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Abstract

We obtain several averaging lemmas for transport operator with a

force term. These lemmas improve the regularity yet known by not
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1 Introduction

Averaging lemma is a major tool to get compactness from a kinetic equation.
([7], ...). Such results have been used in a great number of papers during
these last years. Among this literature, an important result which used an
averaging lemma as a key argument is the proof of the hydrodynamic limits
of the Boltzmann or BGK equations to the incompressible Euler or Navier-
Stokes equations ([13]). Another important application is to get compactness
for nonlinear scalar conservation laws in [21] which allows, for instance, to
study propagation of high frequency waves ([6]).
Basically, averaging lemma is a result which says that the macroscopic quanti-

ties
∫
f(t, x, v)ψ(v) dv have a better regularity with respect to (t, x) than the

microscopic quantity f(t, x, v) where f is solution of a kinetic equation.
For example, in [9] and [2], the following result is proved

Theorem [DiPerna, Lions, Meyer – Bézard] Let f , gk ∈ Lp(Rt×R
N
x ×R

M
v )

with 1 < p ≤ 2 such that

∂tf + divx[a(v)f ] =
∑

|k|≤m

∂kvgk, (1.1)

with a ∈Wm,∞(RM ,RN) for m ∈ N. Let ψ ∈Wm,∞(RM) with compact support.
Let A > 0 such that the support of ψ is included in [−A,A]M . We assume the
following non-degeneracy for a: there exists 0 < α ≤ 1 and C > 0 such that
for any (u, σ) ∈ SN and ε > 0,

meas
(
{v ∈ [−A,A]M ; u− ε < a(v) · σ < u+ ε}

)
≤ Cεα. (1.2)

Then ρψ(t, x) =
∫

RM
f(t, x, v)ψ(v) dv is in W s,p(Rt×R

N
x ) where s = α

(m+1)p′
, p′

being the conjugated exponent for p.

For the equation (1.1), the obtained regularity is proved to be optimal, see [19]
and [20]. In [11], the gain of a half-derivative in the L2 context was proved as
optimal. A study in the case of a full derivative in x in the second member
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is done in [17]. We also refer to [10] and [4] for other results about averaging
lemmas. Regularity of f itself is also challenging, for example by assuming
some regularity in v, see [3], [14] and [1] for some results in this way.

The previous Theorem says for example with m = 1 that for the equation

∂tf + a(v) · ∇xf = g − F (t, x, v) · ∇vg̃, (1.3)

the obtained regularity is W s,p(Rt × R
N
x ) with s = α

2p′
. When we consider the

equation
∂tf + a(v) · ∇xf + F (t, x, v) · ∇vf = g, (1.4)

that is to say that g̃ = f , it is classical to consider the term F (t, x, v) · ∇vf
as part of the right hand side and to have the regularity W s,p(Rt × R

N
x ) with

s = α
2p′

. But for (1.4), the derivation with respect to v leads only on f via the
transport equation and not on any disconnected second order term g̃. That
is to say, we lose some information because this term is part of characteristics
and in the right-hand the term are in L2 thus the right-hand side would be for
m = 0 and the obtained regularity should be W s,p(Rt × R

N
x ) with s = α

p′
. This

is the first motivation of this paper and one of the result we get.
The notations for (1.4) are f(t, x, v) ∈ R with t ∈ R, x ∈ R

N , v ∈ R
M ,

a : R
M → R

N , F : R × R
N × R

M → R
M and

a(v) · ∇xf =
N∑

i=1

ai(v) ∂xi
f, F (t, x, v) · ∇vf =

M∑

i=1

Fi(t, x, v) ∂vi
f.

In this paper, we will prove the following averaging lemmas on equation (1.4).

Theorem 1 (L2 result)
Let a ∈ CN+3(RMv ,R

N
x ), F ∈ CN+3(Rt×R

N
x ×R

M
v ,R

M
v ), f, g ∈ L2(Rt×R

N
x ×R

M
v ),

satisfying (1.4). Let A > 0 and ψ ∈ CN+2
c (RMv ) such that the support of ψ is

included in [−A,A]M . We assume that there exists 0 < α ≤ 1 and C > 0 such
that for any (u, σ) ∈ SN and ε > 0,

meas
(
{v ∈ [−A,A]M ; u− ε < a(v) · σ < u+ ε}

)
≤ Cεα. (1.5)

Then the averaging

ρψ(t, x) =
∫

RM
f(t, x, v)ψ(v) dv

is in H
α/2
loc (Rt × R

N
x ).

Remark 1.1 We notice that we well obtain α/2 instead of α/4.

Remark 1.2 For Vlasov equation, the classical application of averaging lemma
is: the DiPerna, Lions, Meyer Theorem gives the compactness for ρψ with
an operator of the kind (1.4) by applying the result with g1 = −F · f when
F ∈ L∞

loc. More precisely, if fn, gn0 and gn1 = −Fn · fn are solutions of (1.1)
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with some bounds in Lp, then ρnψ is bounded in W s,p(Rt × R
N
x ) with s =

α

2p′
,

and thus is compact in W s′,p(Rt × R
N
x ) with s′ < s. For p = 2, it is compact

in Hs′(Rt × R
N
x ) with s′ < α

4
. By this way, the paper [8] prove the existence of

weak solutions for Vlasov-Maxwell. With the first Theorem of this paper, the
obtained compactness is in Hs′

loc(Rt × R
N
x ) with s′ < α

2
.

When the force is constant, we obtain a global regularity result with a less
smooth test function.

Theorem 2 (L2 result with F constant)
Let a ∈ Cγ(RMv ,R

N
x ), F (t, x, v) = F ∈ R

M , F 6= 0, f , g ∈ L2(Rt × R
N
x × R

M
v )

satisfying (1.4) where we assume that the function a satisfies the following
condition with γ, which is a positive integer, such that
∀(v, σ) ∈ R

M × SN , σ = (σ0, σ1, · · · , σN), σ̃ = (σ1, · · · , σN ),

|σ0 + a(v).σ̃| +
γ−1∑

k=1

∣∣∣(F · ∇v)
ka(v) · σ̃

∣∣∣ > 0. (γND) (1.6)

Let ψ ∈ C1
c (R

M
v ), then the averaging

ρψ(t, x) =
∫

RM
f(t, x, v)ψ(v) dv

is in H1/γ(Rt × R
N
x ).

Remark 1.3 The proof is not valid when F = 0.

Remark 1.4 [M = 1, one dimensional velocity ]

1. The Sobolev estimates for ρψ comes from optimal bounds in stationary
phase lemmas. Then, with only f, g ∈ L2 and M = 1, we expect that the
Theorem 2 gives the best Sobolev’s exponent.

2. Since γ ≥ N + 1, with only f, g ∈ L2, we expect that ρψ belongs at most
in H1/(N+1)(RN+1

X ) when M = 1.

The following Theorem is a comparison between the two previous results. It
shows that Theorem 1 does not give the best Sobolev exponent when M = 1
and that Theorem 2 is not optimal for M > 1.

