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1. Traffic models: overview on fluid models
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4Fluid models (1)

➠ Conservation of car density

∂tn + ∂xq = 0

➠ What expression for the fluxq ?
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4Fluid models (1)

➠ Conservation of car density

∂tn + ∂xq = 0

➠ What expression for the fluxq ?

➠ First order models:

q = qeq(n)

[Lighthill, Witham (1955)], . . .

qeq

n
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5Fluid models (2)

➠ Second order models:q = nu and gas
dynamics-like eq. foru:

∂tnu + ∂x(nu2 + p) = −
nu − qeq(n)

τ

➟ [Payne (1971)], . . .
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5Fluid models (2)

➠ Second order models:q = nu and gas
dynamics-like eq. foru:

∂tnu + ∂x(nu2 + p) = −
nu − qeq(n)

τ

➟ [Payne (1971)], . . .

➠ [Daganzo (1995)]: Inacceptable properties (e.g.
Vehicles going backwards)
➟ Fluid ⇒ sound propagation is isotropic in a

comoving frame
➟ Traffic: information propagates backwards
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6The Aw-Rascle model (1)

➠ Modified 2nd order model (see also [Zhang
(2002)])

➠ Preferred velocityw is a Lagrangian quantity:

ẇ := (∂t + u∂x)w = 0



(Summary) (Conclusion)Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

6The Aw-Rascle model (1)

➠ Modified 2nd order model (see also [Zhang
(2002)])

➠ Preferred velocityw is a Lagrangian quantity:

ẇ := (∂t + u∂x)w = 0

➠ The actual velocityu offsets the preferred velocity
w by a quantityp(n) which increases withn

w = u + p(n) , p ր asn ր

➠ Typically p(n) = nγ, γ > 0
p

n
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7AR model (2)

∂tn + ∂x(nu) = 0

(∂t + u∂x)(u + p(n)) = 0

➠ Second eq. equivalent to

(∂t + (u − np′(n))∂x)u = 0

➠ Two characteristic velocities:
➟ λ1 = u − np′(n) (assoc.w.u, GNL)
➟ λ2 = u (assoc.w.w = u + p(n), LD)
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8Properties of AR model

➠ Invariant regions:(u,w) - rectangles
➟ If

a < u0 < b and c < w0 < d

then for all times

a < u(t) < b and c < w(t) < d

➟ Preventsu < 0 (no vehicle going backwards !)
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8Properties of AR model

➠ Invariant regions:(u,w) - rectangles
➟ If

a < u0 < b and c < w0 < d

then for all times

a < u(t) < b and c < w(t) < d

➟ Preventsu < 0 (no vehicle going backwards !)

➠ AR model in Lagrangian coordinates = continuous
version of Follow-the-Leader model[Aw, Klar,
Materne, Rascle (2002)]
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9No invariant region for n !

➠ Problem: there is no invariant region forn

➟ n > 0 BUT:
➟ n can exceed the upper limitn∗ (if any) even if

initially n < n∗)

➠ Modified AR model (M-AR):
➟ AR model which guarantees the constraint

n < n∗

at all times
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10Rescaled Modified AR model (RM-AR)

➠ Perturbed AR system

∂tn
ε + ∂x(n

εuε) = 0

(∂t + uε∂x)(u
ε + εp(nε)) = 0

➠ with modified velocity offset:

p(n) =
1

(

1
n
− 1

n∗

)γ
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11Constrained Pressureless Gas Dynamics (CPGD)

➠ Constrained Pressureless Gas Dynamics (CPGD)

∂tn + ∂x(nu) = 0

(∂t + u∂x)(u + p̄) = 0

p̄(n∗ − n) = 0

p̄ ≥ 0 , 0 ≤ n ≤ n∗

➠ see e.g. [Brenier, ...], [B. and Bouchut] for gaseous corks in
pipes
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12About the constraint

➠ We want to improve CPGD model with

n∗ = n∗(u)

since it is well known that in practice, the
distribution of vehicles on a highway, depends on
their velocity
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13

2. Rescaled Modified Aw-Rascle
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14From the Modified AR model (M − AR∗)

➠ Modify p(n) s.t.

p(n, u) −→ ∞ as n −→ n∗(u)

➠ For instance

p(n, u) =
1

(

1
n
− 1

n∗(u)

