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1. Introduction
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parts) are circulating
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4A supply chain

➠ In a very simple framework:
➟ A supply chain is a string (or network) of

processors (or stations) along which goods (or
parts) are circulating

➠ At each processor, the goods undergo a
transformation.

➠ Each processor requires a certain throughput time
T to process a given good

➠ Each processor has a limited capacityq
(maximum number of goods it is able to deliver
per unit of time)
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5A supply chain

➠ In front of each processor, goods can be stored in
buffer queues while waiting for being treated

➠ Goods are picked up in the queues according to a
given policy.
➟ The simplest policy: FIFO (first in first out)
➟ More complex policies (e.g. tagged ’hot lots’ to

be processed with higher priority)
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6Discrete Event Simulators (DES)

➠ The simplest model to describe a supply chain

➠ Provides a recursion formula forτ(m,n) = time
at which the partPn enters the buffer queue of
StationSm

➠ Discrete analog of a particle model in gas
dynamics
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7Hierarchy of models

➠ Like in fluid dynamics, one can derive
➟ fluid models
➟ kinetic models
for supply chains

➠ The goal of this talk
➟ ’Rigorously’ derive a fluid model from a large

particle limit of a DES model under FIFO
policy

➟ Refine this model into a kinetic model able to
account for more complex policies (hot lots)
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➠ Fluid models:[Anderson], [Billings, Hasenbein],
[Newell]

➟ Recently:[Klar et al]

➠ Review: [Daganzo]
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2. A simple discrete event simulator
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➟ Capacityqm (number of parts per unit of time)
➟ Throughput timeTm (time needed to process a

single part)
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10Data

➠ StationSm

➟ Capacityqm (number of parts per unit of time)
➟ Throughput timeTm (time needed to process a

single part)

➠ τ(m,n) = time at which the partPn enters the
buffer queue of StationSm

➠ Buffer queues are of infinite size (can be relaxed)
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11Case distinction

➠ First case: buffer ofSm non-empty
➟ Sm processes at full rateqm

=⇒ τ(m + 1, n) = τ(m + 1, n − 1) +
1

qm
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11Case distinction

➠ First case: buffer ofSm non-empty
➟ Sm processes at full rateqm

=⇒ τ(m + 1, n) = τ(m + 1, n − 1) +
1

qm

➠ Second case: buffer ofSm empty
➟ Sm processes part when it arrives

=⇒ τ(m + 1, n) = τ(m,n) + Tm
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12Recursion formula

➠ If buffer of Sm non-empty

=⇒ τ(m + 1, n) ≥ τ(m,n) + Tm
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12Recursion formula

➠ If buffer of Sm non-empty

=⇒ τ(m + 1, n) ≥ τ(m,n) + Tm

➠ If buffer of Sm empty

=⇒ τ(m + 1, n) ≥ τ(m + 1, n − 1) +
1

qm
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12Recursion formula

➠ If buffer of Sm non-empty

=⇒ τ(m + 1, n) ≥ τ(m,n) + Tm

➠ If buffer of Sm empty

=⇒ τ(m + 1, n) ≥ τ(m + 1, n − 1) +
1

qm

➠ Collect the two cases into

τ(m+1, n) = max{ τ(m+1, n−1)+
1

qm

, τ(m,n)+Tm }
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➟ N = Number of parts
and find a continuum model
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13The continuum limit

➠ Investigate the ’thermodynamic limit’
M,N → ∞,
➟ M = Number of stations
➟ N = Number of parts
and find a continuum model

➠ Idea: find that the DES is a discrete version of a
conservation law in Lagrangian variable
➟ n = part index= ’mass’ variable
➟ m = station index= ’space’ variable



(Summary) (Conclusion)Pierre Degond - Traffic-like models for supply chains - Nov 2005

14

3. Continuity equation
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15Position of part Pn

➠ ’Position’ (or Station numberm) at which partPn

is at timet given by

µ(t, n) =
1

M

M
∑

m=1

H(t − τ(m,n))

whereH(x) = 1 for x > 0 and0 otherwise
(Heaviside fct)
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we can increment position by1, otherwise not

0 ≤ µ(t, n) ≤ 1
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we can increment position by1, otherwise not

0 ≤ µ(t, n) ≤ 1
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16Velocity and specific volume