Theorem 3 For N ≥ 2 and M = 1, Theorem 2 gives a stronger smoothing
effect than Theorem 1 for the best γ = γopt compared with the best α = αopt
since

1

γopt
=

1

N + 1
>

αopt
2

=
1

2N
.

Conversely, for N = M , Theorem 1 can give one half derivative with the best
α = 1.
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Finally, we have two resuls in the Lp framework.

Theorem 4 (First Lp result with F constant)
Let a ∈ CN+3(RMv ,R

N
x ), F (t, x, v) = F ∈ R

M
v , f, g ∈ Lp(Rt × R

N
x × R

M
v ),

satisfying (1.4). Let A > 0 and ψ ∈ CN+2
c (RMv ) such that the support of ψ is

included in [−A,A]M . We assume that there exists 0 < α ≤ 1 and C > 0 such
that for any (u, σ) ∈ SN and ε > 0,

meas
(
{v ∈ [−A,A]M ; u− ε < a(v) · σ < u+ ε}

)
≤ Cεα. (1.7)

Then the averaging

ρψ(t, x) =
∫

RM
f(t, x, v)ψ(v) dv

is in W
α/p′,p
loc (Rt × R

N
x ).

Theorem 5 (Second Lp result with F constant)
Let a ∈ Cγ(RMv ,R

N
x ), F (t, x, v) = F ∈ R

M
v , F 6= 0, f , g ∈ Lp(Rt × R

N
x × R

M
v )

with 1 < p ≤ 2, satisfying (1.4), where we assume that a satisfies the following
condition with γ, which is a positive integer, such that

∀(v, σ) ∈ R
M × SN , σ = (σ0, σ1, · · · , σN ), σ̃ = (σ1, · · · , σN),

|σ0 + a(v).σ̃| +
γ−1∑

k=1

∣∣∣(F · ∇v)
ka(v) · σ̃

∣∣∣ > 0. (γND)

Let ψ ∈ C1
c (R

M
v ), then the averaging

ρψ(t, x) =
∫

R

f(t, x, v)ψ(v) dv

is in W s,p(Rt × R
N
x ) with s = 2

γp′
.

Remark 1.5 These results are presented with the time dependence because it is
more useful for applications. In the proof of next sections, we take the following
notations. We set X = (t, x) and b(v) = (1, a(v)). Then (1.4) can be rewritten
in the following way

b(v) · ∇Xf + F (X, v) · ∇vf = g, (1.8)

where X ∈ R
N+1, v ∈ R

M .

The paper is organized by the following way. In Section 2, we prove Theorem
1. In Section 3, we prove Theorem 2. In Section 4, we compare the two results
(Theorem 3) and finally in Section 5, we prove the extension to Lp spaces
(Theorem 4 and 5).
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2 First Theorem in the L2 framework

We first recall the following classical averaging lemma (see [12], [5]).

Proposition 1 (Golse, Lions, Perthame, Sentis) Let a ∈ L∞
loc(R

M ,RN),
f, g ∈ L2(Rt × R

N
x × R

M
v ), such that

∂tf + a(v) · ∇xf = g. (2.1)

Let ψ ∈ L∞(RMv ), with compact support in some [−A,A]M , such that there
exists 0 < α ≤ 1 and C > 0 such that

meas
(
{v ∈ [−A,A]M ; u− ε < a(v) · σ < u+ ε}

)
≤ Cεα (2.2)

for any (u, σ) ∈ SN and ε > 0. Then the averaging

ρψ(t, x) =
∫

RM
f(t, x, v)ψ(v) dv

is in Hα/2(Rt × R
N
x ) with the estimate

‖ρψ‖Hα/2 ≤ C̃(N)
(
‖ψ‖L2 +

√
K‖ψ‖L∞

)
(‖f‖L2 + ‖g‖L2) .

We use this averaging lemma to prove an other result, which deals with test
function depending on (t, x, v).

Proposition 2 Let a ∈ L∞
loc(R

M
v ,R

N
x ), f, g ∈ L2(Rt × R

N
x × R

M
v ), such that

∂tf + a(v) · ∇xf = g. (2.3)

Let ψ ∈ L∞
c (RMv ,W

N+2,∞(RN+1
tx )) with compact support with respect to v in

some [−A,A]M . We assume that there exists 0 < α ≤ 1 and C > 0 such that

meas
(
{v ∈ [−A,A]M ; u− ε < a(v) · σ < u+ ε}

)
≤ Cεα (2.4)

for any (u, σ) ∈ SN and ε > 0.
Then the averaging

ρψ(t, x) =
∫

R

f(t, x, v)ψ(t, x, v) dv

is in H
α/2
loc (Rt × R

N
x ) with the bound

‖ρψ‖Hα/2

K
≤ C(N,K) (‖f‖L2 + ‖g‖L2) ‖ψ‖(L2∩L∞)v(WN+2,∞

tx )

for any compact K.
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Proof. We fix a compact K on X. We take K̃ = [−S, S]N+1 such that K ⊂ K̃

and χ a C∞ function such that χ = 1 on K and 0 outside K̃. Finally, we set
ψ̃ = ψχ.
Since ψ̃ has a compact support with respect to X, we can extend it by peri-
odicity in these variables. Then Fourier gives

ψ̃(X, v) =
∑

β∈ZN+1

cβ(v)e
iSβ·X .

We write this formula through

ψ̃(X, v) =
∑

β∈ZN+1

(
(1 + |β|r)cβ(v)

)
· eiSβ·X

1 + |β|r ,

with r = N/2 + 1. We set

φβ(X) =
eiSβ·X

1 + |β|r , and ψβ(v) = (1 + |β|r)cβ(v).

We use the decreasing of Fourier coefficients for WN+2,∞(RN+1
X ) function, that

is to say that

|cβ(v)| ≤
C1

(S|β|)N+2
‖ψ̃(·, v)‖WN+2,∞

X
.

Thus we have
∫

RM

∑

β∈(ZN+1)∗

|ψβ(v)|2 dv

≤
∫

RM

∑

β∈(ZN+1)∗

(1 + |β|r)2|cβ(v)|2 dv

≤ C2

S2N+4

∫

RM

∑

β∈(ZN+1)∗

4|β|2r
|β|2N+4

‖ψ̃(·, v)‖2
WN+2,∞

X

dv

≤ 4C2

S2N+4

∑

β∈(ZN+1)∗

1

|β|N+2
‖ψ‖2

L2
v(WN+2,∞

X )
< +∞. (2.5)

On K, we notice that

ρψ(X) =
∫

R

f(X, v)ψ(X, v) dv χ(X)

=
∫

R

f(X, v)ψ̃(X, v) dv,

=
∫

RM
f(X, v)

∑

β∈ZN+1

φβ(X)ψβ(v) dv.

