ω), (27)
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where we have used the Sobolev imbedding Hm
p (Ω) ↪→W 1,∞(Ω) for m > 3/2. Using (22)-(23) and

(27) we get

d

dt
‖v±j ‖Hm

p (Ω) ≤ C(m,Ω, A)
(
‖v±j ‖

2
Hm

p (Ω) + ‖{w±j }j≤N ‖Hm

)
, j = 1, . . . ,N . (28)

Summing the previous inequality over j we finally obtain the differential inequality

d

dt
‖{v±j (t)}j≤N ‖Hm ≤ C(m,Ω, A,N )

�
‖{v±j (t)}j≤N ‖2

Hm + ‖{w±j (t)}j≤N ‖Hm

�
.

Then a Gronwall lemma shows that ‖{v±j (t)}j≤N ‖Hm ≤ K‖{v±0j}j≤N ‖Hm for all t ∈ [0, T ], T small
enough. From (21) we have v±j ∈ Lip(0, T ;Hm−1

p (Ω)) for 1 ≤ j ≤ N . Then we conclude that the
application F maps WT into itself. We now need to prove that F is a contraction. We consider
two set of functions {w±1j}j≤N and {w±2j}j≤N belonging to WT . We set {v±1j}j≤N := F({w±1j}j≤N )
, {v±2j}j≤N := F({w±2j}j≤N ), v±j = v±1j − v±2j and w±j = w±1j −w

±
2j for all 1 ≤ j ≤ N . The difference

of the equations (21) for {v±1j} and {v±2j} gives

∂tv
±
j + v±j ∂zv

±
1j + v±2j∂zv

±
j = ∂zφ [ρw] , v±j (0, ·) = 0. (29)

In the same manner we obtained (22) we deduce from (29)

1
2
d

dt
‖∂α

z vj‖L2
p(Ω) +

∫
Ω
∂α

z (v±j ∂zv
±
1j)∂

α
z v

±
j dz+

∫
Ω
∂α

z (v±2j∂zv
±
j )∂α

z v
±
j dz =

∫
Ω
∂α+1

z φ [ρw] ∂α
z v

±
j dz. (30)

Using the estimates of Proposition 3.7, Chapter 3 of [57] the second term of the left hand side of
(30) for α ≤ m− 1 is bounded as follows∣∣∣∣∫

Ω
∂α

z (v±j ∂zv
±
1j)∂

α
z v

±
j dz

∣∣∣∣ ≤ C(m)‖v±j ‖Hm−1
p (Ω)‖v

±
j ∂zv

±
1j‖Hm−1

p (Ω)

≤ C(m)‖v±j ‖Hm−1
p (Ω)(‖∂zv

±
1j‖L∞(Ω)‖v±j ‖Hm−1

p (Ω) + ‖v±j ‖L∞(Ω)‖∂zv
±
1j‖Hm−1

p (Ω))

≤ C(m)‖v±j ‖
2
Hm−1

p (Ω)
‖v±1j‖Hm

p (Ω).

For the second term of the left hand side of (30) we proceed similarly to (27) and provided m > 3/2
we get

∣∣∣∣∫
Ω
∂α

z (v±2j∂zv
±
j )∂α

z v
±
j dz

∣∣∣∣ ≤ ‖v±2j‖W 1,∞(Ω)‖v±j ‖
2
Hm−1

p (Ω)
+ ‖v±j ‖Hm−1

p (Ω)

∥∥∥∥∥∥
α∑

k=1

�
α
k

�
∂k−1

z (∂zv
±
2j)∂

α−k+1
z v±j

∥∥∥∥∥∥
L2(Ω)

≤ C(m)‖v±j ‖
2
Hm−1

p (Ω)
‖v±2j‖Hm

p (Ω).

The estimate of right hand side of (30) is the same as (23). Since ‖{v±1j(t)}j≤N ‖Hm , ‖{v±2j(t)}j≤N ‖Hm ≤
K‖{v±0j}j≤N ‖Hm we finally obtain

d

dt
‖{v±j (t)}j≤N ‖Hm−1 ≤ C(m,Ω, A,N ,K0)

�
‖{v±j (t)}j≤N ‖Hm−1 + ‖{w±j (t)}j≤N ‖Hm−1

�
.

where K0 = K‖{v±0j}j≤N ‖Hm . Once again, a Gronwall lemma shows that F is a contraction
provided that T is small enough. �
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3.2.1 The case of an infinite number of bag

The theorem 1 is not true for an infinite number of bag because the constants involving in the
proof depend on the number of bag. In order to consider an infinite number of bag we define two
Lagrangian foliations to be the families of sheets v± = v±(t, z, a) labelled by the Lagrangian label
a ∈ [0, 1] where the water-bag continuum v±(t, z, a) are smooth functions. The system (17) is still
valid if we replace the counting measure by the Lebesgue measure da. In fact let us consider the
function

f(t, z, v) =
∫ 1

0

�
H(v+(t, z, a)− v)−H(v−(t, z, a)− v)

�
dµ(a) (31)

where

µ(a) =


µN (a) =

∑N
j=1Ajδ(a− aj)

or
µ∞(a) = 1[0,1](a)

Obviously we have µN ⇀ µ∞ for the weak-∗ topology σ(Mb,Cb) (topology of the narrow conver-
gence) where Mb is the set of bounded Radon measure. Therefore it is easily verified by a direct
check that f defined by equation (31) satisfies, in the distributional sense, the Vlasov equation

∂tf + v∂zf − ∂zφ∂vf = 0, −∂2
zφ =

∫
R

fdv, (32)

if and only if the water-bag continuum v± satisfy the continuous water-bag model given by

∂tv
± + v±∂zv

± + ∂zφ = 0, −∂2
zφ =

∫ 1

0
(v+ − v−)da (33)

with period Ω = 1, z ∈ R/Z, a ∈ [0, 1]. Therefore we have the following existence theorem.

Theorem 2 (Local classical solution). Assume v±0 ∈ Hm
p (D) with m > 2 and D = Ω× [0, 1]. Then

there exists a time T > 0 which depends only on ‖v±0 ‖Hm
p

, D, such that the system (33) admits a
unique solution

v± ∈ L∞(0, T ;Hm
p (D)) ∩ Lip(0, T ;Hm−1

p (D)),

φ ∈ L∞(0, T ;Hm+2
p (Ω)) ∩ Lip(0, T ;Hm+1

p (Ω))

Proof. The proof of the theorem is the same as the theorem 1, except that the problem is now
set in a two-dimensional space, which implies more regularity for the initial conditions because of
the Sobolev embeddings. �

3.3 The Quasineutral-MWB model

3.3.1 The case of a finite number of bag

In this section, we consider the initial value periodic problem

∂tv
±
j + v±j ∂zv

±
j + ∂zφ = 0, v±j (0, ·) = v±0j(·), j = 1, . . . ,N ,

φ =
N∑

j=1

Aj(v+
j − v−j )− 1, (34)

with period Ω = 1, z ∈ R/Z. Therefore we have the existence theorem.

10



Theorem 3 (Local classical solution). Assume v±0j ∈ Hm
p (Ω) with m > 3/2 and Aj positif real

numbers, 1 ≤ j ≤ N . Moreover we suppose that
∑

j≤N Aj = A is bounded. Then for all N there
exists a time T > 0 which depends only on ‖v±0j‖Hm

p
, N , Ω and A, such that the system (34) admits

a unique solution

v±j , φ ∈ L
∞(0, T ;Hm

p (Ω)) ∩ C (0, T ;Hm
p (Ω)), j = 1, . . . ,N

Proof. If we set V = (v+
1 , . . . , v

+
N , v

−
1 , . . . , v

−
N )T the system of equations (34) can be recast in

the quasilinear hyberbolic system
∂tV + B(V )∂zV = 0, (35)

where B = D + 1AT with

A = (A1, . . . ,AN ,−A1, . . . ,−AN )T , 1 = (1, . . . , 1︸ ︷︷ ︸
2N times

)T , D =



v+
1

. . . 0
v+
N

v−1

0
. . .

v−N


.

Let us show that the system (35) is strictly hyperbolic. To this purpose, we just need to show
that the matrix B has 2N distinct real eigenvalues. Let be λ a real number. Then after some
rearrangement of the line of B − λI , the latter matrix take the form

B − λI =



v+
1 − λ −v+

2 + λ
. . . . . . . . . 0

v+
N − λ −v−1 + λ

v−1 − λ −v−2 + λ

0
. . . . . . . . .

v−N−1 − λ −v−N + λ
A1 · · · AN −A1 . . . −AN−1 v−N − λ−AN


(36)

If we take the determinant of (36) we get the polynomial of degree 2N

P2N (λ) =
N∏

j=1

(v+
j − λ)(v−j − λ)

�
1−

N∑
j=1

nj

(v+
j − λ)(v−j − λ)

�
(37)

where ni = Aj(v+
j − v−j ), Aj ≥ 0, v+

j > 0 and v−j < 0. Then we observe that

sign
�
P2N (v±1 )

�
= sign (P2N (0)) and sign

�
P2N (v±j )

�
=
¨

(−1)j N odd
(−1)j+1 N even

j = 2, . . . ,N

Consequently the polynomial P2N oscillates 2N −2 times around zero and has 2N −2 roots, N −1
positive {λ+

j }j≤N−1, and N − 1 negative {λ−j }j≤N−1 such that v±j−1 < λ±j < v±j , 2 ≤ j ≤ N .
Therfore we can factorize P2N as follows