➠ ’Velocity’ of part Pn

v(t, n) =
d

dt
µ(t, n) =

1

M

M
∑

m=1

δ(t − τ(m,n))
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16Velocity and specific volume

➠ ’Velocity’ of part Pn

v(t, n) =
d

dt
µ(t, n) =

1

M

M
∑

m=1

δ(t − τ(m,n))

➠ Spacing between the parts (= ’specific volume’)

θ(t, n) = −
µ(t, n + 1) − µ(t, n)

1/N
, θ(t,N) = 0

➠ By construction

d

dt
θ(t, n) +

v(t, n + 1) − v(t, n)

1/N
= 0
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17Continuum limit

➠ Define
➟ y = mass variable∈ [0, 1] (part number)
➟ x = space variable∈ [0, 1] (station number)

n = [Ny] , m = [Mx] [·] = integer part
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17Continuum limit

➠ Define
➟ y = mass variable∈ [0, 1] (part number)
➟ x = space variable∈ [0, 1] (station number)

n = [Ny] , m = [Mx] [·] = integer part

➠ Assumption

τM,N([Mx], [Ny]) −→ τ̃(x, y)

asM,N → ∞, as smoothly as we need
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18Position in the continuum limit

➠ We have

µM,N(t, [Ny]) −→ X(t, y)

wheret → X(t, y) is the inverse function of
x → τ̃(x, y) (which is increasing)
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wheret → X(t, y) is the inverse function of
x → τ̃(x, y) (which is increasing)

➠ Proof: just a change of variable in the integral
definingµ
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18Position in the continuum limit

➠ We have

µM,N(t, [Ny]) −→ X(t, y)

wheret → X(t, y) is the inverse function of
x → τ̃(x, y) (which is increasing)

➠ Proof: just a change of variable in the integral
definingµ

➠ X(t, y) is the position in Lagrangian variables
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19Velocity and Specific volume

➠ We have

vM,N(t, [Ny]) =
d

dt
µM,N(t, [Ny]) →

dX

dt
(t, y) := v(t, y)

(velocity in Lagangian variables)
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19Velocity and Specific volume

➠ We have

vM,N(t, [Ny]) =
d

dt
µM,N(t, [Ny]) →

dX

dt
(t, y) := v(t, y)

(velocity in Lagangian variables)

➠ and

θM,N(t, [Ny]) = −
µM,N(t, [Ny] + 1) − µM,N(t, [Ny])

1/N

→ −
∂X

∂y
(t, y) := θ(t, y)

(specific volume)
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20Continuity equation

➠ Since
∂

∂y

(

dX

dt

)

=
d

dt

(

∂X

∂y

)
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20Continuity equation

➠ Since
∂

∂y

(

dX

dt

)

=
d

dt

(

∂X

∂y

)

➠ The continuity equation is satisfied

∂θ

∂t
+

∂v

∂y
= 0
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4. Constitutive relation
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22Recursion formula

➠ was written

τ([Mx] + 1, [Ny]) = max{ τ([Mx] + 1, [Ny] − 1)

+
1

q([Mx])
, τ([Mx], [Ny]) + T ([Mx]) }
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23Recursion formula (cont)

➠ After dividing by1/N and some rearrangement

max{

τ([Mx] + 1, [Ny] − 1) − τ([Mx] + 1, [Ny])

1/N
+

N

q([Mx])
,

N

M
(
τ([Mx], [Ny]) − τ([Mx] + 1, [Ny])

1/M
+ MT ([Mx]))

} = 0
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24Scaling hypotheses

➠ N → ∞, qM,N → ∞ and

N

qM,N([Mx])
→

1

q̄(x)
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24Scaling hypotheses

➠ N → ∞, qM,N → ∞ and

N

qM,N([Mx])
→

1

q̄(x)

➠ M → ∞, TM,N → 0 and

MTM,N([Mx]) → T̄ q(x)
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24Scaling hypotheses

➠ N → ∞, qM,N → ∞ and

N

qM,N([Mx])
→

1

q̄(x)

➠ M → ∞, TM,N → 0 and

MTM,N([Mx]) → T̄ q(x)

➠
N

M
→ 1 Number of parts and stations are of the

same order of magnitude
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25Recursion: continuum limit