To apply Fubini’s Theorem, we want that, for a.e. X,
∫

RM

∑

β∈(ZN+1)∗

|f(X, v)φβ(X)ψβ(v)| dv < +∞.
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It comes from
∫

RM

∑

β∈(ZN+1)∗

|f(X, v)φβ(X)ψβ(v)| dv

≤
∫

RM
|f(X, v)|

∑

β∈(ZN+1)∗

|φβ(X)ψβ(v)| dv

≤
√∫

RM
|f(X, v)|2 dv

√√√√√
∫

RM




∑

β∈(ZN+1)∗

|φβ(X)ψβ(v)|



2

dv

≤ ‖f(X, ·)‖L2
v

√√√√
∑

β∈(ZN+1)∗

|φβ(X)|2
∫

RM

∑

β∈(ZN+1)∗

|ψβ(v)|2 dv

≤ ‖f(X, .·)‖L2
v

√√√√
∑

β∈(ZN+1)∗

1

(1 + |β|r)2

∫

RM

∑

β∈(ZN+1)∗

|ψβ(v)|2 dv < +∞

since 2r > N + 1 and from (2.5). Thus we can write, on K,

ρψ(X) =
∑

β∈ZN+1

φβ(X)ρψβ
(X),

with

ρψβ
(X) =

∫

R

f(X, v)ψβ(v) dv.

The classical averaging lemma (Proposition 1) gives that

‖ρψβ
‖
H

α/2

K

≤ C̃(N)
(
‖ψβ‖L2 +

√
C‖ψβ‖L∞

)
(‖f‖L2 + ‖g‖L2) .

We now use the following property: For u1 ∈ Cs(Ω), u2 ∈ Hs(Ω), with s ∈]0, 1[,
with Ω a bounded open set of R

N+1, we have u1u2 ∈ Hs(Ω) with

‖u1u2‖Hs ≤ C3‖u1‖Cs‖u2‖Hs.

This result gives, for s = α/2,

‖ρψ‖Hα/2

K

≤ C3

∑

β∈ZN+1

‖φβ‖Cα/2

K

‖ρψβ
‖
H

α/2

K

≤ C4

∑

β∈(ZN+1)∗

‖φβ‖Cα/2

K

(‖ψβ‖L2 + ‖ψβ‖L∞) (‖f‖L2 + ‖g‖L2) + C3‖ρψ0
‖
H

α/2

K

≤ C5




∑

β∈(ZN+1)∗

1

|β|r−α/2
‖ψ‖(L2∩L∞)v(WN+2,∞

X
)

|β|N+2−r
(‖f‖L2 + ‖g‖L2) + ‖ψ̃‖C1

K





≤ C5




∑

β∈(ZN+1)∗

1

|β|N+2−α/2
(‖f‖L2 + ‖g‖L2) ‖ψ‖(L2∩L∞)v(WN+2,∞

X
) + ‖ψ‖CN+2

c


 .
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Since N + 2 − α/2 > N + 1, the proof is completed.

With this Proposition, we turn now to the proof of the first Theorem.

Proof of Theorem 1. Let K be a compact in R
N+1
X . We set K = K ×

[−A,A]M . We perform locally a change of variables in order to rewrite the
equation (1.8) without the term ∇vf and to apply the previous result. For
any (X, v), using the characteristics since b(v) = (1, a(v)) 6= 0, there exists a
neighborhood BXv ⊂ K and a CN+3 function w 7→ V (X,w) such that

b(V (X,w)) · ∇XV (X,w) = F (X, V (X,w)).

Denoting by

f̃(X,w) = f(X, V (X,w)), g̃(X,w) = g(X, V (X,w)), b̃(w) = b(V (X,w)),

the equation (1.8) rewrites

b̃(w) · ∇X f̃ = g̃. (2.6)

There exists a finite number of Bxv to recover this compact: there exists
{(xl, vl)}l=1,···,L such that K ⊂ ∪

l=1,···,L
Bxlvl

. For this recovering, we use a par-

tition of unity: on X ∈ K, we have

ψ = ψ1IK =
L∑

l=1

χl(X, v)ψ,

where the function χl are C∞ and have a compact support in Bxlvl
. Now, for

X ∈ K,

ρψ(X) =
L∑

l=1

∫

RM
f(X, v)χl(X, v)ψ(v) dv

=
L∑

l=1

∫

Bxlvl

f(X, v)χl(X, v)ψ(v) dv

=
L∑

l=1

∫

V (Bxlvl
)
f̃(X,w)χl(X, V (X,w))ψ(V (X,w))Jl(X,w) dw

performing the variable change v 7→ w = V (X, v) on every neighborhood
corresponding to l and denoting by Jl(X,w) the associated jacobian. We set

ψl(X,w) = χl(X, V (X,w))ψ(V (X,w))Jl(X,w).

Since a and F have CN+3 regularity, Jl has CN+2 one. Furthermore ψ ∈ CN+2
c ,

thus ψl ∈ (L2 ∩ L∞)c(R
M
v ,W

N+2,∞(RN+1
X )). We apply the previous result: the

averaging

ρψl
(X) =

∫

RM
f̃(X,w)ψl(X,w) dw

is in H
α/2
loc (RN+1

X ). Now ‖ρψ‖Hα/2

K

≤
L∑

l=1

‖ρψl
‖
H

α/2

K

conclude the proof.
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3 Case with a constant force field

When F is a non zero constant vector, we can obtained a different result.
The way to get it is quiet different and we have to restrict to the case of a
constant force field. A key tool is a generalized uniform version of the classical
method of the station nary phase. We work on equation (1.8) with F constant,
F ∈ R

M , F 6= 0. Let us denote a directional v−derivative along vector F by

D = F · ∇v. (3.1)

The smoothing effect depends on the (γND) assumption of Theorem 2. In-
deed, it is exactly the following non-degeneracy condition about D-derivatives
of b(.):

∀(v, σ) ∈ R
M × SN ,

γ−1∑

k=0

∣∣∣Dkb(v) · σ
∣∣∣ > 0. (γND)

Before proving the Theorem 2 we gives some useful results about oscillatory
integrals following the Stein’s book [22].

Proposition 3 ([22]) Suppose φ ∈ Ck+1(R,R) so that, for some k ≥ 1,

dkφ

dvk
(v) ≥ 1, ∀v ∈]α, β[. (3.2)

Then ∣∣∣∣∣

∫ β

α
eiλφ(v)dv

∣∣∣∣∣ ≤ ck ·
1

|λ|1/k
holds when

1. k ≥ 2 or

2. k = 1 and φ′ is monotonous.

Furthermore, the bound ck is independent of λ and φ.

This Proposition can be found in [22] p 332. Elias M. Stein obtain ck ≤
5 · 2k−1 − 2 in his proof. Notice that ck is independent of the length of the
interval ]α, β[. For |λ| < 1, the bound for the oscillatory integral blows up.
Indeed, for k = 1, we can relax the monotonous assumption on φ by the
following bounds

|φ′(v)| ≥ δ > 0, ∀v ∈]α, β[, c̃1 = 2 + δ−1
∫ β

α
|φ”(v)|dv,

Indeed, integrating by parts and using the inequality min(a, βb) ≤ min(1, β) max(a, b)
for all non negative a, b, β, we get

∣∣∣∣∣

∫ β

α
eiλφ(v)dv

∣∣∣∣∣ ≤ max(|β − α|, c̃1) · max(1,
1

δ
) · min(1,

1

|λ|).