P2N (λ) = Q2N−2(λ)S2(λ),

with Q2N−2(λ) =
∏N−1

j=1 (λ− λ+
j )(λ− λ−j ) and S2(λ) = λ2 + aλ+ b. If N is even then P2N (0) > 0

and Q2N−2(0) < 0. Therefore S2(0) < 0 and S2(λ) has two distint real roots of opposite sign. If
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N is now odd then P2N (0) < 0 and Q2N−2(0) > 0. Therefore S2(0) < 0 and S2(λ) has again two
distint real roots of opposite sign. Finally we conclude that P2N (λ) has 2N distinct real roots, N
positive and N negative. Therefore the system (35) is strictly hyperbolic, and from the Proposition
2.2, Chapter16 of [57] it is symmetrizable. We finally deduce the existence and the regularity of
the local classical solution from the Proposition 2.1 of Chapter 16 of [57]. �

Remark 1 In fact the distribution function (6) can solve more general kinetic equation. Indeed,
let us choose the following distribution function

f(t, z, v) =
N−1∑
i=0

ci1vi(t,z)<v<vi+1(t,z)(v), (38)

where the function 1a<v<b(v) is equal to one if v ∈]a, b[ and null elsewhere. If N = 2N and if
there are N positive bag {vi}i∈Σ+ (Σ+ the index set of positive bags) and N negative bag {vi}i∈Σ−

(Σ− the index set of negative bags) then the distribution function (6) is equivalent to (38) with
(−1)lAi = ci+1 − ci, where l = 1 if i ∈ Σ+ and l = −1 if i ∈ Σ−. Therefore the distribution
fonction (38) is a water-bag-like weak solution of the kinetic equation

∂tf + v∂zf − ∂zq(ρ) ∂vf = 0, (39)

where
ρ(t, z) =

∫
R

f(t, z, v) dv,

if and only if

∂tvi + ∂z

�
v2
i

2
+ q(ρ)

�
= 0, i = 0, · · · , N. (40)

Particularly we recover the quasineutral-MWB model if q(ρ) = ρ, for which we get

q(ρ) =
N−1∑
i=0

ci(vi+1 − vi).

The existence of classical solution of (40) still relies on the hyperbolicity of the system (40). If we
assume that at (t, z) fixed, the application v → f(t, z, v) has a single change of monotonicity, i.e.
there exists n0 such that ci+1 > ci for i = 0, · · · , n0 − 1 and ci+1 < ci for i = n0, · · · , N − 2, then
the system is hyperbolic. Indeed the characteristic polynomial of the jacobian is

R(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v0 + ∂q
∂v0

− λ ∂q
∂v1

· · · ∂q
∂vN−1

∂q
∂vN

∂q
∂v0

v1 + ∂q
∂v1

− λ · · · ∂q
∂vN−1

∂q
∂vN

...
...

. . .
...

...
∂q
∂v0

∂q
∂v1

· · · vN−1 + ∂q
∂vN−1

− λ ∂q
∂vN

∂q
∂v0

∂q
∂v1

· · · ∂q
∂vN−1

vN + ∂q
∂vN

− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and we have

R(vi) =
∂q

∂vi

N∏
j=0,j 6=i

(vj − vi).

12



If we now assume that p′ > 0, since p′(ρ) = ρq′(ρ), ∂q
∂vi

has the same sign than ∂ρ
∂vi

= ci−1 − ci and
then the sign of R(vi) is (−1)i−1sign(ci−1−ci). Besides the dominated term of P (λ) is (−1)N+1λN+1

and thus if
v0 < v1 < · · · < vN ,

then we have N + 1 distinct roots for R. Therefore the system (40) is hyperbolic, and thus sym-
metrizable, and finally it has a unique local classical solution vi, i = 1, . . . , N , such that

vi ∈ L∞(0, T ;Hm
p (Ω)) ∩ C (0, T ;Hm

p (Ω)), i = 1, . . . , N.

Let us notice that the water-bag solution (38) of the equation

∂tf + v∂zf + ∂zq(ρ) · ∂vf = 0,

leads to the system

∂tvi + ∂z

�
v2
i

2
− q(ρ)

�
= 0, i = 0, . . . , N,

which can not be hyperbolic. Indeed, for q(ρ) = ρ and N = 2, the system is not hyperbolic since
imaginary roots are possible.

The question of the existence of a wide class of solution for equations (39) with general func-
tions q or even with q(ρ) = ρ, when the number of bag is infinite, is still an open problem because
traditional techniques as averaging lemmas or compensated compactness tools fail. Therefore the
water-bag solution (40) could be an interesting way to reach this goal, provided that one are be able
to pass to the limit with respect to the number of bags in (40).

3.3.2 The case of an infinite number of bag

As it has been mentioned in the previous remark the existence proof for the quasineutral-MWB
when the number of bag is infinite is not an easy task because we need to deal with an infinite
dimensional hyperbolic system. We known from Theorem 3 that the existence time depends on
the number of bag. Unfortunately the estimate of the existence time with respect to the number
of bag N leads to a negative result. More precisely we have the following theorem which says that
the existence time decreases with the number of bag with a polynomial rate of one half.

Theorem 4 Let assume that q(ρ) = ρ and 0 < c0 < c1 < · · · < cN ,, then the maximal existence
time TN of the system (40) satisfies the estimate

TN .
1√

1 +N
.

Proof. Let us now estimate the existence time with respect to the number of bag N of the
system (40) in the case q(ρ) = ρ for the initial data

f0(z, v) =
N−1∑
i=0

cNi 1vN
i (0,z)<v<vN

i+1(0,z) + cNN 1v>vN
N (0,z). (41)

We assume that
0 < cN0 < cN1 < · · · < cNN ,

13



in other words the kinetic distribution is increasing with respect to v. The function

fN (t, z, v) =
N−1∑
i=0

cNi 1vN
i (t,z)<v<vN

i+1(t,z) + cNN 1v>vN
N (t,z)

is a solution to (39) with the initial data (41) if and only if

∂tv
N
i + ∂z

�
(vN

i )2

2
+ ρN

�
= 0, i = 0, · · · , N (42)

with the initial data vN
i (0, z), for i = 0, · · · , N , and with the charge density

ρN (t, z) =
N−1∑
i=0

cNi (vN
i+1(t, z)− vN

i (t, z)) + cNN (v − vN
N (t, z)),

that is to say

ρN (t, z) =
∫ v

−∞
fN (t, z, ξ) dξ,

as soon as vN
N (t, z) ≤ v, with v > max

z
vN
N (0, z) + 1.

If we set

V N =


vN
0

vN
1
...

vN
N−1

vN
N


then the system can be recast in the symmetrical form

AN
0 ∂tV

N +AN
0 A

N ∂zV
N = 0,

where the matrix AN
0 and AN are defined by

AN
0 =


cN0 0 · · · 0 0
0 cN1 − cN0 · · · 0 0
...

...
. . .

...
...

0 0 · · · cNN−1 − cNN−2 0
0 0 · · · 0 cNN − cNN−1

 ,

and

AN =


vN
0 − cN0 cN0 − cN1 · · · cNN−2 − cNN−1 cNN−1 − cNN
−cN0 vN

1 + cN0 − cN1 · · · cNN−2 − cNN−1 cNN−1 − cNN
...

...
. . .

...
...

−cN0 cN0 − cN1 · · · vN
N−1 + cNN−2 − cNN−1 cNN−1 − cNN

−cN0 cN0 − cN1 · · · cNN−2 − cNN−1 vN
N + cNN−1 − cNN

 .

We notice that

AN
0 AN =



cN0 (vN
0 − cN0 ) cN0 (cN0 − cN1 ) · · · cN0 (cNN−1 − cNN )

−cN0 (cN1 − cN0 ) (cN1 − cN0 )(vN
1 + cN0 − cN1 ) · · · (cN1 − cN0 )(cNN−1 − cNN )

...
...

. . .
...

−cN0 (cNN − cNN−1) (cN0 − cN1 )(cNN − cNN−1) · · · (vN
N + cNN − cNN−1)
.(cNN−1 − cNN )


,
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and set

MN = max
�
cN0 , max

i=1,··· ,N
(cNi − cNi−1)

�
, mN = min

�
cN0 , min

i=1,··· ,N
(cNi − cNi−1)

�
.

Observing that MN ≤ cNN and mN > 0, we get

mN I ≤ AN
0 ≤MN I.

For α ∈ {0, 1, 2}, the computation of the classical energy of the symmetrical system gives

d

dt
〈AN

0 ∂
α
z V

N , ∂α
z V

N 〉L2 = 〈AN
0 ∂zA

N∂α
z V

N , ∂α
z V

N 〉L2 + Fα, (43)

with
Fα = 〈AN

0 A
N∂α+1

z V N −AN
0 ∂

α
z (AN∂zV

N ), ∂α
z V

N 〉L2 .

Using now Moser type inequalities (proposition 3.7, §3, chapter 13 [57]) and setting cN−1 = 0, we
obtain

|Fα| =

∣∣∣∣∣∣
N∑

i=0

(cNi − cNi−1)
N∑

j=0

∫
R

�
AN

ij ∂
α+1
z V N

j − ∂α
z (AN

ij ∂zV
N
j )
�
∂α

z V
N
i dz

∣∣∣∣∣∣
≤ MN

N∑
i=0

N∑
j=0

∥∥∥AN
ij ∂

α+1
z V N

j − ∂α
z (AN

ij ∂zV
N
j )
∥∥∥

L2

∥∥∥∂α
z V

N
i

∥∥∥
L2

≤ MN C2

N∑
i=0

N∑
j=0

(∥∥∥∂zA
N
ij

∥∥∥
L∞

∥∥∥∂2
zV

N
j

∥∥∥
L2

+
∥∥∥∂zV

N
j

∥∥∥
L∞

∥∥∥∂2
zA

N
ij

∥∥∥
L2

) ∥∥∥∂α
z V

N
i

∥∥∥
L2
.

From the form of AN , we have ∂zA
N
ij = δij∂zV

N
i , and thus we get∥∥∥∂zA

N
ii

∥∥∥
L∞

≤
∥∥∥∂zV

N
i

∥∥∥
L∞

,
∥∥∥∂2

zA
N
ii

∥∥∥
L2
≤
∥∥∥∂2

zV
N
i

∥∥∥
L2
.

