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1. Introduction

Macroscopic traffic flow models usually consist of partial differential equa-
tions describing the evolution of aggregated quantities, like traffic density
and mean velocity. They express the mass conservation and eventually the
traffic acceleration. In this article, we focus on a pressure-less gas dynamics
system subject to a maximal density constraint : the constrained pressureless
gas dynamics (CPGD) model, which was introduced in [5] and can be derived
through a singular limit in the pressure term of a modified Aw-Rascle-Zhang
model [2, 14]. Indeed, we start from the Aw-Rascle-Zhang (ARZ) model,{

∂tρ+ ∂x(ρv) = 0,
∂t(ρ(v + p(ρ))) + ∂x(ρv(v + p(ρ))) = 0,

(1.1)

which is a very well accepted model for traffic flow. We observe that, in this
model, upper bounds on the density are not necessarily preserved through
the time evolution of the solution. In practice, the density of cars is bounded
from above by a maximal density ρ∗ corresponding to a bumper to bumper
situation. However, the ARZ model does not exclude cases where, depending
on the smallest invariant region which contains the initial data, solutions
satisfy the maximal density constraint ρ ≤ ρ∗ initially but evolve in finite
time to a state, still uniformly bounded, but which violates this constraint.
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Then paper [5] presents a model which improves the ARZ model and preserves
the constraints. To this end, we consider in (1.1) the pressure

pε(ρ) = ε

(
1

ρ
− 1

ρ∗

)−γ
1Iρ≤ρ∗ ,

and the corresponding solution (ρε, vε). Assuming that pε(ρε) tends to p when
ε→ 0, which acts only when ρ = ρ∗, it leads to the system CPGD{

∂tρ+ ∂x(ρv) = 0,
∂t(ρ(v + p)) + ∂x(ρv(v + p)) = 0,

with the constraints

0 ≤ ρ ≤ ρ∗, p ≥ 0, (ρ∗ − ρ)p = 0.

The important new property in the CPGD model is the maximal density
constraint.

In the following, we denote by ρ, v the density and velocity of the traffic
and by p the “reserve” of velocity acting as an anticipation factor of drivers to
the local traffic conditions. Indeed, p can be viewed as the difference between
the actual and the desired velocity, see (1.15). We consider the following
system of conservation laws{

∂tρ+ ∂x(ρv) = 0,
∂t(ρ(v + p)) + ∂x(ρv(v + p)) = 0,

t > 0, x ∈ R, (1.2)

subject to the constraints

0 ≤ ρ(t, x) ≤ ρ∗, p(t, x) ≥ 0, (ρ(t, x)− ρ∗)p(t, x) = 0 a.e. t, x, (1.3)

for some ρ∗ ∈ R+ denoting the maximal density of cars allowed on the road.
System (1.2) is equipped with the following initial data

ρ(0, x) = ρ0(x), v(0, x) = v0(x), p(0, x) = p0(x), x ∈ R. (1.4)

Solutions have to be satisfied in the sense of distributions, that is to say
equations (1.2) with initial data (1.4) are satisfied in the following sense: for
all ϕ ∈ C∞c ([0,+∞[×R),∫

[0,+∞[

∫
R
(ρ∂tϕ+ ρv∂xϕ) dx dt+

∫
R
ρ0(x)ϕ(0, x) dx = 0,

∫
[0,+∞[

∫
R
(ρ(v + p)∂tϕ+ρv(v + p)∂xϕ) dx dt

+

∫
R
ρ0(x)(u0(x) + p0(x))ϕ(0, x) dx = 0,

and the constraints (1.3) are considered in a classical sense.
We assume that

(H1) ρ0 ∈ L1(R) ∩ L∞(R) with 0 ≤ ρ0 ≤ ρ∗;
(H2) v0, p0 ∈ L∞(R)∩BV(R) with v0 ≥ 0, p0 ≥ 0 and (ρ0(x)− ρ∗)p0(x) = 0

for a.e. x ∈ R.
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In [5], the authors introduced the following constrained follow-the-leader
model to compute numerically approximate solutions of (1.2)-(1.4).
Let us denote by xi(t), Vi(t) and pi(t) the position, speed and reserve of
velocity, respectively, of the i-th particle at time t ≥ 0, for 0 ≤ i ≤ N . The
initial conditions

xNi (0) = xNi , V Ni (0) = V
N

i , pNi (0) = pNi for i = 0, . . . , N, (1.5)

are defined as follows: we set

lN =
1

N

∫
R
ρ0(x) dx, dN = lN/ρ

∗, (1.6)

xN1 = sup

{
x ∈ R ;

∫ x

−∞
ρ0(x) dx < lN

}
, (1.7)

xNi = sup

{
x ∈ R ;

∫ x

xN
i−1

ρ0(x) dx < lN

}
, for i = 2, . . . , N − 1. (1.8)

Following [8], we handle the possibly unbounded support of the initial data
by defining two extremal artificial particles in the following way:

xN0 = 2xN1 − xN2 , xNN = 2xNN−1 − xNN−2. (1.9)

They are defined in order that

xN1 − xN0 = xN2 − xN1 , xNN − xNN−1 = xNN−1 − xNN−2,

which allows to only consider the minimum distance between “real” particles
to get the control of the minimum distance between all particles.