Furthermore, the bound given in Proposition 3 blow up for small λ, so we
replace it by the length of the interval and get the following Corollary.
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Corollary 1 Let be δ > 0. Suppose φ ∈ Ck+1(R,R) so that, for some k ≥ 1,
∣∣∣∣∣
dkφ

dvk
(v)

∣∣∣∣∣ ≥ δ, ∀v ∈]α, β[. (3.3)

Then

∣∣∣∣∣

∫ β

α
eiλφ(v)dv

∣∣∣∣∣ ≤ max(|β − α|, c̃k) · max(1,
1

δ1/k
) min(1,

1

|λ|1/k ),

where c̃k is independent of λ, φ and ]α, β[ for k ≥ 2 and c̃1 = 2+δ−1
∫ β

α
|φ”(v)|dv.

Notice, that, for k ≥ 2, c̃k = ck given in Proposition 3.
Following Stein’s book (Corollary p 334), we obtain the following Proposition.

Proposition 4 ([22]) Let ψ ∈ W 1,1(]α, β[), φ ∈ Ck+1(R,R) such that, for
some δ > 0 and k ≥ 1,

∣∣∣∣∣
dkφ

dvk
(v)

∣∣∣∣∣ ≥ δ, ∀v ∈]α, β[.

Then
∣∣∣∣∣

∫ β

α
ψ(v)eiλφ(v)dv

∣∣∣∣∣ ≤
max(|β − α|, c̃k)

min(1, δ1/k) max(1, |λ|1/k))
(
‖ψ‖L∞(]α,β[) + ‖ψ′‖L1(]α,β[)

)
,

where c̃k is independent of λ, φ, ψ and ]α, β[ for k ≥ 2, and c̃1 = 2 +

δ−1
∫ β

α
|φ”(v)|dv.

Proof. This is classically proved in writing the integral
∫ β

α
ψ(v)eiλφ(v)dv as

∫ β

α
ψ(v)I ′(v)dv, with I(v) =

∫ v

α
eiλφ(u)du, integrating by parts and using the

uniform estimate for |I(v)| from previous Corollary.

Now we generalize the Proposition 4 in the case with parameters and a like
(γND) assumption.

Proposition 5 Suppose P is a compact set of parameter p, A > 0, ψ(u; p)
belongs in L∞

p (P,W 1,1
u (] − A,A[)) and φ(u; p) ∈ Cγ+1(Ru × Pp,R), such that,

for all (u, p) in K = [−A,A] × P ,

γ∑

k=1

∣∣∣∣∣
∂kφ

∂uk

∣∣∣∣∣ (u; p) > 0. (3.4)

Then, for any ]α, β[⊂] −A,A[,
∣∣∣∣∣

∫ β

α
ψ(u; p)eiλφ(u;p)du

∣∣∣∣∣

≤ dγ · min

(
1,

1

|λ|1/γ
)
·
(
‖ψ‖L∞(K) +

∥∥∥∂ψ
∂u

∥∥∥
L∞(P,L1(]−A,A[))

)
,
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where the constant dγ is independent of λ and only depends on A, sup
K

∣∣∣∣∣
∂2φ

∂u2

∣∣∣∣∣,

inf
K

1

γ

γ∑

k=1

∣∣∣∣∣
∂kφ

∂uk

∣∣∣∣∣.

Proof. Since K is a compact set, we can choose 0 < δ ≤ 1 such that,
everywhere on K:

0 < δ <
1

γ

γ∑

k=1

∣∣∣∣∣
∂kφ

∂uk

∣∣∣∣∣ (u; p).

Let us define the open set Zk = {(u; p), |∂kuφ(u; p)| > δ}, for k = 1, · · · , γ.
Necessarily K ⊂

γ⋃

k=1

Zk, and then there exists a partition of unity such that

γ∑

k=1

ρk ≡ 1 on K and such that the support of ρk is included in Zk. Let us

define ψk = ρkψ and I = I1 + · · · + Iγ where Ik(p) =
∫ b

a
ψk(u; p)e

iλφ(u;p)du.

We apply the Proposition 4 on each Ik where the exponent “ ′ ” denotes ∂u:

|Ik| ≤
max(2A, c̃k)

δ1/k max(1, |λ|1/k) sup
P

(
‖ψk(., p)‖L∞(]−A,A[) + ‖ψ′

k(., p)‖L1(]−A,A[)

)
.

Since for any fixed p and J =] − A,A[, we have

(
‖ψk(., p)‖L∞(J) + ‖ψ′

k(., p)‖L1(J)

)

≤
(
‖ρk‖L∞(J) + ‖ρ′k‖L1(J)

) (
‖ψ(., p)‖L∞(J) + ‖ψ′(., p)‖L1(J)

)
,

it is enough to take

dγ =
∑

k

max(2A, c̃k)

δ1/k

(
‖ρk‖L∞(K) + ‖∂uρk‖L∞(P,L1(J))

)

to conclude the proof.

We are now able to prove the second Theorem.

Proof of the Theorem 2.
The proof follows three steps. First, we choose a suitable variable associated
to D. Secondly, we use Fourier transform with respect to X and solve a linear
ordinary differential equation with respect to v1. Third, we obtain Sobolev
estimates for ρψ with Proposition 5.

Step 1, change of coordinates: With a suitable choice of orthonormal co-
ordinates, we assume, without loss of generality that

D = F · ∇v = |F | ∂
∂v1

12



where |F | is the euclidean norm of vector F and v = (v1, v2, · · · , vM) ≡ (v1;w).
Notice that the jacobian for an orthonormal change of variables is one, thus the
estimates on ρψ are invariant through such choice for v1. With such notations,
equation (1.8) becomes

b(v) · ∇Xf + |F | ∂f
∂v1

= g. (3.5)

Step 2, linear o.d.e.: Denoting by F(f) the Fourier transform of f with
respect to X, and by Y the dual variable of X, equation (3.5) becomes

|F | ∂
∂v1

F(f) + i(b(v) · Y )F(f) = F(g). (3.6)

For almost all fixed Y , we solve an ordinary differential equation with respect
to v1. For this purpose, we choose the initial v1, namely v0

1 ∈]0, 1[, such that
∫

R
N+1

Y ×R
M−1
w

|F(f)|2(Y ; v0
1;w)dY dw

≤
∫

Rv1

∫

R
N+1

Y ×R
M−1
w

|F(f)|2(Y ; v1;w)dY dwdv1.
(3.7)

Existence of such v0
1 is a consequence of the Fubini’s Theorem. Indeed, let

h(v1) =
∫

RN+1

∫

R
M−1
w

|F(f)|2(Y ; v1;w)dY dw ≥ 0. The function h is defined al-

most everywhere, belongs in L1(Rv1) and satisfies ‖h‖L1(Rv1
) = ‖f‖2

L2
X,v

. Since

the h function cannot be everywhere greater than its mean value on ]0, 1[,

there exists v0
1 ∈]0, 1[ such that h(v0

1) ≤
∫ 1

0
h(v1)dv1, which confirms (3.7).