Sobolev embedding leading to ∥∥∥∂zV
N
j

∥∥∥
L∞

≤ C1

∥∥∥V N
j

∥∥∥
H2
,

we finally obtain

|Fα| ≤ 2MN C2C1

N∑
i=0

∥∥∥V N
i

∥∥∥3

H2
.

Furthermore the first term of the right hand side of (43) can be estimated as follows

∣∣∣〈AN
0 ∂zA

N∂α
z V

N , ∂α
z V

N 〉L2

∣∣∣ =

∣∣∣∣∣∣
N∑

i=0

(cNi − cNi−1)
N∑

j=0

∫
R

∂zA
N
ij ∂

α
z V

N
j ∂α

z V
N
i dz

∣∣∣∣∣∣
≤ MN

∣∣∣∣∣∣
N∑

i=0

∫
R

∂zV
N
i (∂α

z V
N
j )2 dz

∣∣∣∣∣∣
≤ MN

N∑
i=0

∥∥∥∂zV
N
i

∥∥∥
L∞

∥∥∥∂α
z V

N
i

∥∥∥2

L2

≤ MN C1

N∑
i=0

∥∥∥V N
i

∥∥∥3

H2
.
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Therefore the energy estimate (43) gives

〈AN
0 ∂

α
z V

N (t), ∂α
z V

N (t)〉L2 ≤ 〈AN
0 ∂

α
z V

N (0), ∂α
z V

N (0)〉L2+MN C1 (1+2C2)
∫ t

0

N∑
i=0

∥∥∥V N
i (s)

∥∥∥3

H2
ds,

and summing over α, for α ∈ {0, 1, 2}, it leads to

mN

N∑
i=0

∥∥∥V N
i (t)

∥∥∥2

H2
≤MN

N∑
i=0

∥∥∥V N
i (0)

∥∥∥2

H2
+ 3MN C1 (1 + 2C2)

∫ t

0

N∑
i=0

∥∥∥V N
i (s)

∥∥∥3

H2
ds. (44)

If we now introduce the new energy

EN (t) =
1

N + 1

N∑
i=0

‖V N
i (t)‖2

H2 , (45)

using the estimate (44) then we obtain

EN (t) ≤ MN

mN
EN (0) + 3

MN

mN
C1 (1 + 2C2)

1
N + 1

∫ t

0

N∑
i=0

∥∥∥V N
i (s)

∥∥∥3

H2
ds. (46)

Denoting by F (t) the right hand side of (46), we now get

F ′(t) = 3
MN

mn
C1 (1 + 2C2)

1
N + 1

N∑
i=0

∥∥∥V N
i (t)

∥∥∥3

H2

≤ 3
MN

mN
C1 (1 + 2C2)

√
N + 1

(
1

(N + 1)2

N∑
i=0

∥∥∥V N
i (t)

∥∥∥4

H2

)1/2(
1

N + 1

N∑
i=0

∥∥∥V N
i (t)

∥∥∥2

H2

)1/2

≤ 3
MN

mN
C1 (1 + 2C2)

√
N + 1

(
1

N + 1

N∑
i=0

∥∥∥V N
i

∥∥∥2

H2
(t)

)3/2

≤ 3
MN

mN
C1 (1 + 2C2)

√
N + 1F (t)3/2.

An integration in time leads to

F (t) ≤ 1�
1√
F (0)

−
3

MN
mN

C1 (1+2C2)
√

N+1t

2

�2 .

and since F (0) = MN
mN

EN (0), we finally get

EN (t) ≤
4EN (0)MN

mN�
2− 3

È
(N + 1)EN (0)

�
MN
mN

�3/2
C1 (1 + 2C2) t

�2 .

Assuming that

0 ≤ MN

mN
≤ K,

an estimate of the existence time TN is given by

TN ≤ 2

3
È

(N + 1)EN (0)K3/2C1 (1 + 2C2)
≤ K√

N + 1
.
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�

A way to get an existence result for the quasineutral-MWB model when the number of the bag
is infinite, is to consider a generalized definition of hyperbolicity for integrodifferential hyperbolic
system of equations [14].

3.4 The electromagnetic-MWB model

3.4.1 The case of a finite number of bag

In this section, we consider the initial value periodic problem

∂tv
±
j + v±j ∂zv

±
j + ∂z

�
φ+

1
2
|A⊥|2

�
= 0, v±j (0, ·) = v±0j(·), j = 1, . . . ,N , (47)

−∂2
zφ = ρv − 1, ∂2

tA⊥ − ∂2
zA⊥ = A⊥ρv, ρv =

N∑
j

Aj(v+
j − v−j ) (48)

with period Ω = 1, z ∈ R/Z. Therefore we have the existence theorem.

Theorem 5 (Local classical solution). Assume v±0j ∈ Hm
p (Ω) with m > 3/2 and 1 ≤ j ≤ N . In

addition we suppose that A0
⊥ = A⊥(0, x) ∈ Hm

p (Ω) and A1
⊥ = (∂tA⊥)(0, x) ∈ Hm−1

p (Ω). Then for
all N there exists a time T > 0 which depends only on ‖v±0j‖Hm

p
, ‖A0

⊥‖Hm
p

, ‖A1
⊥‖Hm−1

p
, N , Ω and

A = maxj≤N |Aj | such that the system (47)-(48) admits a unique solution

v±j , A⊥ ∈ L
∞(0, T ;Hm

p (Ω)) ∩ Lip(0, T ;Hm−1
p (Ω)), j = 1, . . . ,N ,

φ ∈ L∞(0, T ;Hm+2
p (Ω)) ∩ Lip(0, T ;Hm+1

p (Ω)),

Proof. The proof is based on the Banach’s fixed-point theorem. Let us suppose that (φ,A⊥) ∈
DT where the set DT will be defined further. The goal of the proof is to construct an application
J

(φ,A⊥) −→
¦
v±j,φ,A⊥

©
j≤N −→ ρφ,A⊥ −→ (φ̃, ÜA⊥) = J (φ,A⊥)

such that J leaves invariant the set DT and is a contraction. As it has been done in the proof of
the theorem 1 for j = 1, . . . ,N , α ≤ m, we get the energy estimate

d

dt
‖v±j ‖Hα

p (Ω) ≤ C(m)‖v±j ‖
2
Hα

p (Ω) + ‖∂α+1
z φ‖L2

p(Ω) +
1
2

∥∥∥∂α+1
z |A⊥|2

∥∥∥
L2

p(Ω)
. (49)

Using the interpolation inequality (25) we get

∥∥∥∂α+1
z |A⊥|2

∥∥∥
L2

p(Ω)
=

∥∥∥∥∥∥
α∑

k=0

�
α
k

�
∂α−k

z A⊥ · ∂k
z (∂zA⊥)

∥∥∥∥∥∥
L2

p(Ω)

≤ C(m)
(
‖A⊥‖L∞(Ω)‖A⊥‖Hα+1

p (Ω) + ‖∂zA⊥‖L∞(Ω)‖A⊥‖Hα
p (Ω)

)
≤ C(m)‖A⊥‖W 1,∞(Ω)‖A⊥‖Hα+1

p (Ω) (50)

Estimates (49)-(50) and the Sobolev embedding Hm
p (Ω) ↪→W 1,∞(Ω) for m > 3/2, leads to

d

dt
‖{v±j }j≤N ‖Hm ≤ K0(m,N )

(
‖{v±j }j≤N ‖2

Hm + ‖φ‖Hm+1
p (Ω) + ‖A⊥‖2

Hm+1
p (Ω)

)
≤ K0

�
‖{v±j }j≤N ‖2

Hm +
(
1 + ‖φ‖Hm+1

p (Ω)

)2
+ ‖A⊥‖2

Hm+1
p (Ω)

�
. (51)
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If we set Xm(t) =
�
1 + ‖φ‖Hm

p (Ω)

�2
+‖A⊥‖2

Hm
p (Ω), then using the Gronwall Lemma 7 (see appendix

A) we obtain

‖{v±j }j≤N ‖Hm ≤
(

1
‖{v±0j}j≤N ‖Hm +K0

∫ t
0 Xm+1(s)ds

−K0t

)−1

(52)

If we use now the d’Alembert formula we can integrate the wave equation for A⊥ to get

ÜA⊥(t, z) =
1
2
(A0

⊥(z + t) +A0
⊥(z − t)) +

1
2

∫ z+t

z−t
A1
⊥(y)dy +

1
2

∫ t

0

∫ z+(t−s)

z−(t−s)
(ρv
ÜA⊥)(s, y)dyds (53)

If we apply ∂α
z to (53) for α ≤ m, take the L2

p-norm, use a Cauchy-Schwarz inequality in time,
the Leibniz rules for derivatives, the interpolation inequality (25) and the Sobolev embedding
Hm

p (Ω) ↪→ L∞(Ω) for m > 1/2, we then get

‖∂α
z
ÜA⊥‖2

L2
p(Ω) ≤ 2‖∂α

z A
0
⊥‖2

L2
p(Ω) + 2‖∂α−1

z A1
⊥‖2

L2
p(Ω)

+

∥∥∥∥∥
∫ t

0
∂α−1

z [(ρv
ÜA⊥)(s, z + t− s)− (ρv

ÜA⊥)(s, z − t+ s)]ds

∥∥∥∥∥
2

L2
p(Ω)

≤ 2‖∂α
z A

0
⊥‖2

L2
p(Ω) + 2‖∂α−1

z A1
⊥‖2

L2
p(Ω) + 2t

∫ t

0

∥∥∥∂α−1
z (ρv

ÜA⊥)
∥∥∥2

L2
p(Ω)

ds

≤ 2‖∂α
z A

0
⊥‖2

L2
p(Ω) + 2‖∂α−1

z A1
⊥‖2

L2
p(Ω) + 2t

∫ t

0

∥∥∥∥∥∥
α−1∑
k=0

�
α− 1
k

�
∂k

z ρv∂
α−1−k
z

ÜA⊥∥∥∥∥∥∥
2

L2
p(Ω)

ds

≤ 2‖∂α
z A

0
⊥‖2

L2
p(Ω) + 2‖∂α−1

z A1
⊥‖2

L2
p(Ω) + C(α)t

∫ t

0
‖ρv‖2

Hα−1
p (Ω)

