Traffic Flow on Single Links with Bottlenecks:
Variational Theory, Analysis,
Application and Empirical Evidence

Carlos F. Daganzo
U.C. Berkeley Center for Future Urban Transport
www.its.berkeley.edu/volvocenter/

Luminy, October 2007
References

A Single Stream: Description

Moskowitz's Function

\[n = N(t,x) \]
A Single Stream: Prediction

Solution Domain, S

Boundary, D

$N_B(t, x)$

$N_P = N(t, x)$

$P = (t, x)$
Variational Theory (VT): Basic Ideas

\[N(t,x) \text{ is } L\text{-Continuous} \quad \frac{\Delta N}{\Delta x} \in [0, \kappa] \quad \frac{\Delta N}{\Delta t} \in [0, q_{\text{max}}] \]

Relative Capacity

\[r(u) \]

\[q_{\text{max}} \]

\[N_P \text{ is largest possible subject to capacity constraints} \]

(Daganzo, 2005; 2006)
Variational Theory (VT): Mathematical Expression

- Observer \equiv Valid Path: \mathcal{P}, $x(t)$
- Observer Speed: $x'(t)$
- Observer Bound:
 $$\int_{\mathcal{P}} r(x') dt \equiv \Delta(\mathcal{P})$$
- Observer Constraint:
 $$N_P \leq N_{B(\mathcal{P})} + D(\mathcal{P})$$

VT Expression: $N_{P}^{\text{VT}} = \inf \{ N_{B(\mathcal{P})} + D(\mathcal{P}) : \forall \mathcal{P} \}$

(Daganzo, 2005;2006)
Simple Case: Linear

Relative Capacity

\[q_{\text{max}} \]

\[r(u) = q_{\text{max}} - k_0 u \]

Bound is Path-Independent:

\[D(\mathcal{P}) = q_{\text{max}} \Delta t - k_0 \Delta x \]

(Daganzo, 2005a)
Network Solution with Dynamic Programming (DP)

Sufficient network:

\[x \]

\[t \]

(Daganzo, 2005a)
Network Solution with Dynamic Programming (DP)

Sufficient network:

\[N_P = \min \{ N_{P'}, N_{P''} + r\varepsilon'' \} \]

Stencil:
Bottlenecks in VT

Sufficient network with shortcut:

(Daganzo, 2005a); (Daganzo & Menendez, 2005b)
Bottlenecks in VT

Sufficient network with shortcut:

$B, x_B(t), r_B(t)$

Still a DP Problem

(Daganzo, 2005a); (Daganzo & Menendez, 2005b)
Questions about $N^{VT}(t,x)$

1. Well-posed?

2. Related to known models: KW ; CF ?

3. Realistic?
(Q1) Well-posed?

Initial Value Problem

Finite Highway Problem

Composite Highway Problem

(Daganzo, 2006)
(Q1) Well-posed?

Assume: Data are L-Continuous
Bottlenecks have non-negative speeds & rel. capacities

Then:

Well-posed
Well-posed if:
\[N_P \geq N_P^{VT} \]
Well-posed if:
\[N_P = \min \{ N_P^U, N_P^D \} \]
(Q2) Related to KW?

\[\frac{\partial N}{\partial t} = Q \left(-\frac{\partial N}{\partial x} \right) \]

Flow \hspace{1cm} Density

(Daganzo, 2005; 2006)
(Q2) Related to KW?

\[\frac{\partial N}{\partial t} = Q \left(-\frac{\partial N}{\partial x} \right) \]

Flow \quad Density

KW has a relative capacity function

(Daganzo, 2005; 2006)
(Q2) Related to KW?

Solution must satisfy the relative capacity constraint:

\[N_P^{KW} \leq \inf \left\{ N_{B(P)} + \Delta(P) : \forall P \right\} = N_P^{VT} \]

Solution defined by waves that satisfy:

\[N_P^{KW} = N_{B(w)} + \Delta(W) \geq \inf \left\{ N_{B(P)} + \Delta(P) : \forall P \right\} = N_P^{VT} \]

Hence: \(N_P^{KW} = N_P^{VT} \)
(Q2) Related to CF?

Expressions of the same M to be found

Vehicles at given positions Positions of given vehicles

$N(t,x)$ $X(t,n)$
(Q2) Related to CF?

\[N(t,x) \]

\[X(t,n) \]

Flow vs. Speed

\[r(u) \]

Speed vs. Flow

\[r(u) \]

(Daganzo, 2006)

UC Berkeley Center for Future Urban Transport
A Volvo Center of Excellence
(Q2) Related to CF?

\[N_P = \min\{N_P, N_P^{\prime} + r\varepsilon^{\prime}\prime\} \]

\[X_P = \min\{X_P, + v\varepsilon^{\prime} ; X_P^{\prime} - w\varepsilon^{\prime}\prime\} \]
(Q3) Realistic?

Right lane

Left lane

(Laval & Daganzo, 2006)
(Q3) Realistic?

Method is parsimonious:
- Optional moves \rightarrow 1 behavior parameter (when)
- Mandatory moves \rightarrow 1 behavior parameter (where)
A Lane Drop Bottleneck

(Laval & Daganzo, 2006)
Capacity of Moving Bottlenecks

(Munoz & Daganzo, 2002); (Laval & Daganzo, 2006)
Causes of Moving Bottlenecks

(Laval & Daganzo, 2002)
HOV and On-ramps: Mandatory and Optional Moves

Data

Cumulative flows

Lane changes

Model

Cumulative flows

Lane changes

(Laval & Cassidy and Daganzo, 2006)
(Menendez & Daganzo, 2007)
Discharge through bottleneck is greater with separation of traffic than without.

(Menendez & Daganzo, 2007)
The Smoothing Effect

(Cassidy & Daganzo & Jang and Chung, 2006)
Summary

- Variational Theory unifies different views of traffic
- Parallel streams can be composed with VT
- Results are parsimonious and realistic
- Larger systems, scaling?