We finally write an explicit formula for F(f) with B(v) a primitive with respect
to v1 of −b/|F |:

B(v) = B(v1;w) = −
∫ v1

v0
1

b(u;w)

|F | du

F(f)(Y, v1;w) = F(f)(Y, v0
1;w)eiB(v)·Y

+
1

|F |
∫ v1

v0
1

F(g)(Y, u;w)ei(B(v1;w)−B(u;w))·Y du.

Step 3, H1/γ estimates with oscillatory integrals: We decompose ρψ(t, x) =∫

RM
f(t, x, v)ψ(v) dv in two parts from the explicit expression of F(f) in the

step 2: F(ρψ) = ρ̂f + ρ̂g. The first term is

ρ̂f (Y ) =
∫

R
M−1
w

F(f)(Y, v0
1;w)

∫

Ru

ψ(u;w)eiB(u;w)·Y dudw.

In this integral, there is an oscillatory integral which is parametrized by w and
Y = λσ with λ = |Y | and σ ∈ SN ; it is

Osc(Y, w) =
∫

Ru

ψ(u;w)eiλB(u;w)·σdu. (3.8)

13



To use the Proposition 5, we set p = (σ, w) which belongs in the compact set
P = SN × [−A,A]M−1 with A > 1 > v0

1 > 0 such that supp ψ ⊂ [−A,A]M .
The condition (3.4) of the Proposition 5 for oscillatory integral (3.8) is

γ∑

k=1

∣∣∣∣∣
∂kB(u;w)

∂uk
· σ
∣∣∣∣∣ > 0

which is exactly the (γND) assumption for b(.). Thanks to the (γND) as-
sumption and the Proposition 5, there exists a constant L such that for all
(Y, w) ∈ R

d × [−A,A]M−1, and for all α, β such that −A < α < β < A, we
have

max(1, |Y |1/γ)|
∣∣∣∣∣

∫ β

α
ψ(u;w)eiλB(u;w)·σdu

∣∣∣∣∣ ≤ L. (3.9)

Using the constant L and the compact support of ψ we have

max(1, |Y |1/γ)|ρ̂f (Y )| ≤ L
∫

[−A,A]M−1

|F(f)(Y, v0
1;w)|dw.

By Cauchy-Schwarz inequality, we get

max(1, |Y |2/γ)|ρ̂f(Y )|2 ≤ (2A)M−1L2
∫

[−A,A]M−1

|F(f)(Y, v0
1;w)|2dw.

Finally, since v0
1 satisfies (3.7), we obtain

∫

RN+1

max(1, |Y |2/γ)|ρ̂f(Y )|2dY ≤ (2A)M−1L2
∫

RN+1×RM
|F(f)(Y, v)|2dvdY,

which gives ρ̂f ∈ H1/γ.

The second term ρ̂g is bounded in the same way. More precisely, we set

ρ̂g(Y ) =
∫

RM−1

H(Y, w)dw

with

H(Y, w) =
1

|F |
∫ A

−A

∫ v1

v0
1

F(g)(Y, u;w)ei(B(v1;w)−B(u;w))·Y dudv1.

Using the Fubini’s Theorem and the notation

Ψ(Y, u;w) = ψ(u;w)eiB(u;w)·Y ,

we have another expression for H(Y, w):

H(Y, w) =
1

|F |
∫ A

v0
1

F(g)(Y, u;w)e−iB(u;w)·Y

(∫ A

u
Ψ(Y, v1;w)dv1

)
du

+
1

|F |
∫ v0

1

−A
F(g)(Y, u;w)e−iB(u;w)·Y

(∫ u

−A
Ψ(Y, v1;w)dv1

)
du,
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where there are two oscillatory integrals
∫ A

u
Ψ(Y, v1;w)dv1 and

∫ u

−A
Ψ(Y, v1;w)dv1

which are uniformly bounded thanks to inequality (3.9). Then we have

max(1, |Y |1/γ)|H(Y ;w)| ≤ L

|F |
∫ A

−A
|F(g)(Y, u;w)|du.

With the Cauchy-Schwarz inequality, we obtain

max(1, |Y |2/γ)|H(Y ;w)|2 ≤ 2AL2

|F |2
∫ A

−A
|F(g)(Y, u;w)|2 du

and finally

max(1, |Y |2/γ)|ρ̂g(Y )|2 ≤ (2A)M
L2

|F |2
∫

RM
|F(g)(Y, v)|2dv.

Then ρg ∈ H1/γ , thus finally ρψ is also in this space, which concludes the proof
of the Theorem.

4 About non degeneracy conditions

Theorem 1 and Theorem 2 assume two different non degeneracy conditions on
the vector field a(v) ∈ R

N , v ∈ supp ψ ⊂ R
M . These conditions involve two

parameters, namely α = αa(.) ∈]0, 1] in (1.5) and γ = γa(.),F ∈ N
∗ in (1.6),

directly linked to the smoothing effect for the averaging in H
α/2
loc or H1/γ . In

this section, we give some optimal upper bounds for α and 1/γ to compare
the two results obtained by different ways. Indeed, for M = 1 and N ≥ 2,
Theorem 2 gives a better smoothing effect than Theorem 1. Conversely, when
N = M , Theorem 1 is stronger than Theorem 2. In this part, we study these
various properties and in particular, we prove the Theorem 3.
More precisely, let A be positive, we obtain the optimal α and γ, namely

αopt(N,M) = sup
a(.)∈C∞([−A,A]Mv ,RN

x )

α,

γopt(N,M) = min
a(.)∈C∞(RM

v ,RN
x ), F∈RN\{0}

γ.

We start by obtaining the easiest estimate which is a lower bound for γ.

Proposition 6 For all N,M , we have γ ≥ γopt(N,M) = N + 1.

Proof. We use notations from Section 3. Following this section, the (γND)
condition can be rewritten and means that we cannot find σ ∈ SN such that,
σ ⊥ b(v), σ ⊥ Db(v), . . . , σ ⊥ Dγ−1b(v). There are γ conditions to satisfy.
Since b(v) belongs in R

N+1, we necessarily have γ ≥ N + 1. Indeed N +

1 is the minimal possible value for γ. For instance, if D =
∂

∂v1

, b(v) =

(1, v1, v
2
1, · · · , vN1 ), with v = (v1, v2, · · · , vM), we have γopt = N + 1.

The optimal α is more difficult to get and it is obtained in the following
subsections, see also [15]. The evaluation of exponent α also implies new
asymptotic expansions involving piecewise smooth functions in [16].
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4.1 M = 1, one dimensional velocity

Proposition 7 For M = 1, we have α ≤ αopt(N, 1) =
1

N
.

To obtain this optimal α for M = 1, we need some other notations and follow-
ing results. The proof of Proposition 7 is reached at the end of this subsection
4.1.

Let ϕ ∈ C∞([a, b],R) and v ∈ [a, b], the multiplicity of ϕ on v is defined by

mϕ[v] = inf{k ∈ N, ϕ(k)(v) 6= 0} ∈ N = N ∪ {+∞}.