‖ÜA⊥‖2
Hα−1

p (Ω)
ds (54)

The regularity properties of the solution of the Poisson equation in L2 imply that

‖φ̃‖Hm
p (Ω) ≤ C(Ω) ‖ρv‖H

max{m−2,0}
p (Ω)

≤ K3(Ω, A)‖{v±j }j≤N ‖Hmax{m−2,0} . (55)

Using estimates (52), (54) and (55) we obtain

ÜXm(t) ≤ ‖A0
⊥‖2

Hm
p (Ω) + ‖A1

⊥‖2
Hm−1

p (Ω)
+
(
1 + C(Ω) ‖ρv‖Hm−2

p (Ω)

)2
+ C(m)t

∫ t

0
‖ρv‖2

Hm−1
p (Ω)

‖ÜA⊥‖2
Hm−1

p (Ω)
ds

≤ K2 + 2 + 2K2
3(Ω, A)

(
1

K1 +K0

∫ t
0 Xm(s)ds

−K0t

)−2

+t
∫ t

0
K4(m,Ω, A)

�
1

K1 +K0

∫ s
0 Xm(τ)dτ

−K0s

�−2 ÜXm(s)ds (56)

where we have set

K1 = ‖{v±0j}j≤N ‖Hm and K2 = ‖A0
⊥‖2

Hm
p (Ω) + ‖A1

⊥‖2
Hm−1

p (Ω)

Let us now define the set DT as

DT =
¦
(φ,A⊥) | φ, A⊥ ∈ L∞(0, T ;Hm

p (Ω)),

‖φ‖L∞(0,T ;Hm
p (Ω)) + ‖A⊥‖2

L∞(0,T ;Hm
p (Ω)) < K[K2 + 2 + 2(K1K3)2]

}
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where K > 1 is a purely numerical constant. Using the estimate (56), a Gronwall inequality show
that ÜXm ≤ K[K2 + 2 + 2(K1K3)2] for all t ∈ [0, T ], T small enough. Therefore there exists a time
T > 0 such that the application J maps DT into itself. From the multi-water-bag equations (47)
we have v±j ∈ L∞(0, T ;Hm

p (Ω)) ∩ Lip(0, T ;Hm−1
p (Ω)) for 1 ≤ j ≤ N . We now need to prove that

J is a contraction to get a unique solution. To this purpose we must evaluate the difference

(φ̃1 − φ̃2, ÜA1⊥ − ÜA2⊥) = J (φ1, A1⊥)− J (φ2, A2⊥)

where φ1, φ2, A1⊥, and A2⊥ belong to DT . If we set v±j = v±1j−v
±
2j , φ = φ1−φ2, A⊥ = A1⊥−A2⊥,

φ̃ = φ̃1 − φ̃2, ÜA⊥ = ÜA1⊥ − ÜA2⊥ and if we substract equations (47)-(48) for each solution we obtain
the system

∂tv
±
j + v±j ∂zv

±
1j + v±2j∂zv

±
j + ∂z

�
φ+

1
2
(A1⊥ ·A⊥ +A2⊥ ·A⊥)

�
= 0, j = 1, . . . ,N , (57)

−∂2
zφ = ρv, ρv =

N∑
j

Aj(v+
j − v−j ), v±j (0, ·) = 0, j = 1, . . . ,N

∂2
tA⊥ − ∂2

zA⊥ = A⊥ρ1v +A2⊥ρv, A0
⊥ = 0, A1

⊥ = 0. (58)

Following the proof of theorem 1, equation (57) leads to

d

dt
‖{v±j (t)}j≤N ‖Hm−1 ≤ C1(m,N ,K, {Ki}i=1,2,3)

�
‖{v±j (t)}j≤N ‖Hm−1 +

√
2Y 1/2

m

�
. (59)

where Ym(t) = ‖φ‖2
Hm

p (Ω) + ‖A⊥‖2
Hm

p (Ω). Using the Gronwall Lemma 7 we get

‖{v±j (t)}j≤N ‖Hm−1 ≤
√

2C1e
C1t
∫ t

0
Y 1/2

m (s)ds. (60)

Following the proof of the estimate (54), using equation (58) and estimate (55) we get

‖ÜA⊥‖2
Hm−1

p (Ω)
≤ C2(m,K, {Ki}i=1,2,3)t

∫ t

0
‖{v±j (t)}j≤N ‖2

Hm−2 + ‖ÜA⊥‖2
Hm−2

p (Ω)
(61)

Using estimates (60)-(61) and we get

ÜYm−1 ≤
�
K3C1

√
2
∫ t

0
Y

1/2
m−1(s)ds

�2

e2C1t

+ C2t

∫ t

0

��
K3C1

√
2
∫ s

0
Y

1/2
m−1(τ)dτ

�2

e2C1s + ÜYm−1(s)
�
ds (62)

Once again, a Cauchy-Schwarz inequality and a Gronwall lemma shows that J is a contraction
provided that T is small enough. �

3.4.2 The case of an infinite number of bag

The theorem 5 is not true for an infinite number of bag because the constants involving in the
proof depend on the number of bag. In order to consider an infinite number of bag, as in section
3.2.1, we consider two Lagrangian foliations to be the families of sheets v± = v±(t, z, a) labelled
by the Lagrangian label a ∈ [0, 1] where the water-bag continuum v±(t, z, a) are smooth functions.
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The system (47)-(48) is still valid if we replace the counting measure by the Lebesgue measure da,
which means that the water-bag continuum v± satisfy the continuous water-bag model given by

∂tv
± + v±∂zv

± + ∂z

�
φ+

1
2
|A⊥|2

�
= 0, v±(t = 0) = v±0 , (63)

−∂2
zφ = ρv − 1, ∂2

tA⊥ − ∂2
zA⊥ = A⊥ρv, ρv =

∫ 1

0
(v+ − v−)da. (64)

with period Ω = 1, z ∈ R/Z, a ∈ [0, 1]. Therefore we have the following existence theorem.

Theorem 6 (Local classical solution). Assume v±0 ∈ Hm
p (D) with m > 2 and D = Ω × [0, 1]. In

addition we suppose that A0
⊥ = A⊥(t = 0) ∈ Hm

p (D) and A1
⊥ = (∂tA⊥)(t = 0) ∈ Hm−1

p (D). Then
there exists a time T > 0 which depends only on ‖v±0 ‖Hm

p
, ‖A0

⊥‖Hm
p

, ‖A1
⊥‖Hm−1

p
, and D such that

the system (63)-(64) admits a unique solution

v± ∈ L∞(0, T ;Hm
p (D)) ∩ Lip(0, T ;Hm−1

p (D)),

φ ∈ L∞(0, T ;Hm+2
p (Ω) ∩ Lip(0, T ;Hm+1

p (Ω)),

A⊥ ∈ L∞(0, T ;Hm
p (Ω)) ∩ Lip(0, T ;Hm−1

p (Ω)).

Proof. The proof of the theorem is the same as the theorem 5, except that the problem is now
set in a two-dimensional space, which implies more regularity for the initial conditions because of
the Sobolev embeddings. �

4 Numerical Approximation

In this section we consider a periodic plasma of period L, z ∈ Ω =]0, L[. After the normalization
of the equations (7), (10), (11) and (15)-(16) we obtain for the multi-water-bag equations

∂tv
±
j + v±j ∂zv

±
j + ∂z

�
φ+

1
2
|A⊥|2

�
= 0, (65)

for the Poisson equation
−∂2

zφ =
∑
j≤N

Aj(v+
j − v−j )− n0, (66)

for the quasi-neutral equation

φ =
Zi

n0τ

(
Zi

∑
j≤N

Aj(v+
j − v−j )− n0

)
, (67)

and for the waves equation

∂2
tA⊥ − ∂2

zA⊥ = A⊥
∑
j≤N

Aj(v+
j − v−j ), (68)

with Zi the number of charge and τ = Ti/Te. Moreover we add the initial conditions v±j (0, ·) = v±0j(·)
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4.1 Numerical method

In this section we present briefly the numerical method we use to solve the equations (65)-(66) with
A⊥ = 0, (65)-(67) with A⊥ = 0 and the system formed by the equations (65), (66) and (68) . The
discontinuous Galerkin (DG) method [23, 27] has been used to investigate these equations. This
is a finite element method space discretization by discontinuous approximations, that incorporates
the ideas of numerical fluxes ans slope limiters used in high-order finite difference and finite volume
schemes. The DG methods can be combined with Runge-Kutta or Lax-wendroff time discretization
scheme to give stable, high-order accurate, highly parallelizable schemes that can easily handle h-p
adaptivity, complicated geometries and boundaries conditions.

Let us note that the way we apply the DG method is original for our model, because strictly
speaking the multi-water-bag model (35) is a system of conservation laws and should be solved us-
ing DG schemes for one-dimensional system [22] resulting in computing eigenvalues of the jacobian
matrix. Nevertheless, solving as we do each half-bag separately as a scalar conservation law still
works. From the numerical point of view it is very interesting because we do not have eigenvalue
problems to solve and even better the parallel computation with respect to the bag number can be
performed easily. This remark will be very useful for gyrokinetic applications [42, 51, 52, 12].