Notice that we have

lN =

∫ xN
1

−∞
ρ0(x) dx =

∫ xN
i

xN
i−1

ρ0(x) dx =

∫ +∞

xN
N−1

ρ0(x) dx, (1.10)

for i = 2, . . . , N − 1. We also define

V
N

i = sup
[xN

i ,x
N
i+1[

v0, pNi = sup
[xN

i ,x
N
i+1[

p0, for i = 0, . . . , N − 1, (1.11)

Notice also that we have

lN =

∫ xN
i

xN
i−1

ρ0(x) dx ≤ ‖ρ0‖∞(xNi − xNi−1) ≤ ρ∗(xNi − xNi−1) (1.12)

for all i = 2, . . . , N − 1, and therefore

xNi − xNi−1 ≥ dN , i = 1, . . . , N.

The dynamics of the discrete model is the following: each particle moves
freely at its current velocity until it reaches the minimal distance to the
preceding one, that is to say xNi+1(t)−xNi (t) = dN . At this point, the particle
i takes the velocity of the particle i + 1 and they keep the distance dN
forever. For any initial positions and velocities of the N + 1 particles, these
“interactions” can only happen k times, with k ≤ N . Let us denote by t1 ≤
t2 ≤ . . . ≤ tk the times when an interaction happens and we denotes by
im the number of particle(s) for which at time tm, the collision is between
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the im-th and the (im + 1)-th particles. The particle dynamics is therefore
described by the following rules

ẋNi (t) = V Ni (t), t ≥ 0, for i = 0, . . . , N,

V NN (t) = V
N

N ,

V̇ Ni (t) = 0 t 6= tm, m = 1, . . . , k, for i = 0, . . . , N − 1,

ṗNi (t) = 0 t 6= tm, m = 1, . . . , k, for i = 0, . . . , N − 1,
(1.13)

and at times tm, there is a jump such that for t ≥ tm,{
V Nim(t) := V Nim+1(t), t ≥ tm,
pNim(t) := V Nim(tm−)− V Nim(tm+) + pNim(tm−).

(1.14)

The meaning of this equation can be seen by the relations:

V Nim(tm+) + pNim(tm+) = V Nim(tm+) + V Nim(tm−)− V Nim(tm+) + pNim(tm−)

= V Nim(tm−) + pNim(tm−). (1.15)

We introduce the variables

yNi (t) =
lN

xNi+1(t)− xNi (t)
, i = 0, . . . , N − 1, (1.16)

which satisfy

ẏNi (t) = −
lN (ẋNi+1(t)− ẋNi (t))

(xNi+1(t)− xNi (t))2
= −y

N
i (t)2

lN
(V Ni+1(t)− V Ni (t)). (1.17)

Since xNi (t)− xNi−1(t) ≥ dN , we have yNi (t) ≤ lN/dN = ρ∗.

We define the piecewise constant density ρ̂N by

ρ̂N (t, x) =

N−1∑
i=0

yNi (t)1I[xN
i (t),xN

i+1(t)[(x), (1.18)

the velocity v̂N by

ρ̂N v̂N (t, x) =

N−1∑
i=0

yNi (t)V Ni (t)1I[xN
i (t),xN

i+1(t)[(x), (1.19)

and the pressure term p̂N by

ρ̂N p̂N (t, x) =

N−1∑
i=0

yNi (t)pNi (t)1I[xN
i (t),xN

i+1(t)[(x). (1.20)

Remark 1.1. These definitions identify v̂N and p̂N where ρ̂N 6= 0, that is to
say away from vacuum. Vacuum zones are ]−∞, xN0 (t)[ and ]xNN (t),+∞[ and
we need to extend the functions v̂N and p̂N by constants at infinity.

The main result of the present article is the convergence of the micro-
scopic constrained follow-the-leader model to the macroscopic CPGD system
as the number of particles tends to infinity. As a byproduct, this proves the
convergence of the numerical method employed in [5]. It can be also viewed
as an alternative existence proof.
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Theorem 1.2. Let ρ0, v0 and p0 satisfy (H1)-(H2) and consider the discrete
quantities (ρ̂N , v̂N , p̂N ) defined by (1.18)-(1.20) with (1.16) and (1.5)-(1.11).
Then there exists (ρ, v, p) with ρ ∈ L1(R)∩L∞(R) and v, p ∈ L∞(R)∩BV (R),
solution of (1.2) with the constraints (1.3), with initial data (ρ0, v0, p0) such
that, up to a subsequence,

ρ̂N⇀ρ, ρ̂N v̂N⇀ρv, ρ̂N p̂N⇀ρp

in the distributional sense.