It means that if k = mϕ then ϕ(k)(v) 6= 0 and ϕ(j)(v) = 0 for j = 0, 1, · · · , k−1.
For instance mϕ[v] = 0 means ϕ(v) 6= 0; mϕ[v] = 1 means ϕ(v) = 0, ϕ′(v) 6= 0
and mϕ[v] = +∞ means ϕ(j)(v) = 0 for all j ∈ N.
Set the multiplicity of ϕ on [a, b] by

mϕ = sup
v∈[a,b]

mϕ[v] ∈ N.

Notice that the case where ϕ only belongs in Ck, mϕ is well defined only if
mϕ[v] ≤ k for all v ∈ [a, b].

Lemma 1 Let ϕ ∈ Ck([a, b],R) with a < b, and

Z(ϕ, ε) = {v ∈ [a, b], |ϕ(v)| ≤ ε}.
If mϕ is well defined (mϕ ≤ k) then there exists C > 0 such that, for all ε > 0,

meas(Z(ϕ, ε)) ≤ Cεα with α =
1

mϕ
. (4.1)

Furthermore, if mϕ is positive, for all β > α, we have lim
ε→0

meas(Z(ϕ, ε))

εβ
= +∞

(Optimality).

Proof. The case mϕ = 0 is clear since there is no zero in this situation. The
quantity mϕ is positive simply means that the set Z(ϕ, 0) of roots of ϕ is not
empty. Since any root of ϕ has a finite multiplicity, the compact set Z(ϕ, 0)
is discrete and then finite: Z(ϕ, 0) = {z1, · · · , zν}. For each zi and h > 0, let
Vi(h) be ]zi − h, zi + h[∩[a, b]. For any 0 < h < |b− a|, we have

h ≤ meas(Vi(h)) ≤ 2h.

For any root zi, there exists hi ∈]0, |b− a|[, Ai > 0 and δi > 0 such that

δi|h|ki ≤ |ϕ(zi + h)| ≤ Ai|h|ki for all h ∈ Vi(hi), (4.2)

with ki = mϕ[zi]. This is a direct consequence of the Taylor-Lagrange formula.

Let V be
⋃

i

Vi(hi) and ε0 = min

(
1, min

v∈[a,b]\V
|ϕ(v)|

)
. By the continuity of ϕ
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on the compact set [a, b] \ V , ε0 is positive. Then for all 0 < ε < ε0, we
have Z(ϕ, ε) ⊂ V . If ε ≥ |ϕ(zi + h)| for |h| < hi, then from (4.2), we have
(ε/δi)

1/ki ≥ |h|. This last inequality implies for 0 < ε < ε0 ≤ 1 that Z(ϕ, ε) is
a subset of

⋃

i

Vi((ε/δi)
1/ki) and then

meas(Z(ϕ, ε)) ≤ 2
ν∑

i=1

(ε/δi)
1/ki ≤

(
2

ν∑

i=1

δ
−1/ki

i

)
ε1/mϕ .

It gives inequality (4.1). To obtain the optimality of α, let zj be a root of ϕ with
maximal multiplicity i.e. mϕ[zj ] = mϕ = k. Again from (4.2), Vj((ε/Aj)

1/k) is
a subset of Z(ϕ, ε) for all ε ∈]0, ε0[. Then we have (ε/Aj)

1/k ≤ meas(Z(ϕ, ε)),
which is enough to get the optimality of α = 1/k and concludes the proof.

An upper bound of αopt(N, 1) is a consequence of the previous Lemma.

Lemma 2 For all N , we have αopt(N, 1) ≤ 1/N .

Proof. For any a(.) ∈ C∞(Rv,R
N
x ) and A > 0, we set

ϕ(v; u, σ) = a(v) · σ − u = b(v) · (−u, σ),

defined for v ∈ [−A,A], with u ∈ R, (−u, σ) ∈ SN , b(v) = (1, a(v)) ∈ R
N+1

and m = sup
(−u,σ)∈SN

mϕ(.;u,σ).

Let v be fixed, we choose (−u, σ) such that mϕ[v] ≥ N in order to obtain a
lower bound for m.
Since rank{b(v), b′(v), · · · , b(N−1)(v)} ≤ N , there exists (−u, σ) such that u2 +
|σ|2 = 1 and (−u, σ) ⊥ {b(v), b′(v), · · · , b(N−1)(v)}. Then with such u and σ,
mϕ(.;u,σ)[v] ≥ N which implies m ≥ N and consequently, from the optimality

obtained in Lemma 1, we get α ≤ αopt(N, 1) ≤ 1

N
.

When the function v → ϕ(v; p) depends on a parameter p, some results are
obtained in the two following Lemma to bound the quantity C of Lemma 1
independently of the parameter p.

Lemma 3 Let k ≥ 1, I an interval of R, φ ∈ Ck(I,R) and δ > 0.
If |φ(k)(v)| ≥ δ > 0 for all x ∈ I then there exists a constant ck independent of
φ, I, δ such that

meas(Z(φ, ε)) ≤ ck(ε/δ)
1/k, where Z(φ, ε) = {v ∈ I, |φ(v)| ≤ ε}.

Proof. Since the result is independent of the interval I and of the φ(k−1)(0)
sign, let us suppose that I = R with |φ(k)(v)| ≥ δ > 0 on R, and φ(k−1)(0) ≤ 0.

We first treat the case k = 1. If φ′(v) stays positive, we have φ(0)+ δv ≤ φ(v)
for 0 ≤ v and since φ(0) ≤ 0, there exists a unique c ≥ 0 such that φ(c) = 0.
In the other case, φ′(v) stays negative, and we find a unique c ≤ 0 such that
φ(c) = 0. Then |φ(v)| ≥ δ|v − c| for all v, and |φ(v)| ≤ ε implies |v − c| ≤ ε/δ
i.e. Z(φ, ε) ⊂ [c−ε/δ, c+ ε/δ]. So the lemma is proved for k = 1 with c1 = 2.
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We now prove the Lemma by induction on k. Let us suppose that the case
k is known. As for k = 1, there exists an unique c such that φ(k)(c) =
0. Thus for all v we have |φ(k)(v)| ≥ δ|v − c|. Let η > 0 and set W =
Z(φ, ε) ∩ [c − η, c + η], U = Z(φ, ε) ∩ (] − ∞, c − η[∪]c + η,+∞[). We have
meas(W ) ≤ 2η and by our inductive hypothesis, since |φ(k)(v)| ≥ δ|v− c| ≥ δη
on U , meas(U) ≤ ck(ε/(δη))

1/k. Now the relation Z(φ, ε) = W ∪ U gives

meas(Z(φ, ε)) ≤ inf
η>0

(
2η + ck(ε/(δη))

1/k
)

which implies by a simple compu-

tation of the minimum that meas(Z(φ, ε)) ≤ ck+1(ε/δ)
1/(k+1), where ck+1 =

21/(k+1)(k + 1)k1/(k+1)−1c
1−1/(k+1)
k which concludes the proof.

Lemma 4 Let P be a compact set of parameters, k a positive integer, A > 0,
V = [−A,A], K = V × P , φ(v; p) ∈ C0(P,Ck(V,R)), such that, for all (v, p)
in the compact K, we have

k∑

j=1

∣∣∣∣∣
∂jφ

∂vj

∣∣∣∣∣ (v; p) > 0.