4.1.1 Discretization of the multi-water-bag equations

Let be Ω the domain of computation andMh a partition of Ω of elementK such that ∪K∈Mh
K = Ω,

K ∩Q = ∅, K,Q ∈Mh, K 6= Q. We set h = maxK∈Mh
hK where hK is the exterior diameter of a

finite element K. The first step of the method is to write the equations (65) in a variational form on
any element K of the partition Mh. Using a Green formula, for any enough regular test-function
ϕ, for all j = 1, . . . ,N , we get∫

K
∂tv

±
j ϕdz −

∫
K

�
f(v±j ) + φ(z) +

1
2
|A⊥|2

�
∂zϕdz

+
∫

∂K

�
f(v±j ) + φ(z) +

1
2
|A⊥|2

�
nKϕdΓ ∀K ∈Mh (69)

where ∂K denotes the boundary of K, nK denotes the outward unit normal to ∂K, and f(·) =
(·)2/2. We now seek an approximate solution (v±h,j , φh, A⊥h) whose restriction to the element K of
the partition Mh of Ω belongs, for each value of the time variable, to the finite dimensional local
space P(K), typically a space of polynomials. Therefore we set

Ph(Ω) =
¦
ψ | ψ|K ∈ P(K), ∀K ∈Mh

©
.

We now determine the approximate solution (v±h,j , φh, A⊥h)|K ∈ P(K)⊗
4

for t > 0, on each element
K of Mh by imposing that, for all ϕh ∈ P(K), for all j = 1, . . . ,N ,∫

K
∂tv

±
h,jϕhdz −

∫
K

�
f(v±h,j) + φh(z) +

1
2
|Ah,⊥(z)|2

�
∂zϕh dz

+
∫

∂K

�Õf nK(v±h,j) + Öφh nK +
1
2
Û�|Ah,⊥|2 nK

�
ϕh dΓ (70)

where we have replaced the flux terms (f(v±j ) + φ + 1
2 |A⊥|

2)nK in (69) by the numerical fluxÕf nK(v±h,j)+Öφh nK + 1
2
Û�|Ah,⊥|2 nK because in (69) the term arising from the boundary of the cell K

are not well defined or have no sense since v±h,j , φh, Ah,⊥ and ϕh are discontinuous (by construction
of the space of approximation) on the boundary ∂K of the element K. It now remains to define the
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numerical flux Õf nK +Öφh nK + 1
2
Û�|Ah,⊥|2 nK . For two adjacent cells K+ and K− of Mh and a point z

of their common boundary at which the vector nK± are defined, we set ϕ±h (z) = limε→0 ϕh(z−εnK±)
and call these values the traces of ϕh from the interior of K±. Therefore the numerical flux at z is
a function of the traces v±,±

h,j , i.e.

Öf nK−(v±h,j)(z) = Öf nK−(v±,−
h,j (z), v±,+

h,j (z)).

Besides the numerical flux must be consistent with the non linearity f nK− , which means that
we should have Öf nK−(v, v) = f(v)nK− . In order to give monotone scheme in case of piecewise-
constant approximation the numerical flux must be conservative, i.eÖf nK−(v±,−

h,j (z), v±,+
h,j (z)) + Öf nK+(v±,+

h,j (z), v±,−
h,j (z)) = 0

and the mapping v 7→ Öf nK−(v, ·) must be non-decreasing. There exists several examples of nu-
merical fluxes satisfying the above requirements: the Godunov flux, the Engquist-Osher flux, the
Lax-Friedrichs flux (see [23]). For the numerical flux Ø�φh nK− and Û�|Ah,⊥|2 nK− we can choose aver-
age, left or right flux. We can also choose other numerical fluxes [27, 23]. Therefore, for each cell
K, after the space-discretization step, we get the ordinary differential equation (ODE)

M
d

dt
v±h,j|K

= LK

�§
v±h,j|K′

, φh|K′
, Ah,⊥|K′

| K ′ ∩K ∈ ∂K
ª�

, ∀K ∈Mh, j = 1, . . . ,M (71)

In the general case, the local mass matrix M of low order (equal to the dimension of the local
space P(K)) is easily invertible. If we choose orthogonal polynomials M is diagonal. Here we
take the Legendre polynomials as L2-orthogonal basis function. Our code can run with Legendre
polynomial at any order, but for the numerical results exposed in the next section we choose n = 2,
i.e. polynomial of degree two.
Therefore we have to solve the ODE

d

dt
v±h,j = Lh

�
v±h,j , φh, Ah,⊥

�
, j = 1, . . . ,N (72)

In order to solve (72) we can use Runge-Kutta methods [36]. For numerical stability considerations
we have to choose k + 1 stage Runge-Kutta method of order k + 1 for DG discretizations using
polynomials of degree k if we do not want our CFL number to be too small. As we take polynomial
of degree two we choose a the third-order strong stability-preserving Runge-Kutta method [36]: for
all 1 ≤ j ≤ N

v±h,j(t1) = v±h,j(t
n) + ∆tLh

�
v±h,j(t

n), φh(tn), Ah,⊥(tn)
�

v±h,j(t2) =
3
4
v±h,j(t

n) +
1
4
v±h,j(t1) + ∆tLh

�
v±h,j(t1), φh(t1), Ah,⊥(t1)

�
v±h,j(t

n+1) =
1
3
v±h,j(t

n) +
2
3
v±h,j(t2) +

2
3
∆tLh

�
v±h,j(t2), φh(t2), Ah,⊥(t2)

�
with tn = n∆T , ∆t = T/NT , and t1 and t2 time between tn and tn+1.
For the discretization of the initial condition we take v±0h,j on the cell K to be the L2-projection of
v±0j(·) on P(K), i.e for all ϕh ∈ P(K)∫

K
v±0h,jϕh dz =

∫
K
v±0jϕh dz, ∀K ∈Mh
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4.1.2 Discretization of the quasineutral equation

For solving the equation (67) we take its L2-projection on P(K), i.e for all ϕh ∈ P(K)

∫
K
φhϕh dz =

∫
K
ϕh

Zi

n0τ

�
Zi

N∑
j=1

Aj(v+
h,j − v−h,j)− n0

�
dz, ∀K ∈Mh

4.1.3 Discretization of the Poisson equation

We aim now at solving the Poisson equation (66). Using Green formula we can rewrite the problem
(66) in the following variational form: find Eh ∈ Ph(Ω) and φh ∈ Ph(Ω) such that for all ϕh, ψh ∈
Ph(Ω), for all K ∈Mh ∫

K
Ehϕh dz =

∫
K
φh∂zϕh dz −

∫
∂K

φ̂hϕhnK− dΓ (73)∫
K
Eh∂zψh dz =

∫
∂K

ÒEhnK−ψh dΓ−
∫

K
ρhψh dz (74)

where Eh is an approximation of E = −∂zφ, and ρh stands for the right hand side of (66) where
we have replaced v±j by their approximations v±h,j . If we set n the outward unit normal to ∂Ω, E◦h
the set of interior edges of Mh, E∂

h the set of boundary edges of Mh and if we use the notations
[ϕh] = ϕ+

h nK− + ϕ−h nK+ , {ϕh} = 1
2(ϕ+

h + ϕ−h ), then we have∑
K∈Mh

∫
∂K

ψK−ϕK−nK− dΓ =
∫
E◦

h

([ψ]{ϕ}+ [ϕ]{ψ}) dΓ +
∫
E∂

h

ψϕndΓ. (75)

If we take ϕh = Eh in (73), ψh = φh in (74), summing over the cell K and using (75) we obtain

Rh +
∫
Ω
|Eh|2 dz =

∫
Ω
ρhφh dz (76)

where

Rh =
∫
E◦

h

�
{ÒEh − Eh}[φh] + {φ̂h − φh}[Eh]

�
dΓ +

∫
E∂

h

�
φh(ÒEh − Eh) + φ̂hEh

�
ndΓ. (77)

Let us now choose the numerical fluxes as followsÒEh = {Eh}+ α11[φh] + α12[Eh], φ̂h = {φh} − α11[φh] + α22[Eh] on E◦hÒEh = Eh + α11φhn, φ̂h = 0, on E∂
h , (78)

where α11 > 0, α22 ≥ 0 and α12 is an arbitrary real number. If we plug (78) into (77) then we get

Rh =
∫
E◦

h

(α11[φh]2 + α22[Eh]2) dΓ +
∫
E∂

h

α11|φh|2 dΓ ≥ 0. (79)

If we set ρh = 0 then we get [φh] = 0, φh|E∂
h

= 0 and Eh = 0. Therefore the equation (73) can be

rewritten as ∫
K
ψ∂zφh dz = 0, ∀ψ ∈ P(K), ∀K ∈Mh

which means that φh = 0 on Ω and thus the approximate solution φh is well defined.
Now that the methods supplies a unique approximate solution, let us compute it. If we take the
equation (73), sum over the cell K, by using (75) we get

a(Eh, ϕh)− b(φh, ϕh) = 0, ∀ϕh ∈ Ph(Ω) (80)
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where the bilinear forms a(·, ·) and b(·, ·) are

a(u, v) =
∫
Ω
uv dz +

∫
E◦

h

α22[u][v] dΓ,

b(w, u) =
∫
Ω
∂zuw dz +

∫
E◦

h

[u](α12[w]− {w}) dΓ.

Using integration by part we get

−
∫

K
Eh∂zϕh dz = −

∫
∂K

EhnK−ϕh dΓ +
∫

K
∂zEhϕh dz. (81)

If we add (74) to (81), sum over all cell K, and use (75) then we get

b(ψh, Eh) + c(ψh, φh) = F (ψh), ∀ψh ∈ Ph(Ω) (82)

where the bilinear form c(·, ·) and the linear form F (·) are

c(w, p) = α11

∫
E◦

h

[w][p] dΓ + α11

∫
E∂

h

pw dΓ, F (w) =
∫
Ω
wρh dz.

The variational formulation (80) and (82), leads to the matrix formulation

ΦT
hAEh − φT

hBΨh = 0, ΨT
hBEh −ΨT

h Cφh = ΨT
hFh, ∀Ψh, Φh

which is equivalent to solve the linear system

Eh = A−1BTφh, (BA−1BT + C)φh = Fh. (83)

We can solve (83) by direct (LU decomposition for example) or iterative methods (Conjugate
gradient for example) of linear algebra. Let us note that if α22 = 0, then the matrix A is diagonal
by block, and therefore it is easier to invert.