➠ Under scaling assumptions, asN,M → ∞:

max{−
∂τ̃

∂y
+

1

q̃
, −

∂τ̃

∂x
+ T̃} = 0
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25Recursion: continuum limit

➠ Under scaling assumptions, asN,M → ∞:

max{−
∂τ̃

∂y
+

1

q̃
, −

∂τ̃

∂x
+ T̃} = 0

➠ Using thatt → X(t, y) is the inverse fct of
x → τ̃(x, y)

∂τ̃

∂x
(X(t, y), y) =

1

v(t, y)
,

∂τ̃

∂y
(X(t, y), y) =

θ(t, y)

v(t, y)
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25Recursion: continuum limit

➠ Under scaling assumptions, asN,M → ∞:

max{−
∂τ̃

∂y
+

1

q̃
, −

∂τ̃

∂x
+ T̃} = 0

➠ Using thatt → X(t, y) is the inverse fct of
x → τ̃(x, y)

∂τ̃

∂x
(X(t, y), y) =

1

v(t, y)
,

∂τ̃

∂y
(X(t, y), y) =

θ(t, y)

v(t, y)

➠ Gives

max{−
θ(t, y)

v(t, y)
+

1

q̃(X(t, y))
, −

1

v(t, y)
+T̃ (X(t, y))} = 0
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26Resolution of the max

➠ Either max is attained for 1st argument and

v(t, y) = q(X(t, y))θ(t, y) ≤
1

T (X(t, y))
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26Resolution of the max

➠ Either max is attained for 1st argument and

v(t, y) = q(X(t, y))θ(t, y) ≤
1

T (X(t, y))

➠ or max is attained for 2nd argument and

v(t, y) =
1

T (X(t, y))
≤ q(X(t, y))θ(t, y)
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26Resolution of the max

➠ Either max is attained for 1st argument and

v(t, y) = q(X(t, y))θ(t, y) ≤
1

T (X(t, y))

➠ or max is attained for 2nd argument and

v(t, y) =
1

T (X(t, y))
≤ q(X(t, y))θ(t, y)

➠ Thus

v(t, y) = min{
1

T (X(t, y))
, q(X(t, y))θ(t, y)}
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27Supply chain model (in Lagrang. coord.)

∂θ

∂t
+

∂v

∂y
= 0

v(t, y) = min{
1

T (X(t, y))
, q(X(t, y))θ(t, y)}

−
∂X

∂y
(t, y) = θ(t, y)
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27Supply chain model (in Lagrang. coord.)

∂θ

∂t
+

∂v

∂y
= 0

v(t, y) = min{
1

T (X(t, y))
, q(X(t, y))θ(t, y)}

−
∂X

∂y
(t, y) = θ(t, y)

➠ Last eq. equivalent to:

X(t, y) =

∫ 1

y

θ(t, z)dz



(Summary) (Conclusion)Pierre Degond - Traffic-like models for supply chains - Nov 2005

28

5. Passage to Eulerian variables
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29Goal

➠ Obtain a model in(t, x) rather than(t, y)
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29Goal

➠ Obtain a model in(t, x) rather than(t, y)

➠ Classical procedure in gas dynamics
➟ Coordinate change:

x = X(t, y) =

∫ 1

y

θ(t, z)dz strictly ց of y

y = Y (t, x) inverse fct
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30Eulerian unknowns

➠ Using thaty → Y (t, x) is the inverse fct of
x → X(t, y)

∂Y

∂x
(t, x) = −

1

θ(t, Y (t, x))
:= ρ(t, x)

Number density of parts atx at timet
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30Eulerian unknowns

➠ Using thaty → Y (t, x) is the inverse fct of
x → X(t, y)

∂Y

∂x
(t, x) = −

1

θ(t, Y (t, x))
:= ρ(t, x)

Number density of parts atx at timet

➠ and

∂Y

∂t
(t, x) = −

v(t, Y (t, x))

θ(t, Y (t, x))
:= ρ(t, x)u(t, x)

u(t, x) = v(t, Y (t, x)) velocity in Eulerian coord.
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31Continuity and constitutive eqs.

➠ Since
∂

∂t

(

∂Y

∂x

)

=
∂

∂x

(

∂Y

∂t

)
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31Continuity and constitutive eqs.