Let Z(φ(.; p), ε) = {v ∈ V, |φ(v; p)| ≤ ε}, then there exists a constant C such
that

sup
p∈P

meas(Z(φ(.; p), ε)) ≤ Cε1/k.

Proof. Since K is a compact set, we can choose 0 < δ ≤ 1 such that,

everywhere on K, we have 0 < 2δ <
1

k

k∑

i=1

∣∣∣∣∣
∂iφ

∂vi

∣∣∣∣∣ (v; p).

For each (v; p) ∈ K, there exists an integer i ∈ {1, · · · , k}, a number r > 0
and an open set Op with p ∈ Op ⊂ P such that |∂ivφ| > δ on U(v, p) =
]v − r, v + r[×Op. Therefore, we have

meas(Z(φ(.; p), ε)∩]v − r, v + r[) ≤ ci(ε/δ)
1/i ≤ c ε1/k/δ

using Lemma 3, where c = max
i=1,···,k

ci.

By compactness of K, there exists a finite number of such set Uj = U(vj , pj)

such that K ⊂
ν⋃

j=1

Uj . Thus, for each p, Z(φ(.; p), ε) intersects at most ν

intervals ]vj − rj, vj + rj [ where Lemma 3 is applied. This allows to write
meas(Z(φ(.; p), ε)) ≤ νc ε1/k/δ for all p and to conclude the proof.

Lemma 5 Let a(v) be the field (v1, v2, · · · , vN) then αa(.) = 1/N.

Proof. From Lemma 2, we have yet αa(.) ≤ 1/N. So, it suffices to prove that
α = 1/N satisfies (1.5) to conclude.
For all v, rank{a′(v), · · · , a(N)(v)} = N , thus it is impossible to find σ ∈ SN−1

such that σ ⊥ {a′(v), · · · , a(N)(v)}. Let ϕ(v; u, σ) be a(v) · σ − u. Since
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∂jvϕ(v; u, σ) = a(j)(v) · σ for j ≥ 1, we have everywhere
N∑

j=1

|∂jvϕ(v; u, σ)| > 0.

Furthermore, for |u| > 1+amax, where amax = sup
|v|≤A

|a(v)|, we have |ϕ(v; u, σ)| >

1 for any v ∈ [−A,A] and σ ∈ SN−1. Thus we can apply Lemma 4 for 0 < ε ≤ 1
on the compact set [−A,A]v × [−amax − 1, amax + 1]u× SN−1

σ which concludes
the proof with αa(.) = 1/N .

Proof of Proposition 7. With Lemma 2, we have αopt(N, 1) ≤ 1/N . From
Lemma 5, necessarily αopt(N, 1) = 1/N which concludes the proof.

4.2 M = N

The case when the space dimension is equal to the velocity dimension is the
most physical one and then is very important. In this case, we can get the
best smoothing effect with α = 1.

Proposition 8 For N = M , we have αopt(N,N) = 1.

Proof. Since α ≤ 1, it suffices to find a(.) such that α = 1.
Let a(.) : R

N
v → R

N
x be a global diffeomorphism, A > 0, (u, σ) ∈ SN and

ϕ(v) = a(v) · σ − u. Let Z(ϕ, ε) = {|v| ≤ A, |ϕ(v)| ≤ ε}. Since Da(v) ∈
GLN (R) and σ 6= 0, then ∇vϕ 6= 0 and the set Z(ϕ, 0) is empty or a manifold
of dimension N − 1.
Notice that for any v, there exists (u, σ) ∈ SN such that a(v) · σ − u = 0, i.e.
Z(ϕ, 0) 6= /◦. For instance, let σ̃ belongs in SN−1 and set ũ = a(v) · σ̃, then

(u, σ) =
1√

ũ2 + 1
(ũ, σ̃) satisfied the conditions.

We thus consider that Z(ϕ, 0) is not empty.
There exists δ such that 0 < δ < |∇vϕ(v)| < 1/δ for all |v| ≤ A, u2 + |σ|2 = 1.

Using the mean inequality, we obtain δ|v − v′| ≤ |ϕ(v) − ϕ(v′)| ≤ |v − v′|
δ

,

which implies for all ε < 1, with B(x, r) = {y, |x− y| ≤ r} ⊂ R
N , that

⋃

z∈Z(ϕ,0)

B(z, δε) ⊂ Z(ϕ, ε) ⊂
⋃

z∈Z(ϕ,0)

B(z, ε/δ)

and Z(ϕ, 0) is diffeomorph to a hyperplane, so meas(Z(ϕ, ε)) is of order ε.
More precisely, there exists a constant C > 0, only dependent of A, δ and

||Da(.)||B(0,A) such that 0 < C <
meas(Z(ϕ, ε))

ε
< C−1.

Notice that if a(.) is a local diffeomorphism, α is still 1.

Incidentally, we also have αopt(N,M) = 1 for all M ≥ N .

5 Theorem in the Lp framework

We now turn to the Lp case. It will be an interpolation result of the L2 obtained
bound and an estimate in L1 using some operators in Hardy spaces. We note
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H1(RN+1) the Hardy space and H1(RN × R) the product Hardy space as done
in [2] (see [22] for more details about such spaces).

We will use the two following Proposition. The first one is an interpolation
result (see [18], [2] and [5]) and the second is about multiplier ([2]).

Proposition 9 (Bézard, Interpolation) Let T be a C-linear operator, bounded
in

L2(Rt × R
N
x × R

M
v) → W β,2(Rt × R

N
x ),

and in
L1(RMv ,H1(RN × R)) → H1(RN+1

t,x ),

for some γ ≥ 0. Then T is bounded

Lp(Rt × R
N
x × R

N
v ) →W s,p(Rt × R

N
x ),

for 1 < p ≤ 2, with s = 2β/p′.

Proposition 10 (Bézard, Multiplier on H1) Let m(y, yN+1) be a function
of (y, yn+1) ∈ R

N × R which is C∞ out of [y = 0 or yN+1 = 0], and verifying
for all α, β,

|∂αy ∂βyN+1
m(y, yN+1)| ≤

Cαβ
|y|α|yN+1|β

,

then m defines a bounded Fourier multiplier on H1(RN × R).

Proof of Theorems 4 and 5.
For Theorem 4 (respectively Theorem 5), we use the averaging lemma of The-
orem 1 (respectively Theorem 2) which gives that T (f, g) = ρψ is bounded

from L2 to H
α/2
loc (respectively H1/γ).

We turn to the estimate in L1. We denote by F the Fourier transform with
respect to X. Taking this Fourier transform in b(v) · ∇Xf + F (X) · ∇vf = g,
we have

F(f) =
F(g) −F(F · ∇vf)

i(b(v) · Y )
.