4.1.4 Discretization of the waves equation

It remains now to solve the waves equation (68). To this purpose we rewrite the equation (68).
Introducing the propagator fields E± = E⊥ 1 ± B⊥ 2 and F± = E⊥ 2 ± B⊥ 1, the waves equation
(68) is equivalent to the system

∂tE
± ± ∂xE

± = −J⊥ 1, ∂tF
± ∓ ∂xF

± = −J⊥ 2 (84)

where for i = 1, 2,

J⊥ i = −A⊥ i

∑
j≤N

Aj(v+
j −v

−
j ), ∂tA⊥ 1 = −E⊥ 1 =

1
2
(E+ +E−), ∂tA⊥ 2 = −E⊥ 2 =

1
2
(F+ +F−)

Let us start with equations (84). After writting equations (84) in variational forms on any elementK
of the partitionMh by using a Green formula, we determine the approximate solution (E±h , F

±
h )|K ∈

P(K)⊗
4

for t > 0, on each element K of Mh by imposing that, for all ϕh ∈ P(K),∫
K
∂tE

±
h ϕhdz ∓

∫
K
E±h ∂zϕh dz ±

∫
∂K

×�E±h nKϕh dΓ = −
∫

K
Jh,⊥ 1ϕh dz (85)∫

K
∂tF

±
h ϕhdz ±

∫
K
F±h ∂zϕh dz ∓

∫
∂K

×�F±h nKϕh dΓ = −
∫

K
Jh,⊥ 2ϕh dz (86)
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where for the numerical fluxes Ø�E±h nK− and Ø�F±h nK− we choose upwind fluxes. The discontinuous-
Galerkin projection of the equation ∂tA⊥ = −E⊥ is simply∫

K
∂tAh,⊥ϕhdz = −

∫
K
Eh,⊥ϕh dz (87)

As in section 4.1.1, the equations (85)-(87) leads to the ODEs

d

dt
Fh = Jh

(
Fh,
¦
v±h,j

©
j=1,...,N

)
(88)

where we have used the compact notation Fh = (E±h , F
±
h , Ah,⊥) for the electromagnetic fields. The

ODEs sytem (88) is solved by a third-order strong stability-preserving Runge-Kutta method [36],
as in section 4.1.1.

5 Numerical Results

5.1 Construction of a multi-water-bag equilibrium

This section is devoted to the construction of the initial conditions which will be used to initialize
the numerical schemes depicted in the previous section. The initial condition is constructed as
a perturbation of an homogeneous equilibrium. Let us construct first an equilibrium. To this
purpose we consider an homogeneous equilibrium distribution function f0(v). For simplicity reason
we suppose f0 is an even function of v (odd momenta are zero). In the mult-water-bag formalism
it means symmetrical equilibrium contours ±v0j , 1 ≤ j ≤ N . Let us define the `-momentum, M`,
of f0 (` even only)

M`(f0) =
∫ ∞

−∞
v` f0(v) dv (89)

and the `-momentum of the corresponding multi-water-bag

M`(MWB) =
1

`+ 1

N∑
j=1

2Aj v
`+1
0j . (90)

Let us now sample the v-axis with appropriate v0j ’s. Thus equating equations (89) and (90) for
` = 0, 2, . . . , 2(N −1) yields a system of N equations for the N unknown Aj , j = 1, . . . , N . Using
an integration by parts we get

N∑
j=1

2Aj v
`+1
0j = −

∫ ∞

−∞
v`+1 df0

dv
dv, ` = 0, 2, . . . , 2(N − 1). (91)

A water bag model with N bags is equivalent to a continuous distribution function for momenta
up to `max = 2(N −1). Here we see that the equivalence in the fluid momentum sense of a multiple
water bag distribution and a continuous distribution makes the connection with a multifluid model
more clear. Nevertheless equation (91) has the form of a Vandermonde system which becomes
ill-conditionned for higher values of the number of bags N (for instance for N = 15 and a cut-off
in velocity space v0N = 5vth, vth being the thermal velocity, the matrix elements vary from 1 to
528!).

A more convenient solution can be found for a regular sampling v0j = (j − 1
2)∆v0 and is

explained in figure 3: we consider Fj at the middle of the interval ∆v0 = 2v0N
2N−1 and compute

Fj = f0(v0j − ∆v0
2 ). From equation (91) the solution is straighforward

Aj = f0

�
v0j −

∆v0
2

�
− f0

�
v0j +

∆v0
2

�
+O(∆v3

0). (92)
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Figure 3: Constructing the bags from a continuous distribution.

In the following numerical experiments we take a normalized Maxwellian distribution (vth = 1) for
f0. Therefore the initial condition v±0j is taken as

v±0j = ±v0j(1 + ηδv(z)) (93)

where η is real small number and δv is a periodic function in z (usually a cosine fonction).
Moreover it is well known that the Vlasov equation conserves many physical and mathematical
quantities such that mass, kinetic entropy, total energy, every Lp-norm (p ≥ 0) and more generaly
any phase-space integral of β(f) where β is a regular function. Obviously these conservation
properties are retrieved with the water-bag model, by using the distribution function (6) in the
definition of the considered quantities. For example the total energy, preserved in our water-bag
model, is

1
6

∑
j

Aj

∫
dz
(
v+
j

3 − v−j
3
)

+
1
2

∑
j

Aj

∫
dz (v+

j − v−j )φ

+
1
2

∑
j

Aj

∫
dz (v+

j − v−j )|A⊥|2dz +
1
2

∫
dz
�
|∂zA⊥|2 + |∂tA⊥|2

�
5.2 Landau damping of Langmuir waves

In this section we investigate the Linear Landau damping of Langmuir wave which corresponds
of wave damping without energy dissipation and which occurs by phase mixing process of real
frequencies [54, 6] which is reminiscent of the Van Kampen-Case [58, 21] treatment of electronic
plasma oscillations. In fact at the begining all the bags are in phase. Then the bags become to
be no more in phase with time because every bag has its own velocity (determined by its own
frequency, the real roots of the dispersion relation, and the wave number of excited mode) which
differs from one bag to another one. This phase mixing between the bags produces the linear
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Landau damping of the Langmuir waves. Further in time, there exists a recurrence time when all
the bags are again in phase like at the begining, and thus the electrical waves recover their initial
energy. In the asymptotic vφ = ω/k � vth the dispersion relation for Vlasov-Poisson system with
a Maxwellian distribution as the unperturbed part of the full distribution function gives for the
frequency of the oscillation

ω2 = ω2
p +

3kBTe

me
k2

and for the damping rate

γ = −
√
πωp

�
ωp

kvth

�3

exp
� −ω2

p

k2v2
th

�
exp (−3/2).

The parameter setting is L = 4π, vth = 1, N = 16, vmax = 6 and n0 = 1. The initial data are
according to (93) with δv as a sine function. The oscillation frequency and the damping rate given
by the numerical solution of the system (65)-(66) are respectively ω = 1.415 and γ = −0.153, which
is in agreement with the theoretical values ω = 1.4156 and γ = −0.1533. Moreover the theoretical
recurrence time TR = 2π/(k∆v) is equal to 32.46 which is in agreement with that observed on
the figure 4. In addition the relative error norm of variations of L2-norm, kinetic entropy and
mass or L1-norm always stay less than 10−13. The total energy relative error variation remains
less than 10−8 for mesh discretization ∆x = 0.7862, ∆v = 0.325. The conservation properties of
the discretized multi-water-bag model are better than those obtained by classical semi-Lagrangian
kinetic schemes. For the same test case we obtain relative error of variations smaller than 10−5

for the mesh discretization ∆x = 0.3925, ∆v = 0.1875 in [11] and relative error variations smaller
than 10−5 for the mesh discretization ∆x = 0.3925, ∆v = 0.25 in [53]. In fact for semi-Lagrangian
schemes the relative error variations of the conserved quantities increase when the distribution
function is smoothed, i.e. when the size of the structures generated by the flow in the phase space
becomes smaller than the phase space cell size. This phenomenon is less strong in the water-bag
model because we only follow contours and the phase space enclosed between two contours do not
need to be solved as the solution is analytically known.
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Figure 4: Evolution in time of the Logarithm of electric energy.
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5.3 Landau damping of ion acoustic waves

If a wave has a slow enough phase velocity to match the thermal velocity of ions, ion landau
damping can occur. The dispersion relation for ion wave is

ω

k
= vs =

�
ZikBTe + 3kBTi

mi

�1/2

.

If Te ≤ Ti or Te ∼ Ti, the phase velocity lies in the region where the Maxwellian unperturbed part
of distribution function has a negative slope. Consequently ion waves are heavily Landau-damped.
Ion waves propagate without damping if Te � Ti so that the phase velocity lies far in the tail of
the ion velocity distribution. For a single ion species, for k2λD � 1 (λD the Debye lenght) is

Z ′
�
ω

kvth

�
=

2Ti

ZiTe
=

2 τ
Zi

where Z(ζ) = π−1/2
∫∞
−∞ e−t2/(t − ζ)dt stands for the plasma dispersion function. The numeric

value of the parameters are L = 4π, vth = 1, N = 16, vmax = 6, n0 = 1, Zi = 1 and τ = 0.5.
The initial data are according to (93) with δv as a cosine function. The damping rate given by
the numerical solution of the system (65)-(67) is γ = 0.288 which is in good agreement with the
theoretical value γ = 0.290. Moreover the theoretical recurrence time TR = 2π/(k∆v) is equal
to 32.46 which is in agreement with that observed on the figure 5. In addition the relative error
variations for L2-norm, kinetic entropy, total energy and mass or L1-norm remains less than 10−12
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Figure 5: Evolution in time of the Logarithm of electric energy.