)γ

n
n∗

p
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15Density constraint

➠ M − AR∗ has the same properties as the standard
AR model
➟ Hyperbolicity
➟ Invariant regions

➠ One linearly degenerate eigenvalue

➠ Under assumptions onn∗(u), the other eigenvalue
is genuinely non linear

➠ Satisfies the density constraint

n < n∗(u)

at all times
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16Assumptions onn∗(u)

➠ n∗(u) is twice continuously differentiable

➠ n∗(u) is strictly decreasing

➠ n∗(u) is concave

➠ The second assumption is natural since the
minimum distance between drivers is an
increasing function of the velocity
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17A singular situation

➠ In practice: two traffic regimes:
➟ Uncongested traffic (n < n∗(u)): driver goes its

preferred velocity
➟ Congested traffic (n ∼ n∗(u)): velocity is

determined by the traffic conditions.
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17A singular situation

➠ In practice: two traffic regimes:
➟ Uncongested traffic (n < n∗(u)): driver goes its

preferred velocity
➟ Congested traffic (n ∼ n∗(u)): velocity is

determined by the traffic conditions.

➠ in theM − AR∗ model:
➟ p(n, u) very small as long asn not close to

n∗(u)

➟ p(n, u) large (and possibly∞) only when

n
∼
≤ n∗(u)
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18A singular situation

➠ In practice: two traffic regimes:
➟ Uncongested traffic (n < n∗(u)): driver goes its

preferred velocity
➟ Congested traffic (n ∼ n∗(u)): velocity is

determined by the traffic conditions.

➠ Modeled by the rescaling:

p(n, u) = εp̃(n, u)
n

n∗

p



(Summary) (Conclusion)Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

19Rescaled ModifiedAR∗ model (RM − AR∗)

➠ PerturbedAR∗ system

∂tn
ε + ∂x(n

εuε) = 0

(∂t + uε∂x)(u
ε + εp(nε, uε)) = 0

➠ with modified velocity offset:

p(n, u) =
1

(

1
n
− 1

n∗(u)

)γ
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19Rescaled ModifiedAR∗ model (RM − AR∗)

➠ PerturbedAR∗ system

∂tn
ε + ∂x(n

εuε) = 0

(∂t + uε∂x)(u
ε + εp(nε, uε)) = 0

➠ with modified velocity offset:

p(n, u) =
1

(

1
n
− 1

n∗(u)

)γ

➠ Question: what happens in the limit

ε −→ 0
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20

3. Limit ε → 0: The Second Order Model
with Constraint
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21ε → 0: Case I (uncongested)

➠ Supposenε → n < n∗(u) (uncongested case)
➟ Thenεp(nε, uε) → 0 in (RM − AR∗) model:

∂tn
ε + ∂x(n

εuε) = 0

(∂t + uε∂x)(u
ε + εp(nε, uε)) = 0
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21ε → 0: Case I (uncongested)

➠ Supposenε → n < n∗(u) (uncongested case)
➟ Thenεp(nε, uε) → 0 in (RM − AR∗) model:

∂tn
ε + ∂x(n

εuε) = 0

(∂t + uε∂x)(u
ε + εp(nε, uε)) = 0

➠ Limit system = Pressureless Gas Dynamics

∂tn + ∂x(nu) = 0

(∂t + u∂x)u = 0

➠ ➟ Mass conservation
➟ Burger’s eq. for the velocity
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22Pressureless Gas Dyn. properties

➠ Not strictly hyperbolic
➟ 2 identical eigenvaluesu
➟ But not diagonalizable: Jacobian=

(

u n

0 u

)

➠ Weak instability:
➟ linearized solution increase likeO(t)

➠ Generates mass concentrations
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23Pressureless Gas Dyn. concentrations

A

x

B

n

B

x

A

u
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23Pressureless Gas Dyn. concentrations

A

x

B

n

B

x

A

u

n

x

A = B

Delta concentration

A

x

B

u
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24Beyond concentrations

➠ Concentrations = ’particles’

➠ Beyond concentration: solution not unique
Depends on particle interaction model
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24Beyond concentrations

➠ Concentrations = ’particles’

➠ Beyond concentration: solution not unique
Depends on particle interaction model

➟ Particles cross with no interaction

21 12
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24Beyond concentrations

➠ Concentrations = ’particles’

➠ Beyond concentration: solution not unique
Depends on particle interaction model

➟ Particles cross with no interaction

21 12

➟ Sticky particles (Zeldowitch, E, ...)

