Licence 3 de Mathématiques, Université de Nice Sophia-Antipolis,

Equations différentielles, Fiche 5

Points stationnaires dans le cas des systèmes linéaires 2×2 .

Exercice 1 (Solutions périodiques)

Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R})$ telle que det $A \neq 0$. A quelle condition sur A, le système Y' = AY admet-il des solutions périodiques ?

Exercice 2 (Allure de trajectoires)

Donner l'allure des trajectoires des systèmes suivants

a)
$$\begin{cases} 5x' - 8x + 9y = 0, \\ 5y' - 6x + 13y = 0, \end{cases}$$
 b)
$$\begin{cases} 3x' + 7x - 5y = 0, \\ 3y' + 2x + 5y = 0, \end{cases}$$
 c)
$$\begin{cases} x' = 4x - y, \\ y' = x + 2y, \end{cases}$$
 d)
$$\begin{cases} x' + 2x - 2y + 2 = 0, \\ 2y' - x + 4y - 7 = 0. \end{cases}$$

Exercice 3 (Solutions tendant vers 0)

A quelle condition sur $\alpha \in \mathbb{R}$, les solutions non nulles $t \mapsto (x(t), y(t))$ du système $\begin{cases} x' = -x + \alpha y, \\ y' = x + 2y, \end{cases}$ tendent-elles toutes vers (0,0) quand $t \to +\infty$?