The proof is deferred to Section 4.3. We recall that previous derivations
of macroscopic traffic models from microscopic dynamical systems have been
investigated for the classical Lighthill-Whitham-Richards equation [7, 8, 9, 13]
and its non-local version [12], for the Aw-Rascle system [1, 10], for a phase-
transition model based on a speed bound [6], and for Hughes model of crowd
motion [11]. In our case, the main difficulty is represented by the lack of a
uniform bound on the density total variation, that cannot be compensated
by the compactness of the Riemann invariants like in [10], due to the zero-
pressure term in the momentum equation. Therefore, the convergence relies
on a compensated compactness argument introduced in [3].

The paper is organized as follows. In Section 2 we provide the con-
vergence proof for initial data. Section 3 collects the L∞ and BV estimates
satisfied by the approximate solutions, which allow to show their convergence
in Section 4.

2. Initial data limit

We start first by proving that the discrete quantities constructed at the pre-
vious section are compatible with the initial data.

Proposition 2.1. Let ρ0, v0 and p0 satisfy (H1)-(H2). We consider the dis-
crete quantities (1.18)-(1.20) with (1.16) and (1.5)-(1.11). Then, for all ϕ ∈
C∞c (R), we have ∫

R
ρ̂N (0, x)ϕ(x) dx →

N→+∞

∫
R
ρ0(x)ϕ(x) dx, (2.1)∫

R
ρ̂N (0, x)v̂N (0, x)ϕ(x) dx →

N→+∞

∫
R
ρ0(x)v0(x)ϕ(x) dx (2.2)

and ∫
R
ρ̂N (0, x)p̂N (0, x)ϕ(x) dx →

N→+∞

∫
R
ρ0(x)p0(x)ϕ(x) dx. (2.3)

Proof. We have∫
R
ρ̂N (0, x)ϕ(x) dx =

N−1∑
i=0

∫ xN
i+1

xN
i

lN

xNi+1 − xNi
ϕ(x) dx

=

N−1∑
i=0

lNϕ(xNi ) +

N−1∑
i=0

lN

xNi+1 − xNi

∫ xN
i+1

xN
i

(ϕ(x)− ϕ(xNi )) dx.
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Using (1.10), we get

N−1∑
i=0

lNϕ(xNi ) =

∫ xN
1

−∞
ρ0(x)ϕ(xN1 ) dx+

N−2∑
i=1

∫ xN
i+1

xN
i

ρ0(x)ϕ(xNi ) dx+

∫ +∞

xN
N−1

ρ0(x)ϕ(xNN−1) dx

=

∫
R
ρ0(x)ϕ(x) dx+

N−2∑
i=1

∫ xN
i+1

xN
i

ρ0(x)(ϕ(xNi )− ϕ(x)) dx

+

∫ xN
1

−∞
ρ0(x)(ϕ(xN1 )− ϕ(x)) dx+

∫ +∞

xN
N−1

ρ0(x)(ϕ(xNN−1)− ϕ(x)) dx.

Therefore∫
R
ρ̂N (0, x)ϕ(x) dx−

∫
R
ρ0(x)ϕ(x) dx

=

N−2∑
i=1

∫ xN
i+1

xN
i

ρ0(x)(ϕ(xNi )− ϕ(x)) dx+

N−1∑
i=0

lN

xNi+1 − xNi

∫ xN
i+1

xN
i

(ϕ(x)− ϕ(xNi )) dx

+

∫ xN
1

−∞
ρ0(x)(ϕ(xN1 )− ϕ(x)) dx+

∫ +∞

xN
N−1

ρ0(x)(ϕ(xNN−1)− ϕ(x)) dx.

By assumption, there exists R > 0 such that the support of ϕ is a subset of
[−R,R]. Now∣∣∣∣∫

R
ρ̂N (0, x)ϕ(x) dx−

∫
R
ρ0(x)ϕ(x) dx

∣∣∣∣
≤ ‖ϕ′‖∞

N−2∑
i=1

∫ xN
i+1

xN
i

ρ0(x)|xNi − x| 1Ix∈[−R,R] dx

+ ‖ϕ′‖∞
N−1∑
i=0

lN

xNi+1 − xNi

∫ xN
i+1

xN
i

(x− xNi ) 1Ix∈[−R,R] dx+ 4‖ϕ‖∞lN

≤ lN (3R‖ϕ′‖∞ + 4‖ϕ‖∞) →
N→+∞

0.