21 1 + 2

➠ see e.g. [Bouchut (94)], [Grenier (95)], [Rykov, Sinai (96)],
[Brenier, Grenier (98)], . . .
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25Here: no concentrations

➠ Density constraint: no concentration formation
➟ No need to define a particle dynamics

➠ Instead: formation of ’clusters’ (traffic jams)
➟ Cluster dynamics follows from the asymptotic

limit
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26ε → 0: Case II (congested)

➠ Supposenε → n∗ (thenp(nε, uε) → ∞)
➟ Supposeεp(nε, uε) → p̄ < ∞

➠ Thenε → 0 in (RM − AR∗) model:

∂tn
ε + ∂x(n

εuε) = 0

(∂t + uε∂x)(u
ε + εp(nε, uε)) = 0
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26ε → 0: Case II (congested)

➠ Supposenε → n∗ (thenp(nε, uε) → ∞)
➟ Supposeεp(nε, uε) → p̄ < ∞

➠ Thenε → 0 in (RM − AR∗) model:

∂tn
ε + ∂x(n

εuε) = 0

(∂t + uε∂x)(u
ε + εp(nε, uε)) = 0

➠ Gives
∂tn + ∂x(nu) = 0

(∂t + u∂x)(u + p̄) = 0

n = n∗(u)

➠ p̄ unknown: Lagrange multiplier
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27ε → 0: Case II (congested)

➠ Formaly, it is

∂tn
∗(u) + ∂x(n

∗(u)u) = 0,

➠ Let n 7→ u∗(n) the inverse functional of
u 7→ n∗(u), it rewrites

∂tn + ∂x(nu∗(n)) = 0,

➠ Therefore the second order model “relaxes” to the
Lighthill, Witham first order model with the flux
q(n) = nu∗(n) when the maximal density
constraint is saturated
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28Cluster formation

x

n∗

n

u

x
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28Cluster formation

x

n∗

n

u

x

x

n∗

n Cluster

u

x

Cluster
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29Unified formulation

➠ Constrained Pressureless Gas Dynamics (CPGD)

∂tn + ∂x(nu) = 0

(∂t + u∂x)(u + p̄) = 0

p̄(n∗(u) − n) = 0

p̄ ≥ 0 , 0 ≤ n ≤ n∗(u)
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30

4. Second Order Model with Constraint:
additional laws
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31SOMC model

➠ SOMC formulation ill-posed
lack of information for defining a unique solution
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31SOMC model

➠ SOMC formulation ill-posed
lack of information for defining a unique solution

➠ To be defined
➟ Cluster dynamics

➟ Value of p̄ inside clusters

➟ What if clusters meet ?
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32Characteristic velocities

➠ If nε → n∗(u) with εp(nε, uε) → p̄ < ∞, then the
Characteristic velocities:
➟ λε

1 → u + n∗(u)
(n∗)′(u)

➟ λε
2 = uε → u

➠ A velocity variation in front of the cluster
propagates with a finite speed

➠ In the casen∗ = constant, any variation of the
velocity of the leading car instantaneously
propagates to the whole cluster sinceλε

1 → −∞
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33How to complete SOMC formulation

➠ Limit (RM − AR∗) → (SOMC) is formal
➟ Gives no information about cluster dynamics

beyond what has been noticed above
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33How to complete SOMC formulation

➠ Limit (RM − AR∗) → (SOMC) is formal
➟ Gives no information about cluster dynamics

beyond what has been noticed above

➠ But Riemann problem solutions of (RM − AR∗)
are explicit
➟ Limit ε → 0 in these solutions give information

about cluster dynamics
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34Cluster dynamics (from Riemann pbm)

➠ When two clusters meet, a shock wave appears at
the front of the cluster behind and propagates
upstream with a finite speed

➟
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35Cluster dynamics (difference with constant case)

➠ When two clusters meet, they merge
➟ The resulting cluster takes instantaneously the

velocity of the front cluster (the slowest one)

➞
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36

5. Existence theorem for SOMC
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37Cluster approximate solution

➠ Idea (follows from [B. and Bouchut (2002,
2003)]),
➟ Approximate (inD′) the solution by clusters
(

n(x, t)

(nu)(x, t)

)

≈

N
∑

1

(

n∗(ui)

n∗(ui)ui(t)

