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Traffic flow modelling approaches

Two main types of modelling approaches:
1. Microscopic
2. Macroscopic:

a. First order Modelling
b. Second order Modelling
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Macroscopic traffic description

Continuum hypothesis: traffic state can be 
described by functions of location x and 
time t
Variables:

Density ρ(x,t) 
Flow q(x,t) 
Velocity v(x,t) 
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Macroscopic approaches:
Basic equations

1- Vehicle conservation Equation:
∂t ρ(x,t) + ∂x q(x,t) = 0

2- Volume-Density-speed relationship:              First order
q(x,t) = ρ(x,t) v(x,t)

3- Fundamental Diagram (equilibrium)                           Second 
v(x,t) = Qe(ρ(x,t)) where Ve monotone decreasing order

function

4- Momentum equation 
dv(x,t)/dt= ∂t v(x,t) + v(x,t)∂x v(x,t)= G(ρ(x,t), v(x,t))
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Fundamental diagram, 
equilibrium

Example of fundamental diagram
Flow

Density

ρmax

Speed

Density

ρmax
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1st vs 2nd order models

2nd order: out of 
equilibrium (ρ,v points 
are not on the
fundamental diagram)

I (relative speed)
y (relative flow) both 
measure the 
“distance to 
equilibrium”
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Another example of FD

Cf METACOR, STRADA
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The ARZ model: conservation 
of density and relative flow
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Eigenvalues: interpretation

Special waves: 
Small perturbations of the 
traffic flow
Self-similar solutions

The velocity of these special 
waves is equal to the 
eigenvalues of

( ) 0=∂+∂ UfU xt

( ) ( )UfUA
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ARZ system eigenvalues 

The eigenvalues of                        are:

eigenvectors
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Associated waves to the 
eigenvalues 

λ1(U) is truly nonlinear:

The associated waves correspond to rarefaction and/or shock waves
Classical (LWR) dynamics: acceleration /deceleration waves, I 

conserved

λ2(U) is linearly degenerate: 

The associated waves correspond to contact discontinuities.
speed is conserved, propagation of I  discontinuities

( ) ( ) 01
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( ) ( ) 0. 2
2 =∇ UrUλ
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Ul is connected to downstream state Ur through a 1-Wave if and only if:

if ρl > ρr, (and vl < vr) : rarefaction wave (acceleration wave)

if ρl < ρr, (and vl > vr) :  shock wave (deceleration wave).

The upstream state is linked to a downstream state through a contact 
discontinuity if and only if:
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Riemann problem

It is an archetype for many practical situations

It is the key for developing numerical methods

speed
density
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Riemann Problem resolution

Includes: Shock, rarefaction waves and contact 
discontinuities which connect:

The upstream state (Ul) to downstream state (Ur) 
through an auto similar solution

The general solution associated to the eigenvalues:
1-wave connecting the upstream state Ul to an 
intermediate state U0 (to be determined)
2-wave connecting the intermediate state U0 to the 
downstream state Ur.

The general solution is self-similar
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Analytical Riemann problem 
solutions 

1-waves can be either shock or rarefaction waves -> two main types 
of solutions:

Type 1: 1-shock connecting Ul to the intermediate state U0, followed by a 2-
contact discontinuity wave connecting U0 to Ur

Type 2: 1-rarefaction connecting Ul to U0 followed by a 2- contact discontinuity 
wave connecting U0 to Ur .
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In some cases, the original ARZ model does not admit any solution to the 
Riemann problem. Other pathological behaviour: non-physical solutions

If vr < vl – Ve(ρ), the Riemann problem does not admit a solution

How to solve the R. Problem ?
Extensions  of the FD

Case of no solution to the 
Riemann problem.

( )lelr Vvv ρ−<
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Example of non-physical solutions: 
density higher than jam density

Fundamental diagram: Rascle
Speed
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Extension of the fundamental 
diagram

The extension ( )
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Example of analytical solution of the 
R. problem: Homogeneous case

Initial condition:  vr < vl

The Riemann problem solutions include:

• Shock wave (Ul U0)
• Rarefaction wave (U0 Ur)
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Example of analytical solution of the 
R. problem: Homogeneous case (2)

Analytical solution to the Riemann problem with (vr < vl ) as initial condition

The solution of the Riemann problem includes: a shock wave which links the 
upstream state Ul to an intermediate state U0. The latter state is connected to the 
downstream state Ur by a contact discontinuity. 