Let χ ∈ C∞
c (R), χ(0) = 1, χ′(0) = 0 and χ′′(0) 6= 0 be an even, non increasing

function in [0,+∞[. We set L such that suppχ ⊂ [−L,L]. We have

f(Y, v) = F−1
[
χ(b(v) · Y )F(f)(Y, v) + (1 − χ(b(v) · Y ))F(f)(Y, v)

]

= F−1
[
χ(b(v) · Y )F(f)(Y, v)

]

+F−1
[
(1 − χ(b(v) · Y ))

F(g) −F(F · ∇vf)

i(b(v) · Y )

]
,

and then, in order to bound the operator f 7→
∫

RM
f(Y, v)ψ(v) dv, we have to

bound the following operators

Q : f 7→
∫

RM
F−1

[
χ(b(v) · Y )F(f)(Y, v)

]
ψ(v) dv, (5.1)
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W : g 7→
∫

RM
F−1

[
1 − χ(b(v) · Y )

i(b(v) · Y )
F(g)(Y, v)

]
ψ(v) dv (5.2)

and

R : f 7→ −
∫

RM
F−1

[
1 − χ(b(v) · Y )

i(b(v) · Y )
F(F · ∇vf)(Y, v)

]
ψ(v) dv. (5.3)

As in the classical case (by this we refer to [2], [5]), we transform the operators
in order they involve only one direction in X. Indeed, the manipulation of
product structure for Hardy space which depends of a moving direction is
difficult to deal with. Thus, for any v, we take Rv an orthogonal transform in
R
N+1 such that

Rv

(
b(v)

|b(v)|

)
= eN+1,

where eN+1 is the last vector of the canonical base, and we set

f∗(X, v) = f(R−1
v (X), v)

and
Q∗f∗ = Qf.

Since f 7→ f∗ is an isometry on LpXv, we have now to study Q∗ instead of Q.
We perform similar transformations for the two other operators and we get W∗

and R∗.
For the two first operators, as in the classical proof, we have

‖Qf‖H1(RN+1) ≤ C‖f‖L1(RM
v ,H1(RN×R)),

and
‖Wg‖H1(RN+1) ≤ C‖g‖L1(RM

v ,H1(RN×R)).

The new term is the third one. We use the following rewrite of R(f) in order
to bound it. This is

(Rf)(Y ) = −F−1
∫

RM

[
1 − χ(b(v) · Y )

i(b(v) · Y )
F · ∇vF(f)(Y, v)

]
ψ(v) dv

= F−1

(
F ·

∫

RM
F(f)(Y, v)∇v

[
1 − χ(b(v) · Y )

i(b(v) · Y )
ψ(v)

]
dv

)

= F−1

(
F ·

∫

RM
F(f)(Y, v)

1 − χ(b(v) · Y )

i(b(v) · Y )
∇vψ(v) dv

)

+F−1
(
F ·

∫

RM
F(f)(Y, v)m0(b(v) · Y )∇v(b(v) · Y )ψ(v) dv

)

(5.4)

with

m0(y) =
−yχ′(y) − 1 + χ(y)

iy2
.
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We denote by F(R1f) and F(R2f) the two terms of this decomposition. We
perform as previously orthogonal transformations and we have to study the
obtained (R1)∗ and (R2)∗.
The term (R1)∗ is the same than W∗ but with ∇vψ instead of ψ. Thus we have
the same result thanks to the regularity assumption on ψ.
Now, setting T = m0∇v, we have

(R2)∗(f∗)(Y ) = F ·
∫

RM
F−1

(
F(f∗)(Rv(Y ), v)T

(
b(v) · Y

))
ψ(v) dv

= F ·
∫

RM
F−1

(
F(f∗)(Rv(Y ), v)T

(
Rv(b(v)) · Rv(Y )

))
ψ(v) dv

= F ·
∫

RM
F−1

(
F(f∗)(Rv(Y ), v)T

(
|b(v)|eN+1 · Rv(Y )

))
ψ(v) dv,

thus, setting Tj = m0∂vj
, we get

‖(R2)∗(f∗)‖H1(RN+1)

≤
∑

j

|Fj |
∫

RM

∥∥∥∥F−1
(
F(f∗)(Rv(Y ), v)Tj

(
|b(v)|eN+1 · Rv(Y )

))∥∥∥∥
H1(RN+1)

|ψ(v)| dv

≤
∑

j

|Fj |
∫

RM

∥∥∥∥F−1
(
F(f∗)(Y, v)Tj

(
|b(v)|eN+1 · Y

))∥∥∥∥
H1(RN+1)

|ψ(v)| dv

≤ C1

∑

j

|Fj|
∫

RM

∥∥∥∥F−1
(
F(f∗)(Y, v)Tj

(
|b(v)|eN+1 · Y

))∥∥∥∥
H1(RN×R)

|ψ(v)| dv,

using the invariance under orthogonal transformation in H1(RN+1) and thanks
to the continuous injection of H1(RN × R) in H1(RN+1).
We use now the Proposition 10 with the terms

mj(y, yN+1) = Tj(|b(v)|eN+1·Y ) = m0(|b(v)|yN+1)∂vj
(|b(v)|)yN+1, for j = 1, · · · ,M.

This term rewrites

mj(y, yN+1) = m0(|b(v)|yN+1)
a(v) · ∂vj

a(v)

|b(v)| yN+1.

Now m0(z) →
z→0

− 1
2i
χ′′(0), therefore m0 is C∞. The terms with χ have a com-

pact support and the other term is 1/y2, then every derivatives of m0 is
bounded at infinity.
We differentiate mj with respect to yN+1, it gives

∂kyN+1
mj(y, yN+1) =

a(v) · ∂vj
a(v)

|b(v)|
(
m

(k)
0 (|b(v)|yN+1)|b(v)|kyN+1

+ km
(k−1)
0 (|b(v)|yN+1)|b(v)|k−1

)
.

There exists some constants C and Ck such that

|b(v)| ≤ C, |b(v)|k−2|a(v) · ∂vj
a(v)| ≤ Ck
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for v in the compact support of ψ. Thus

∣∣∣∂kyN+1
mj(y, yN+1)

∣∣∣ |yN+1|k ≤ Ck
(
Cm

(k)
0 (|b(v)|yN+1)yN+1 + km

(k−1)
0 (|b(v)|yN+1)

)
.

For |yN+1| ≥ (R + 1)/C, we have m
(j)
0 (|b(v)|yN+1) = 0 for any j, and then

m
(k)
0 (|b(v)|yN+1)yN+1 + km

(k−1)
0 (|b(v)|yN+1) = 0 for |yN+1| ≥ (R+ 1)/C.

Furthermore |m(k)
0 (|b(v)|yN+1)yN+1 + km

(k−1)
0 (|b(v)|yN+1)| ≤ ‖m(k)

0 ‖∞
R+ 1

C
+

k‖m(k−1)
0 ‖∞ for |yN+1| < (R+ 1)/C. Finally, for any (y, yN+1), we get

∣∣∣∂kyN+1
mj(y, yN+1)

∣∣∣ |yN+1|k ≤ Ck
(
‖m(k)

0 ‖∞(R + 1) + k‖m(k−1)
0 ‖∞

)

uniformly with respect to v in the support of ψ. Then, we can apply Proposi-
tion 10 to get the boundary of (R2)∗.
The interpolation result conclude, since β = α/2 (respectively β = 1/γ), that
the obtained regularity is s = α/p′ (respectively s = 2/(γp′)).
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