5.4 Nonlinear Bohm-Gross frequency shift of a plasma wave

In this section we take a plasma in a periodic box of lenght L = 2π/k0 and we consider the initial
conditions with one bag

v±(t = 0, z) = ±v0(1 + ε cos(kx))

where k = `k0 (` integer), and ±v0 are the unperturbed part of v+ and v−. Since all velocities are
normalized to the thermal velocity, we have v0 =

√
3 and A = A1 = (2

√
3)−1. Therefore, the initial

density n(t = 0, z) = A(v+ − v−) and mean velocity u(t = 0, z) = (v+ + v−)/2 are written:

n(t = 0, z) = 1 + ε cos(kz) and u(t = 0, z) = 0.
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The system (65)-(66) with one bag (N = 1) is simpler than the Vlasov-Poisson system governing
a collisionless plasma and allows some analytical work ([5, 25]) in the weak field approximation
(ε→ 0). In the linear case we obtain the Bohm Gross dispersion relation

ω2
k = 1 + 3k2. (94)

In the Maxwellian case, this expression is valid for k → 0, neglecting O(k4)-term, while in the water
bag model it is an exact result. Pushing now calculation up to third order in ε, using a multiple
time scale perturbation method a new dispersion relation is obtained [5]

ω′k = ωk +
ε2

16

�
(1 + ω2

2k)
2

12ωk
+
ωk

3
(2 + 3ω2

2k)−
2

ωkω
2
2k

�
(95)

where ωk is given by (94) and ω2k is the corresponding formula for the mode 2k.
Here we try to recover the non-linear frequency (95). The initial conditions for the parameters
are ε = 0.1 and k = k0 = 0.6 (i.e excitation of the first Fourier mode). Since n(t, k0) behaves
like ε/2 cos(ω′k0

t), we plot in fig. 6 the difference n(t, k0)− ε/2 cos(ωk0t) which must oscillate with
an amplitude varying like ε sin((ω′k0

− ωk)t)/2. For ε = 0.1 and k = k0 = 0.6 the equation give
ω′k0

− ωk = 6.67 10−3. Thus we obtain a straightline envelope with slope 3.357 10−4 which is just
the analytical value ε/2(ω′k0

− ωk0), providing full support for the code.
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Figure 6: Evolution in time of n(t, k0)− ε/2 cos(ωk0t).

5.5 The Van Kampen modes

The Van Kampen modes are the eigenmodes of the linearized Poisson-MWB system (65)-(66). If
we linearise equations (65)-(66) for a periodic electronic plasma around an homogeneous (density
n0) equilibrium i.e. v±j (t, z) = ±v0j + δv±j (t, z) with |δv±j | � v0j , we then obtain the equations for
the perturbation δv±j (t, z)

∂tv
±
j ± v0j∂zδv

±
j = −Ez, ∂zEz = −

N∑
j=1

Aj(δv+
j − δv−j ). (96)

After taking the Fourier transform of equations (96) and assuming that the time dependence of the
Fourier mode Ajδv

±
jk(t) is of the form Ajδv

±
jk(t) = w±jkn exp(−ωnt) we find the equation

kv0jw
±
jkn +

Aj

k

N∑
i=1

(w+
ikn − w−ikn) = ωnw

±
jkn (97)
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If we assume the normalization condition
∑N

i=1(w
+
ikn−w

−
ikn) = 1 which is equivalent to the dispersion

relation (12) (ε(k, ω) = 0) we obtain from equation (97) the water-bag eigenmode w±jkn exp(−ωnt)
where

w±jkn =
1
k

Aj

(ωn ∓ kv0j)
. (98)

The water-bag mode is very similar to the Van Kampen mode [58] (solution of the linearized
Vlasov-Poisson system)

χk(ω, v) = −∂vf0

k
p.v.

1
ω − kv

+ λ(ω)δ(v − ω/k)

where −∂vf0 and Aj play the same part (see section 5.1) and λ(ω) is determined by the normal-
ization condition

∫
R
χk(ω, v)dv = 1. Let us notice that the Dirac distribution which is present

in the Van Kampen mode desappears in the water-bag mode (98) because the phase velocity
ωn/k of the water-bag mode strictly lies between two consecutive bags v0j . In fact the water-bag
modes whose the frequency spectrum is discrete and finite on the real axis appear as the dis-
cretization of the Van Kampen modes whose the frequency spectrum is dense on the real axis.
The general solution of the system (96) is obtained by linear combination of the mode (98), i.e.
Ajδv

±
jk(t) =

∑
nCnw

±
jkn exp(−ωnt) where the Cn is determined by the initial condition. The sum-

mation over the index n which corresponds to the superposition of free oscillations is responsible
for the Landau damping. Here we want to excite a unique mode (k, ω`), i.e Cn = εδn` where (k, ω`)
satisfy the dispersion relation (12) (ε(k, ω`) = 0). From equation (98) the initial condition is such
that δv±jk(t = 0) = (ε/k)/(ω` ∓ kv0j), and the corresponding solution of the problem (96) is the
traveling wave

δv±j (t, z) =
ε

k

1
(ω` ± kv0j)

cos(kz − ω`t)

propagating at the phase velocity vϕ,` = ω`/k and the associated density becomes δn(t, z) =∑N
i=1Aj(δv+

j − δv−j ) = ε cos(kz − ω`t). Here we choose k = 2.72, Lz = 2πnk/k where nk = 13.
Solving the dispersion relation (12), we find ω` = 1.68 × 10−1. The phase velocity of the mode is
vϕ,` = 6.19× 10−2, which is between the first and the second bag and thus these are the two bags
which will be the most distorted. The other parameters are vth =

È
1/511, N = 4, vmax = 0.22,

Lz = 30.02 and ε = 10−3. The final time of the simulation is T = 100ω−1
p . Hereafter the table

1 give L∞-error between the exact solution and the numerical one, and the corresponding rate of
convergence. Since we choose polynomial of degree two and a third-order Runge-Kutta scheme,
the Runge-Kutta-discontinuous-Galerkin method using upwind numerical fluxes should converges
with a rate min{3, n + 1} = 3. From numerical convergence rates summarized in the table 1, we

Nz ‖vh,1(T )− v1(T )‖L∞ order ‖nh(T )− n(T )‖L∞ order
128 4.42× 10−6 1.77× 10−5

256 5.89× 10−7 2.90 2.85× 10−6 2.66
512 7.48× 10−8 2.97 3.84× 10−7 2.90
1024 9.41× 10−9 2.99 4.87× 10−8 2.98

Table 1: L∞-error and convergence rate

can conclude that the scheme reproduces theoretical results with the right order of accurary.

5.6 The stimulated Raman scattering instability

The stimulated Raman scattering instability is a parametric instability involving three waves: the
incident electromagnetic wave, here reffered to as the “pump” wave (k0, ω0) which drives two
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unstable waves; a scattered electromagnetic wave (ks, ωs); and an eletron plasma wave (ke, ωe). The
Raman instability occurs when the usual matching conditions hold, ω0 = ωs +ωe and k0 = ks + ke,
with the dispersion relation for the electron plasma wave given by the (normalized) Bohm-Gross
frequency ω2 = 1 + 3k2v2

th and for the two electromagnetic waves by ω2 = 1 + k2. The matching
conditions can be satisfied only if ne/ncrit < 1/4 where ncrit is the critical density above which
electromagnetic radiation will not propagate. The periodic boundary conditions imply the selection
of different wave numbers to obtain either forward (ωs/ks > 0) or backward (ωs/ks < 0) scattering.
If we set k0 = rk` where r is a rational number p/q, then the constraints of the problem leads to
the bi-square equation

((2r − 1− 3v2
th)2 − 12v2

th(r − 1)2)k4
e + (−6v2

th − 4r2 + 4r − 2)k2
e − 3 = 0

Here we solve the system formed by the equations (65)- (68). We start with an initial homegeneous
Maxwellian distribution with a thermal velocity vth =

È
0.1/511. The cutoff in velocity space is

vmax = 0.07. The plasma is embedded in a periodic box of lenght L = 10.75. A right (ν = +1)
circularly polarized electromagnetic pump wave (E0

⊥, B
0
⊥, A

0
⊥) is initialized in a simulation box with

a quiver momentum a0 = vosc = E0/ω0 = 10−2 such that

E0
⊥ 1(t = 0, z) = E0 cos(k0z), E0

⊥ 2(t = 0, z) = νE0 sin(k0z). (99)

The initial condition for the magnetic components has been taken as

B0
⊥ 1(t = 0, z) = −νE0

k0

ω0
sin(k0z), B0

⊥ 2(t = 0, z) = E0
k0

ω0
cos(k0z). (100)

The corresponding initial condition for the transverse potential vector A⊥, are then given by

A0
⊥ 1(t = 0, z) =

E0

ω0
sin(k0z), A0

⊥ 2(t = 0, z) = −νE0

ω0
cos(k0z). (101)

We take similar expressions for the scattered wave (Es
⊥, B

s
⊥, A

s
⊥) with as = 10−6. We set r = 2/3

and wave numbers are chosen such that ke/kz = 6, k0/kz = 4 and ks/kz = −2. The other
parameters are ω0 = 2.54, ωs = 1.54, ωe = 1., k0 = 2.33, ks = −1.17, ke = 3.5, n0/ncrit =
1.55× 10−1, N = 6, Nz = 128 and ∆t = 1.68× 10−2.
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Figure 7: Growth rate of the stimulated Raman scattering instability
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At the first stage of the evolution the electric energy exhibit an exponential growth related to
the SRS intability. The theoretical energy growth rate, imputed from linearized fluid equation [30]
is

γ =
kevosc

2
√

2ωeωs
= 9.97× 10−3

is found very close to the numerical value 9.90 × 10−3, see Fig. 8 . After the first stage of the
SRS instability the time evolution of waves and particles energy in Fig. 8 exhibits an oscillatory
behaviour in which energy is transfered back between the pump, the scattered and plasma wave
like a parametric 3-mode coupling.
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Figure 8: Time evolution of the energy of the pump wave, the plasma wave and the scattered wave,
and the particles kinetic energy

