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László Székelyhidi Jr. (Bonn)

Programme for the Cours Poupaud
15-17 March 2010, Nice

Monday Morning

Lecture 1. The Nash-Kuiper Theorem

In 1954 J.Nash shocked the world of differential geometry with the following
theorem [12]:

Theorem 1. Given a closed Riemannian n-manifold Mn, any smooth, strictly
short immersion (embedding) Mn →֒ R

n+2 can be uniformly approximated by
C1 isometric immersions (embeddings).

A year later N.Kuiper [10] modified the arguments of Nash to extend to
the case Mn →֒ R

n+1. Thus, in particular, it is possible to ”crumple” the 2-
sphere S2 ⊂ R

3 into an arbitrarily small volume in a C1 way!. The reason this
was (and still is) a shock, is that a classical theorem states that the only C2

embedding of the sphere is the standard embedding, modulo rigid motion.
In the lecture I will give a proof of the Nash-Kuiper theorem and indicate

how the rigidity for the sphere in C2 arises.
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Monday Afternoon

Lecture 2. The Baire Category Method

In some sense the Nash-Kuiper construction relies on a local perturbation
technique. A simple model for this is the construction of maps u : Ω ⊂ R

n → R
n

with
∇uT∇u = I.

If u is C1, it is not difficult to see that any solution has to be affine. On the other
hand Lipschitz solutions can be very wild. Indeed, it turns out that a generic
short map, i.e. where ∇uT∇u ≤ I a.e., is a nowhere C1 almost-everywhere
solution of the system above. Moreover, the argument is the same as for showing
that a generic function u : [0, 1] → [−1, 1] is everywhere discontinuous with
u(x) ∈ {−1, 1} a.e.

In this lecture I will show the Baire category method, and show how it
applies to partial differential inclusions of the type

∇u ∈ K a.e. (1)

This will involve conditions on the rank-one convex hull, which I will introduce.
This lecture will mostly be based on Chapter 3 of [9].
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Tuesday Afternoon

Lecture 3. Laminates

Somewhat surprisingly, the framework introduced so far for solving differ-
ential inclusions applies to certain problems concerning elliptic equations and
systems. The first example of this, the construction of irregular critical points to
quasiconvex functionals, was given by Müller and Šverák in [11]. In this lecture
I will prove the following two results, following [17, 2]. In what follows Ω ⊂ R

2

is a bounded domain.

Theorem 2. There exists a smooth convex function f : R
2×2 × R → R and

γ > 0 such that the functional

∫
Ω

γ|∇u|2 + f(∇u, det∇u) dx

possesses critical points u : Ω → R
2 which are Lipschitz, but nowhere C1.

Functionals of the form above are called strongly polyconvex. In contrast,
minimizers of such functionals are regular outside a closed set of Lebesgue-
measure zero.

Theorem 3. For any Λ > 1 and any α < 1 there exists σ ∈ L∞(Ω) with
σ(x) ∈ {Λ, Λ−1} and a solution u ∈ Cα

0 (Ω) ∩ W 1,1(Ω) to the equation

div σ∇u = 0

such that ∇u ∈ L
2Λ

λ+1
,∞ (the Marcinkiewicz space).

The interest in this theorem is the sharpness of the exponent: it follows

from the theory of quasiregular maps [1, 14] that if instead ∇u ∈ L
2Λ

Λ+1 , then
automatically u ∈ W 1,2 and hence must be identically zero.

Both proofs involve the method of convex integration and the concept of
laminates.

3



Wednesday Morning

Lecture 4. Wild solutions for the Euler equations

The framework of solving differential inclusions with the Baire category
method has an obvious extension to more general systems of the form

N∑
i=1

Ai∂iz = 0

z(y) ∈ K a.e.

where z : Ω ⊂ R
N → R

d (see [18]). In particular, the method applies to
the incompressible Euler equations. In this way one can recover the following
theorem, originally due to Scheffer [15]:

Theorem 4. There exist (non-trivial) weak solutions of the Euler equations
which are compactly supported in space and time.

As is well known, for classical solutions the energy E(t) = 1

2

∫
|v|2 dx is con-

stant in time. Although a solution such as in the theorem is clearly unphysical,
there is a certain amount of physical relevance of weak solutions of the Euler
equations which dissipate energy. In fact, motivated by the phenomenon of
anomalous dissipation, Onsager [13] conjectured that there could be weak solu-
tions in the space Cα with α < 1/3 for which the energy is strictly decreasing
on some time interval. In joint work with Camillo De Lellis in [6, 7] we gave
a construction of such dissipating solutions in L∞, using the Baire category
scheme. In particular, we obtain non-uniqueness for the initial value problem
for dissipative solutions, even for entropy solutions. This lecture will be devoted
to explaining the details of this construction.
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Wednesday Afternoon

Lecture 5. Isometric Immersions revisited: rigidity vs flexibility

Coming back to isometric immersions, one might ask where is the sharp bor-
derline between C1 flexibility and C2 rigidity. This question is still unanswered,
but there are some partial results. In particular, the Nash-Kuiper construction
can be extended to C1,α immersions for some α. This is a result which was first
announced by Borisov in [3]. Subsequently a rather intransparent proof of the
2-dimensional case with analytic metric appeared in [4]. Motivated mainly by
the obvious connection to Onsager’s conjecture, with Sergio Conti and Camillo
De Lellis [5] we looked at this problem and gave a cleaner proof of the general
case. In particular, we obtain (for immersions of a ”single chart”):

Theorem 5. Let Ω ⊂ R
n be an open set with a Riemannian metric g. Then

any strictly short immersion u : (Ω, g) →֒ R
n+1 can be uniformly approximated

by C1,α isometric immersions for α < 1/(1 + n + n2).

In this final lecture I will explain the main steps of the proof and its relation
to Onsager’s 1/3. If time permits, I will also talk about how - for the case of
S2 →֒ R

3 - one can lower the regularity assumption from C2 to C1,2/3+ for
rigidity.
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[6] C. De Lellis, L. Székelyhidi: The Euler equations as a differential inclusion,
Ann. Math. 170 (2009).
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