Thus we get ∫
R
ρ̂N (0, x)ϕ(x) dx →

N→+∞

∫
R
ρ0(x)ϕ(x) dx. (2.4)

We consider now the product ρ̂N (0, x)v̂N (0, x). In this case we have the re-
lation∫

R
ρ̂N (0, x)v̂N (0, x)ϕ(x) dx

=

N−1∑
i=0

V
N

i

lN

xNi+1 − xNi

∫ xN
i+1

xN
i

ϕ(x) dx

=

N−1∑
i=0

V
N

i lNϕ(xNi ) +

N−1∑
i=0

V
N

i

lN

xNi+1 − xNi

∫ xN
i+1

xN
i

(ϕ(x)− ϕ(xNi )) dx
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and

N−1∑
i=0

V
N

i lNϕ(xNi )

=

∫
R
ρ0(x)v0(x)ϕ(x) dx+

N−2∑
i=1

∫ xN
i+1

xN
i

ρ0(x)(V
N

i − v0(x))ϕ(x) dx

+

∫ xN
1

−∞
ρ0(x)(V

N

1 − v0(x))ϕ(x) dx+

∫ +∞

xN
N−1

ρ0(x)(V
N

N−1 − v0(x))ϕ(x) dx

+

N−2∑
i=1

∫ xN
i+1

xN
i

ρ0(x)V
N

i (ϕ(xNi )− ϕ(x)) dx+

∫ xN
1

−∞
ρ0(x)V

N

1 (ϕ(xN1 )− ϕ(x)) dx

+

∫ +∞

xN
N−1

ρ0(x)V
N

N−1(ϕ(xNN−1)− ϕ(x)) dx.

Therefore∫
R
ρ̂N (0, x)v̂N (0, x)ϕ(x) dx−

∫
R
ρ0(x)v0(x)ϕ(x) dx

=

N−1∑
i=0

V
N

i

lN

xNi+1 − xNi

∫ xN
i+1

xN
i

(ϕ(x)− ϕ(xNi )) dx (2.5)

+

N−2∑
i=1

∫ xN
i+1

xN
i

ρ0(x)(V
N

i − v0(x))ϕ(x) dx+

N−2∑
i=1

∫ xN
i+1

xN
i

ρ0(x)V
N

i (ϕ(xNi )− ϕ(x)) dx

+

∫ xN
1

−∞
ρ0(x)(V

N

1 − v0(x))ϕ(x) dx+

∫ +∞

xN
N−1

ρ0(x)(V
N

N−1 − v0(x))ϕ(x) dx

+

∫ xN
1

−∞
ρ0(x)V

N

1 (ϕ(xN1 )− ϕ(x)) dx+

∫ +∞

xN
N−1

ρ0(x)V
N

N−1(ϕ(xNN−1)− ϕ(x)) dx.

Since V
N

i are bounded by ‖v0‖∞, each of the four last terms of the right-hand
side is bounded by 2lN‖v0‖∞‖ϕ‖∞. Furthermore, we get similarly as for the
convergence of ρ̂N the estimate

∣∣∣∣∣
N−1∑
i=0

V
N

i

∫ xN
i+1

xN
i

ρ0(x)(ϕ(xNi )− ϕ(x)) dx

+

N−1∑
i=0

V
N

i

lN

xNi+1 − xNi

∫ xN
i+1

xN
i

(ϕ(x)− ϕ(xNi )) dx

∣∣∣∣∣
≤ 3lN‖ϕ′‖∞‖v0‖∞R →

N→+∞
0.
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The second term of the right-hand side of (2.5) is controlled in the following
way: ∣∣∣∣∣

N−1∑
i=0

∫ xN
i+1

xN
i

ρ0(x)(V
N

i − v0(x))ϕ(x) dx

∣∣∣∣∣
≤
N−1∑
i=0

∫ xN
i+1

xN
i

ρ0(x) |V Ni − v0(x)| |ϕ(x)| dx

≤
N−1∑
i=0

∫ xN
i+1

xN
i

ρ0(x)

(
sup

[xN
i ,x

N
i+1]

v0 − inf
[xN

i ,x
N
i+1]

v0

)
|ϕ(x)| dx

≤ ‖ϕ‖∞
N−1∑
i=0

(
sup

[xN
i ,x

N
i+1]

v0 − inf
[xN

i ,x
N
i+1]

v0

) ∫ xN
i+1

xN
i

ρ0(x) dx

≤ lN‖ϕ‖∞TV (v0) →
N→+∞

0.