5.7 The kinetic electron eletrostatic nonlinear waves

The KEEN (Kinetic Electron Electrostatic Nonlinear) waves are electrostatic acoustic-like modes
of the one-dimensional Vlasov-Poisson system which propagate with a phase velocity around the
thermal velocity and can be viewed as non-steady variant of the well-known Bernstein-Greene-
Kruskal (BGK)[10] modes that describe invariant traveling electrostatic waves in plasmas. An
explanation for the existence of these modes, which refer to Van Kampen-Case solution of the
linearized Vlasov-Poisson system, were given by Holloway and Dorning [44]. The KEEN waves
would be associated to the excitation of a Van Kampen mode around the phase velocity vϕ =
ω/k ∼ vth. We then obtain a dispersion diagram where the Bohm-Gross branch (corresponding to
the undamped Landau pole) joins a balistic or acoustic branch [44, 47, 48](see Fig. 4 in [44]). An
other way to explain the existence of such modes comes from the Landau solution of the linearized
Vlasov-Poisson system. In fact from linear dispersion relation we can see that there exists an
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infinite number of poles beyond the Landau pole whose the contribution is rapidly damped and
which play a role only on very short time. If we can modify the initial distribution f0 so as to
flatten it around the phase velocity of the less undamped poles, then a structure can appears and
propagates with phase velocity smaller than the Landau pole one. There must be a mechanism to
excite such pole whereas Landau pole is naturally excited by the electronic density perturbation.
This mechanism is linked to a ponderomotive force generated by the optic mixing of laser waves
as it occurs in inertial fusion confinement. Therefore we are interested in the numerical solution of
the system formed by the equations (65)-(68).
From dispersion relation (12) with N bags, for large wave lenght kλD � 1, we can see that
the last pole ωN corresponds to the Landau pole, which is subjected to the Bohm-Gross relation
ωN /ωp = 1 + 3k2λ2

D +O(k4λ4
D) whereas the N − 1 other poles ωn<N are such that ωn/ωp ∼ kλD,

which correspond to acoustic-like waves. These last acoustic-like water-bag modes can resonate with
the electromagnetic branch to give a backward Raman scattering-like effect. The phase mixing can
prevent these modes to develop and only Raman scattering (backward or forward) can resonate
with the Bohm-Gross branch. Nevertheless, if we introduce a laser wave whose the frequency
and wave number are in accordance with those of this other acoustic-like water-bag pole, then
this mode can propagate. In order to prevent resonance between the Bohm-Gross mode and the
electromagnetic branch the condition ne/ncrit > 1/4 must be satisfy. Let be (k0, ω0) the pump
wave, and (ks, ωs) the scattered electromagnetic wave (with small amplitude) chosen such that
one of the acoustic-like water-bag pole (k`, ω`) (with ` < N ) comes in resonance (with ks < 0),
i.e. ω0 = ωs + ω` and k0 = ks + k`, then a unique acoustic-like water-bag pole can be excited.
Moreover the electromagnetic waves and the water-bag mode must satifisfy the dispersion relations
ω2 = 1 + k2 and ε(k`, ω`) = 0 respectively. If we set k0 = rk` where r is a rational number p/q
or a real number very close to a rational number, then the constraints of the problem leads to the
second degree equation

−r2 + r +
ω2

` − k2
`

4k2
`

− ω2
`

k2
`

1
ω2

` − k2
`

= 0

The roots r = 1/2, r > 1/2, and r < 1/2 correspond respectively to ω` = 0, ω` > 0 and ω` < 0. We
start with an initial homegeneous Maxwellian distribution with a thermal velocity vth =

È
1/511 =

4.42 × 10−2. The cutoff in velocity space is vmax = 0.22. The plasma is embedded in a periodic
box of lenght L = 30.02. A right circularly polarized electromagnetic pump and scattered wave is
initialized in a simulation box with a quiver momentum a0 = vosc = E0/ω0 = 10−2 and as = 10−6.
The structure of the initial pump (E0

⊥, B
0
⊥, A

0
⊥) and scattered (Es

⊥, B
s
⊥, A

s
⊥) wave is given by formula

(99)-(101). We set r = 7/13 and wave numbers are chosen such that k`/kz = 13, k0/kz = 7 and
ks/kz = −6. The other parameters are ω0 = 1.77, ωs = 1.61, ωe = 1.68 × 10−1, k0 = 1.46,
ks = −1.26, ke = 2.72, n0/ncrit = 3.17 × 10−1, N = 4, Nz = 256 and ∆t = 2.34 × 10−2. The
phase velocity of the plasma mode is vϕ,` = 6.19 × 10−2 ∼ 1.4vth whereas the theoretical velocity
of the Bohm-Gross mode is vϕ,BG =

È
1 + 3k2

` v
2
th/k` = 3.75× 10−1 which is well beyond the cutoff

velocity. In addition the relative error variations for L2-norm, kinetic entropy, and mass or L1-norm
remains less than 10−10 whereas the relative error variation of the total energy is less than 4×10−2

at the final time T = 3.5714× 104. In Fig. 9, we observe the nonlinear stability in very long time
of the low-frequency plasma mode that we have excited. In fact, in Fig. 9, we observe thirteen
holes which correspond to as much vortexes. This low-frequency nonlinear mode which moves with
a velocity around the thermal velocity (vϕ,` ∼ 1.4vth) is typically the wave that ones observes
in laser-plasma simulations using an electromagnetic Vlasovian description [2, 1, 31, 32, 13], the
so-called KEEN mode. These modes can be viewed as a non-steady variant of the well-known
Bernstein-Greene-Kruskal (BGK)[10] modes that describe invariant traveling electrostatic waves in
plasmas. Therefore the multi-water-bag reveals to be a model that can explain the formation of

33



0 5 10 15 20 25 30
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

z−axis

ba
gs

 &
 v

el
oc

ity

The multi−water−bag at time T=35714

Figure 9: The muti-water-bag versus z-space at time T = 35714

KEEN waves and more generally it supplies a scenario for the formation of coherent low-frequency
structures which appear in laser-plasma interaction at nonlinear stage and persist in the long time
dynamics such as electron acoustic-like waves (EAW). The ability of the multi-water-bag model to
describe such waves is very promising and advanced research on this topic is under consideration.

6 Conclusion

In this paper we have presented multi-water-bag models for collisionless kinetic equations. In fact
the multi-water-bag model is the consequence of the consideration of special class of exact weak
solution of the Vlasov equation. On one hand, we have proved the existence of local classical
solutions for the the multi-water-bag model to approximate one-dimensional Vlasov-type equations
in three situations: the Poisson coupling, its quasi-neutral approximation and the electromagnetic
coupling. On the other hand, we have proposed DG-type numerical approximations for these
systems of equations. Moreover, we have shown the performance of this scheme based on the results
of different test cases. Let us notice that the water-bag model could appear somewhat limited when
wave-breaking and extreme phase mixing occurs like in the two stream instability case where there
is the formation of vortex. In this case the solution becomes multivalued and there are two ways to
deal with this problem. The first way is to follow each branch of the solution and keep the Eulerian
picture. The contours being still well defined in the phase space, even if the filamention phenomenon
occurs, then it should be more convenient to adopt the Lagrangian description. From the numerical
point of view every approach is a challenging difficult problem. However, there are relevant even
hot physics topics as gyrokinetic turbulence in magnetically confined thermonuclear fusion plasmas
(ITER) [40] in which this model can be applied because in cylindrical geometry there is no wave-
breaking or filamentation process [51, 52, 12]. Moreover this model has an advantage over classical
gyrokinetic models because it yields an additional variable reduction resulting in less expensive
algorithms than ones followed from kinetic description. The multi-water-bag model reveals to
be a useful and powerful tool to explain the formation of stable coherent low-frequency nonlinear
structures as KEEN or electron acoustic-like waves which appear in laser-plasma interaction physics.
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A A Gronwall lemma

Theorem 7 Let v, f , g ∈ C ([t0, T ),R+) and F ∈ C (R∗+,R+) be a nondecreasing function with
F(v) > 0. If

v(t) ≤ g(t) +
∫ t

0
F(v(s))f(s)ds, t0 ≤ t < T,

then for t0 ≤ t < t1

v(t) ≤ G−1

�
G(g(t)) +

∫ t

0
f(s)ds

�
where

G(x) =
∫ x

1

dx

F(x)
, x > 0

and t1 ∈ (t0, T ) is chosen such that

G(g(t)) +
∫ t

0
f(s)ds ∈ Dom(G−1)

for all t ∈ [t0, t1).

Proof. Let us set u(t) = g(t) +
∫ t
0 F(v(s))f(s)ds. Since F is not decreasing we get

u̇ = ġ + F(v)f ≤ ġ + F(u)f (102)

Let us set now G(x) =
∫ x
1

dx
F(x) . Therefore G′ = F−1 ≥ 0 and thus G′ is deacreasing and G is non-

deacreasing. Besides (G−1)′(x) = [G′(G−1(x))]−1 = F(G−1(x)) ≥ 0 and thus G−1 is nondeacreasing.
Using now the monotonicity of the functions G, G′, G−1 and inequality (102) we get

G′(u)u̇ ≤ G′(u)ġ + f

≤ G′(g)ġ + f (103)

An integration in time of equation (103) leads to

G(u(t)) ≤ G(u(0))− G(g(0)) + G(g(t)) +
∫ t

0
f(s)ds (104)

Since u(0) = g(0), G−1 non decreasing and v ≤ g, from equation (104) we obtain

v(t) ≤ u(t) ≤ G−1

�
G(g(t)) +

∫ t

0
f(s)ds

�
which ends the proof. �
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[17] Y. Brenier, Une application de la symétrisation de Steiner aux equations hyperboliques: La
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