)

χai(t)≤x≤bi(t)

x

n∗

n
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38Properties of cluster dynamics

➠ Is a weak solution of (SOMC)

➠ SatisfiesL∞ andBV bounds:

essinf
y

u0(y) ≤ u(x, t) ≤ esssup
y

u0(y),

0 ≤ p̄(x, t) ≤ esssup
y

u0(y) + esssup
y

p̄0(y)

TVK(u(., t)) ≤ TVK̃(u0),

TVK(p̄(., t)) ≤ TVK̃(p̄0) + 2TVK̃(u0),

for any compactK = [a, b] and with
K̃ =

[

a − t esssup
∣

∣u0
∣

∣ , b − t essinf
∣

∣u0
∣

∣

]
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39Properties of cluster dynamics (2)

➠ We have equicontinuity in time:
∫

R

|u(x, t2) − u(x, t1)| dx ≤ ‖u‖∞ |t2 − t1|TV (u0)

➠
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40Properties of cluster dynamics (2)

➠ We have equicontinuity in time:
∫

R

|uk(x, t2) − uk(x, t1)| dx ≤ ‖uk‖∞ |t2 − t1|TV (u0)

➠ With furthermoreBV bound onuk, a Cantor
diagonal process argument implies

uk −→
k→∞

u in L1(R × [0, T ]).
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41Proof of existence

➠ Step 1: approximate initial condition(n0, u0, p̄0)

by a converging sequence of clusters(nk
0, u

k
0, p

k
0)

➟ Defines a sequence of cluster sol.(nk, uk, p̄k)
satisfying the above a priori bounds
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41Proof of existence

➠ Step 1: approximate initial condition(n0, u0, p̄0)

by a converging sequence of clusters(nk
0, u

k
0, p

k
0)

➟ Defines a sequence of cluster sol.(nk, uk, p̄k)
satisfying the above a priori bounds

➠ Step 2: prove that(nk, uk, p̄k) is compact in spaces
like L1, L∞

w∗((0,∞) × R),...
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41Proof of existence

➠ Step 1: approximate initial condition(n0, u0, p̄0)

by a converging sequence of clusters(nk
0, u

k
0, p

k
0)

➟ Defines a sequence of cluster sol.(nk, uk, p̄k)
satisfying the above a priori bounds

➠ Step 2: prove that(nk, uk, p̄k) is compact in spaces
like L1, L∞

w∗((0,∞) × R),...

➠ Step 3: Prove the convergence of the products
nkuk, nkp̄k, n∗(uk)p̄k, ... inL∞

w∗((0,∞) × R) and
obtain a solution of (SOMC).
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42Existence result

➠ Suppose
➟ n0 ∈ L1 ∩ L∞,
➟ u0 ∈ L∞ ∩ BV, 0 ≤ n0 ≤ n∗(u0)

➟ p̄0 ∈ L∞ ∩ BV in cluster form
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42Existence result

➠ Suppose
➟ n0 ∈ L1 ∩ L∞,
➟ u0 ∈ L∞ ∩ BV, 0 ≤ n0 ≤ n∗(u0)

➟ p̄0 ∈ L∞ ∩ BV in cluster form

➠ ∃n ∈ L∞
t (L∞

x ∩ L1
x), u, p̄ ∈ L∞

x,t

➟ a solution of SOMC
➟ satisfyingL∞ andBV bounds
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43

6. Conclusion
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44Summary

➠ Modified Aw-Rascle model
➟ Density constraint
➟ Rescaled for small difference between

preferred velocity and actual velocity in
uncongested situations
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44Summary

➠ Modified Aw-Rascle model
➟ Density constraint
➟ Rescaled for small difference between

preferred velocity and actual velocity in
uncongested situations

➠ Limit model
➟ Constrained Pressureless Gas Dynamics
➟ Describes well cluster formation and dynamics
➟ Existence theorem
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45Perspectives

➠ SOMC:
➟ Convergence proof (RM − AR∗) → (SOMC)
➟ About unicity of the solution ?
➟ Lagrangian formulation and scheme
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45Perspectives

➠ SOMC:
➟ Convergence proof (RM − AR∗) → (SOMC)
➟ About unicity of the solution ?
➟ Lagrangian formulation and scheme

➠ More elaborate model
➟ Multi-lane
➟ Multi-class
➟ etc.
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