Thus we get∫
R
ρ̂N (0, x)v̂N (0, x)ϕ(x) dx →

N→+∞

∫
R
ρ0(x)v0(x)ϕ(x) dx. (2.6)

Similarly, we have∫
R
ρ̂N (0, x)p̂N (0, x)ϕ(x) dx →

N→+∞

∫
R
ρ0(x)p0(x)ϕ(x) dx. (2.7)

�

3. L∞ and BV estimates

The dynamics of xNi (t), V Ni (t) and pNi (t) described by (1.13), (1.14), implies
the following properties.

Proposition 3.1. Let ρ0, v0 and p0 satisfy (H1)-(H2). Then we have the fol-
lowing estimates.

1. The functions ρ̂N , v̂N and p̂N are bounded in L∞(]0,+∞[×R):

‖ρ̂N‖∞ ≤ ρ∗, ‖v̂N‖∞ ≤ ‖v0‖∞, ‖p̂N‖∞ ≤ ‖v0‖∞ + ‖p0‖∞.

2. We also have

TV (v̂N (t, .)) ≤ TV (v0), (3.1)

TV (p̂N (t, .)) ≤ TV (v0) + TV (p0), (3.2)

for all N ∈ N and for t ≥ 0.

Proof. 1) The functions V Ni (t) and pNi (t) defined by (1.13) satisfy the maxi-
mum principles

0 ≤ V Ni (t) ≤ max
j
V Nj (0) ≤ sup v0,

0 ≤ pNi (t) ≤ max
j

(V Nj (0) + pNj (0)) ≤ sup(v0 + p0),
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which directly follow from the system dynamics. This implies the following
L∞ estimates

|V Ni (t)| ≤ ‖v0‖∞, |pNi (t)| ≤ ‖v0‖∞ + ‖p0‖∞. (3.3)

These estimates clearly lead to the result.
2) Estimate (3.1) derives from the fact that between two interaction

times tm, the functions t 7→ V Ni (t) are constant. At time tm, for a collision
between the im-th and the (im + 1)-th particles, from (1.14) we have

TV (v̂N (tm+, .)) =

N−1∑
i=0

|V Ni+1(tm+)− V Ni (tm+)|

=

im−1∑
i=0

|V Ni+1(tm+)− V Ni (tm+)|+ |V Nim+1(tm+)− Vim(tm+)|

+

N−1∑
i=im+1

|V Ni+1(tm+)− V Ni (tm+)|

=

im−1∑
i=0

|V Ni+1(tm−)− V Ni (tm−)|+
N−1∑

i=im+1

|V Ni+1(tm−)− V Ni (tm−)|

≤ TV (v̂N (tm−, .)),

thus proving (3.1). Notice that the variation which is lost for v̂N is transferred
to p̂N , thus giving (3.2). �

Finally, notice that for all x ∈ R we have

(ρ̂N (t, x)− ρ∗)p̂N (t, x) = 0.

Indeed, this is true at t = 0. Moreover

1. if pNi (0, x) 6= 0 for x ∈ [xNi , x
N
i+1[ , then yNi (t, x) = ρ∗ for x ∈ [xNi (t), xNi+1(t)[

for t > 0;
2. when pNi passes from 0 to non-zero, as described by (1.14), then it is

when yNi = ρ∗ is satisfied.

4. Convergence proofs

4.1. Study of the approximated equations

We first start by studying the limit of the approximated equations.

Proposition 4.1. Let ρ0, v0 and p0 satisfy (H1)-(H2). Then, for any ϕ ∈
C∞c ([0,+∞[×R), it holds

− < ∂tρ̂
N + ∂x(ρ̂N v̂N ), ϕ > →

N→+∞

∫
R
ρ0(x)ϕ(0, x) dx (4.1)

and

− < ∂tρ̂
N (v̂N + p̂N ) + ∂x(ρ̂N v̂N (v̂N + p̂N )), ϕ >
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→
N→+∞

∫
R
ρ0(x)(v0 + p0)(x)ϕ(0, x) dx. (4.2)

Proof. Let ϕ ∈ C1
c ([0,+∞[×R). We have

− < ∂tρ̂
N + ∂x(ρ̂N v̂N ), ϕ >

=

∫ +∞

0

∫
R
ρ̂N (t, x)∂tϕ(t, x) + ρ̂N (t, x)v̂N (t, x)∂xϕ(t, x) dx dt

=

N−1∑
i=0

∫ +∞

0

yNi (t)

∫ xN
i+1(t)

xN
i (t)

(∂tϕ(t, x) + V Ni (t)∂xϕ(t, x)) dx dt.