Nice, November 02-04  2005

Example of analytical solution of the 
R. problem: Homogeneous case (3)

Example: very fast downstream traffic
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Inhomogeneous Riemann 
problem: what is it?

Initial conditions:

FDl # FDr

speed
density
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It is an archetype for:
Boundary conditions (network entry/exit points)
Intersections
Variable motorway sections (Number of lanes, speed 
limits…)

It is the key to 
Network modelling
Fast numerical solutions

Inhomogeneous Riemann 
problem: why solve it?
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Riemann Problem solutions

The classical approach: Shock, rarefaction waves and 
contact discontinuities which connect:

The upstream state (Ul) to downstream state (Ur) 
through an auto similar solution

Difficulty: The general solution requires up to 3 waves, 
not 2 as in the homogeneous case:

Two 1-wave connecting the upstream state Ul to an 
intermediate state U0 (to be determined)
A 2-wave connecting the intermediate state U0 to the 
downstream state Ur.
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Riemann Problem solutions (2)

Intuitive explanation: the discontinuity of 
the FD adds a standing wave at the origin

Consequence: tractable but too many
possible cases

Necessity of a more concise and 
explanatory approach
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definition of I :

I  is constant along vehicle trajectories (lines ). 

I is conserved through 1-waves

I is conserved through stationary discontinuities (Rankine Hugoniot
Conditions)

The key to the solution: 
Dynamics of the relative speed I
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Conservation of I through 
stationary discontinuities

Rankine-Hugoniot (conservation of traffic 
flow):

Flow q is conserved
Relative pressure p = q I is conserved
⇒ I is conserved

x
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Consequence: Il is “carried 
over” on the right side

I = Il in all of sector (S)
I = Ir in all of sector (T)

x
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FDl FDr
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In sector (S), the ARZ model is equivalent 
to a LWR model with shifted Fundamental 
Diagram

In sector (S): I = Il     ⇒

This is a shifted fundamental diagram
(relationship between speed/flow and 
density)
FD + conservation of vehicles ⇔ LWR 
model
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Shifted LWR:
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Solution to the Riemann problem: 
classical LWR supply/demand 
analysis

Supply and demand for the modified FD
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Riemann problem solution
Define upstream demand and downstream supply 
(both depend on Il ):

Through flow   q0 = Min [upstream demand, 
downstream supply ]

Through relative pressure p0 = q0 x Il 

The state Um is given by 
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Example: Analytical solution of 
an inhomogeneous Riemann 
problem

Case: insufficient downstream supply
Steps:

Construct the shifted FD s 
Construct Um: 
Construct U0l (defines the supply on the l.h.s
Construct the shock Ul → U0l
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Example: Upstream boundary 
conditions for a link

Upstream boundary data: 
demand ∆u , relative 
speed Iu

Upstream supply Σ(a, Iu )

Link inflow
Link relative flow inflow
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Example: Godunov scheme for 
the ARZ model

The solution of the inhomogeneous Riemann problem 
yields:

The Godunov scheme relies on a piecewise constant 
approximation of the traffic state
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Example: Godunov scheme for 
the ARZ model (2)

At each interface point, we 
solve a local Riemann 
problem

Then conservation of 
density and relative flow is 
applied
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Simulation results :
Validation of the numerical scheme (GODUNOV)

second1meters50 =∆=∆ tandx
second2meters100 =∆=∆ tandx

The scheme is tested against known analytical solutions ⇒ validation
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Simulation results (2)

Some more examples
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Simulation results (3)
Convergence of the second order model to the LWR

The ARZ model is consistent with LWR model.  (The LWR is embedded in the 
ARZ model)

This property is easily demonstrated, by considering an equilibrium state as 
initial condition: v =Ve(ρ). The second order model is reduced to the 
conservation equation at equilibrium (the LWR model):
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Simulation results (4)
in Homogeneous case

qinqout
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Simulation results (5)
in Inhomogeneous case

qinqout

I # 0
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Conclusion & next steps

Consistent boundary conditions
Godunov scheme
General solution principle (based on LWR with modified FD)

Next steps:

Development of the Intersection modeling
Development of network models
Hybridization (micro-macro)
Integration of the model in MAESTRAU kernel