Notice that

d

dt

∫ xN
i+1(t)

xN
i (t)

ϕ(t, x) dx

=

∫ xN
i+1(t)

xN
i (t)

∂tϕ(t, x) dx+ ẋNi+1(t)ϕ(t, xNi+1(t))− ẋNi (t)ϕ(t, xNi (t))

=

∫ xN
i+1(t)

xN
i (t)

∂tϕ(t, x) dx+ V Ni+1(t)ϕ(t, xNi+1(t))− V Ni (t)ϕ(t, xNi (t)),

therefore

− < ∂tρ̂
N + ∂x(ρ̂N v̂N ), ϕ > (4.3)

=

N−1∑
i=0

∫ +∞

0

yNi (t)
( d
dt

∫ xN
i+1(t)

xN
i (t)

ϕ(t, x) dx− V Ni+1(t)ϕ(t, xNi+1(t))

+ V Ni (t)ϕ(t, xNi (t)) + V Ni (t)(ϕ(t, xNi+1(t))− ϕ(t, xNi (t)))
)
dt

=

N−1∑
i=0

∫ +∞

0

yNi (t)
( d
dt

∫ xN
i+1(t)

xN
i (t)

ϕ(t, x) dx− (V Ni+1(t)− V Ni (t))ϕ(t, xNi+1(t))
)
dt.

Now∫ +∞

0

yNi (t)
d

dt

∫ xN
i+1(t)

xN
i (t)

ϕ(t, x) dx dt

= − yNi (0)

∫ x̄N
i+1

x̄N
i

ϕ(0, x) dx−
∫ +∞

0

ẏNi (t)

∫ xN
i+1(t)

xN
i (t)

ϕ(t, x) dx dt,

which, with (1.17), gives∫ +∞

0

yNi (t)
d

dt

∫ xN
i+1(t)

xN
i (t)

ϕ(t, x) dx dt

= − yNi (0)

∫ x̄N
i+1

x̄N
i

ϕ(0, x) dx

+

∫ +∞

0

(yNi (t))2

lN
(V Ni+1(t)− V Ni (t))

∫ xN
i+1(t)

xN
i (t)

ϕ(t, x) dx dt. (4.4)
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Furthermore

ϕ(t, xNi+1(t)) =
1

xNi+1(t)− xNi (t)

∫ xN
i+1(t)

xN
i (t)

ϕ(t, xNi+1(t)) dx

=
yNi (t)

lN

∫ xN
i+1(t)

xN
i (t)

ϕ(t, xNi+1(t)) dx. (4.5)

Reporting (4.4) and (4.5) in (4.3), we obtain

− < ∂tρ̂
N + ∂x(ρ̂N v̂N ), ϕ >

=

∫ Tϕ

0

∆N (t) dt−
N−1∑
i=0

yNi (0)

∫ xN
i+1(0)

xN
i (0)

ϕ(0, x) dx

=

∫ Tϕ

0

∆N (t) dt−
∫
R
ρ̂N (0, x)ϕ(0, x) dx, (4.6)

where

∆N (t) =

N−1∑
i=0

(yNi (t))2

lN
(V Ni+1(t)− V Ni (t))

∫ xN
i+1(t)

xN
i (t)

(ϕ(t, x)− ϕ(t, xNi+1(t))) dx

with Tϕ such that ϕ(t, x) = 0 for t ≥ Tϕ. Now we have∣∣∣∣∣
∫ xN

i+1(t)

xN
i (t)

(ϕ(t, x)− ϕ(t, xNi+1(t))) dx

∣∣∣∣∣ ≤ ‖ϕ′‖∞2
(xNi (t)−xNi+1(t))2 =

‖ϕ′‖∞l2N
2(yNi (t))2

,

thus

|∆N (t)| ≤ ‖ϕ
′‖∞lN
2

N−1∑
i=0

|V Ni+1(t)− V Ni (t)| ≤ ‖ϕ
′‖∞lN
2

TV (v0),

and ∣∣∣∣∣
∫ Tϕ

0

∆N (t) dt

∣∣∣∣∣ ≤ ‖ϕ′‖∞lN2
TϕTV (v0) →

N→+∞
0.

Finally, we use Proposition 2.1 to conclude to (4.1).
For the second equation, we have

− < ∂t(ρ̂
N (v̂N + p̂N )) + ∂x(ρ̂N v̂N (v̂N + p̂N )), ϕ > (4.7)

=

∫ +∞

0

∫
R
ρ̂N (t, x)(v̂N + p̂N )(t, x)(∂tϕ(t, x) + v̂N (t, x)∂xϕ(t, x)) dx dt

=

N−1∑
i=0

∫ +∞

0

yNi (t)(V Ni (t) + pNi (t))

∫ xN
i+1(t)

xN
i (t)

(∂tϕ(t, x) + V Ni (t)∂xϕ(t, x)) dx dt.

Notice that V Ni (t) + pNi (t) is constant with respect to t. Indeed, when there

is no collision V̇ Ni (t) = 0 and ṗNi (t) = 0 and at a collision time tm, we
have the relation (1.15). Thus we get the convergence (4.2) as for the first
equation. �
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4.2. Compactness estimates for ρ̂N

To go further, a key point is to obtain some compactness for ρ̂N .

Proposition 4.2. Let ρ0 and v0 satisfy (H1)-(H2). For any φ ∈ C∞c (R), there
exists Cφ > 0 such that for any N ∈ N and any s, t ∈ [0, T ], it holds∣∣∣∣∫

R
(ρ̂N (t, x)− ρ̂N (s, x))φ(x) dx

∣∣∣∣ ≤ Cφ|t− s|. (4.8)

Therefore, up to a subsequence, there exists ρ ∈ L∞(]0, T [×R) such that
ρ̂N → ρ in C([0, T ], L∞w∗(Rx)), i.e.

∀Γ ∈ L1(R), sup
t∈[0,T ]

∣∣∣∣∫
R

(ρ̂N − ρ)(t, x)Γ(x)dx

∣∣∣∣ →
N→+∞

0.

Proof. In the formulation (4.6), we take ϕ(t, x) = ΓR(t)φ(x) with ΓR with
a compact support in ]0,+∞[ and we make ΓR → 1I[s,t] when R → +∞, it
gives∫

R
(ρ̂N (t, x)− ρ̂N (s, x))φ(x) dx+

∫ t

s

∫
R
ρ̂N v̂Nφ′ dx dσ =

∫ t

s

∆̃N (σ) dσ

for ϕ where

∆̃N (t) =

N−1∑
i=0

(yNi (t))2

lN
(V Ni+1(t)− V Ni (t))

∫ xN
i+1(t)

xN
i (t)

(φ(x)− φ(xNi+1(t))) dx

Similarly as in Section 4.1, we have∣∣∣∣∫ t

s

∆̃N (σ) dσ

∣∣∣∣ ≤ |t− s| ‖φ′‖∞ lN
2

TV (v0).

Furthermore, from Proposition 3.1,∣∣∣∣∫ t

s

∫
R
ρ̂N v̂Nφ′ dx dσ

∣∣∣∣ ≤ |t− s| ρ∗ ‖v0‖∞ ‖φ′‖1,

then ∣∣∣∣∫
R

(ρ̂N (t, x)− ρ̂N (s, x))φ(x) dx

∣∣∣∣
≤ |t− s|

(
‖φ′‖∞ ‖ρ0‖1

2N
TV (v0) + ρ∗ ‖v0‖∞ ‖φ′‖1

)
.

To conclude, we use the following Lemma 4.3 proved in [4]. �

Lemma 4.3. Let (nk)k∈N be a bounded sequence in L∞(]0, T [×R) which sat-
isfies: for all φ ∈ C∞c (R), the sequence

(∫
R nk(t, x)φ(x)dx

)
k

is uniformly

Lipschitz continuous on [0, T ], i.e. ∃Cφ > 0,

∀k ∈ N, ∀s, t ∈ [0, T ],

∣∣∣∣∫
R

(nk(t, x)− nk(s, x))φ(x)dx

∣∣∣∣ ≤ Cφ|t− s|.



Particle approximation of a constrained model for traffic flow 13

Then, up to a subsequence, there exists n ∈ L∞(]0, T [×R) such that nk → n
in C([0, T ], L∞w∗(Rx)), i.e.

∀Γ ∈ L1(R), sup
t∈[0,T ]

∣∣∣∣∫
R

(nk − n)(t, x)Γ(x)dx

∣∣∣∣ →k→+∞
0.

We have a similar result from the second equation, that is to say:

Proposition 4.4. Let ρ0, v0 and p0 satisfy (H1)-(H2). For any φ ∈ C∞c (R),
there exists Cφ > 0 such that for any N ∈ N and any s, t ∈ [0, T ], we have∣∣∣∣∫

R
((ρ̂N (v̂N + p̂N ))(t, x)− (ρ̂N (v̂N + p̂N ))(s, x))φ(x) dx

∣∣∣∣ ≤ Cφ|t− s|. (4.9)

Then, up to a subsequence, there exists q ∈ L∞(]0, T [×R) such that ρ̂N (ûN +
p̂N )→ q in C([0, T ], L∞w∗(Rx)), i.e.

∀Γ ∈ L1(R), sup
t∈[0,T ]

∣∣∣∣∫
R
(ρ̂N (v̂N + p̂N )− q)(t, x)Γ(x)dx

∣∣∣∣ →k→+∞
0.

Proof. This time, we have, for any φ ∈ C∞c (R),∫
R

((ρ̂N (v̂N + p̂N ))(t, x)− (ρ̂N (v̂N + p̂N ))(s, x))φ(x) dx

= −
∫ t

s

∫
R
ρ̂N v̂N (v̂N + p̂N )φ′ dx dσ +

∫ t

s

∆N (σ) dσ

where

∆N (t) =

N−1∑
i=0

(V Ni (t)+pNi (t))
(yNi (t))2

lN
(V Ni+1(t)−V Ni (t))

∫ xN
i+1(t)

xN
i (t)

(φ(x)−φ(xNi+1(t))) dx.

We have now∣∣∣∣∫ t

s

∆N (σ) dσ

∣∣∣∣ ≤ |t− s| ‖φ′‖∞ lNTV (v0)(‖v0‖∞ + ‖p0‖∞)

using furthermore (3.3). Then we get∣∣∣∣∫
R

((ρ̂N (v̂N + p̂N ))(t, x)− (ρ̂N (v̂N + p̂N ))(s, x)))φ(x) dx

∣∣∣∣
≤ |t− s|

(
‖φ′‖∞

‖ρ0‖1
N

TV (v0) + 2ρ∗ ‖v0‖∞ ‖φ′‖1 dx
)

(‖v0‖∞ + ‖p0‖∞).

We conclude using the previous Lemma 4.3. �

4.3. Convergence to the limit equations

We need now to pass to the limit in the product terms. We recall the following
result, which is the key point of the proof to pass to the limit in the products.

Lemma 4.5. Let us assume that (nk)k∈N is a bounded sequence in L∞(]0, T [×R)
that tends to n in L∞w∗(]0, T [×R), and satisfies for any φ ∈ C∞c (Rx),∫

R
(nk − n)(t, x)φ(x)dx →

k→+∞
0, (4.10)
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either i) a.e. t ∈]0, T [ or ii) in L1(]0, T [t).
Let us also assume that (ωk)k∈N is a bounded sequence in L∞(]0, T [×R) that
tends to ω in L∞w∗(]0, T [×R), and such that for all compact interval K = [a, b],
there exists C > 0 such that the total variation (in x) of ωk over K satisfies

∀k ∈ N, TVK(ωk(t, .)) ≤ C. (4.11)

Then, nkωk⇀nω in L∞w∗(]0, T [×R) as k → +∞.

Remark 4.6. This is a result of compensated compactness, which uses the
compactness in x for (ωk)k given by (4.11) and the weak compactness in t
for (nk)k given by (4.10) to pass to the weak limit in the product nkωk. We
can refer to [3] for a complete proof, even in the case where

∀k ∈ N, TVK(ωk(t, .)) ≤ C
(

1 +
1

t

)
,

which is more general. Notice that the total variation bound (in x) of ω over
K is also satisfied thanks to the lower semi-continuity to the BV norm.

We are now able to obtain the limit result.

Proof of Theorem 1.2. Since (ρ̂N )N , (v̂
N )N , (p̂

N )N are bounded in L∞, there
exists (ρ, v, p) such that

ρ̂N⇀ρ, v̂N⇀v, p̂N⇀p in L∞w∗(]0,+∞[×R).

By Proposition 4.2, we also have ρ̂N → ρ in C([0, T ], L∞w∗(Rx)).
Using Proposition 3.1, we get that the sequences (v̂N (t, .))N and (p̂N (t, .))N
are uniformly bounded in BV with respect to t.
We can then apply Lemma 4.5, which gives that ρ̂N v̂N⇀ρv in L∞w∗(]0, T [×R)
and ρ̂N p̂N⇀ρp in L∞w∗(]0, T [×R). Therefore the (4.1) of Proposition 4.1 gives
that

− < ∂tρ+ ∂x(ρv), ϕ >=

∫
R
ρ0(x)ϕ(0, x) dx.

By Proposition 4.4, there exists q ∈ L∞(]0, T [×R) such that, up to a sub-
sequence, ρ̂N (v̂N + p̂N ) → q in C([0, T ], L∞w∗(Rx)). By uniqueness of the
limit q = ρ(v + p). We apply now Lemma 4.5, which gives that ρ̂N v̂N (v̂N +
p̂N )⇀ρv(v+p) in L∞w∗(]0, T [×R). Therefore the (4.2) of Proposition 4.1 gives
that

− < ∂t(ρ(v + p)) + ∂x(ρv(v + p)), ϕ >=

∫
R
ρ0(x)(v0(x) + p0(x))ϕ(0, x) dx.

Now we pass to the limit in 0 ≤ ρ̂N ≤ ρ∗, p̂N ≥ 0, (ρ̂N − ρ∗)p̂N = 0 to get
the constraints and conclude the proof. �
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