➠ Since
∂

∂t

(

∂Y

∂x

)

=
∂

∂x

(

∂Y

∂t

)

➠ The continuity equation is satisfied

∂ρ

∂t
+

∂ρu

∂x
= 0
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31Continuity and constitutive eqs.

➠ Since
∂

∂t

(

∂Y

∂x

)

=
∂

∂x

(

∂Y

∂t

)

➠ The continuity equation is satisfied

∂ρ

∂t
+

∂ρu

∂x
= 0

➠ From the constitutive relation in Lagrangian
variable, we get

ρu(t, x) = min{
1

T (x)
ρ(t, x) , q(x)}
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32Continuum supply chain model

∂ρ

∂t
+

∂ρu

∂x
= 0

ρu(t, x) = min{
1

T (x)
ρ(t, x) , q(x)}



(Summary) (Conclusion)Pierre Degond - Traffic-like models for supply chains - Nov 2005

32Continuum supply chain model

∂ρ

∂t
+

∂ρu

∂x
= 0

ρu(t, x) = min{
1

T (x)
ρ(t, x) , q(x)}

➠ Hyperbolic model with flux constraint
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6. Kinetic model
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34Particle interpretation of fluid model

➠ Fluid model

∂ρ

∂t
+

∂ρu

∂x
= 0

ρu = min{ρV0 , q} , V0 =
1

T
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34Particle interpretation of fluid model

➠ Fluid model

∂ρ

∂t
+

∂ρu

∂x
= 0

ρu = min{ρV0 , q} , V0 =
1

T

➠ Particle interpretation

Ẋ =

{

V0

0
ρ̇ =

{

−ρ∂xV0 if ρV0 ≤ q

−∂xq if ρV0 > q
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35Particle motion

➠ Either particle moves or is blocked according to
whether the ’free’ fluxρV0 is below or exceeds the
thresholdq.
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➠ Either particle moves or is blocked according to
whether the ’free’ fluxρV0 is below or exceeds the
thresholdq.

➠ Kinetic model: ’regularization’ of this singular
dynamics
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35Particle motion

➠ Either particle moves or is blocked according to
whether the ’free’ fluxρV0 is below or exceeds the
thresholdq.

➠ Kinetic model: ’regularization’ of this singular
dynamics

➠ Introduce an attribute variableξ to each particle
➟ Particles move with actual velocity

V (t, x, ξ) ≤ V0

➟ s.t. total flux≤ q
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36Distribution function

➠ f(x, ξ, t) density of parts at timet, positionx,
with attributeξ
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36Distribution function

➠ f(x, ξ, t) density of parts at timet, positionx,
with attributeξ

➠ Densityρ and fluxρu

ρ =

∫

f(x, ξ, t) dξ , ρu =

∫

f(x, ξ, t)V (x, ξ, t) dξ
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36Distribution function

➠ f(x, ξ, t) density of parts at timet, positionx,
with attributeξ

➠ Densityρ and fluxρu

ρ =

∫

f(x, ξ, t) dξ , ρu =

∫

f(x, ξ, t)V (x, ξ, t) dξ

➠ Maximal possible fluxQ:

Q =

∫

f(x, ξ, t)V0(x) dξ = ρV0

Flux if there would be no capacity limitation
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37Policy

➠ Higher priority to parts with lower attribute values
➟ Note: same methodology would apply for other

policies

➠ Procedure: move parts by increasing attribute
number with maximum allowed speedV0 until
processor capacity is reached

➠ Number of parts with attribute≤ α is
∫ α

−∞

f(x, ξ, t) dξ
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38Implementing policy I

➠ If parts with attribute≤ α all move with maximal
speedV0, the associated flux is

β(x, α, t) = V0(x)

∫ α

−∞

f(x, ξ, t) dξ
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➠ If parts with attribute≤ α all move with maximal
speedV0, the associated flux is

β(x, α, t) = V0(x)

∫ α

−∞

f(x, ξ, t) dξ

➠ The fonction

α ∈ R → β(x, α, t) ∈ [0, Q]

is increasing
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38Implementing policy I

➠ If parts with attribute≤ α all move with maximal
speedV0, the associated flux is

β(x, α, t) = V0(x)

∫ α

−∞

f(x, ξ, t) dξ

➠ The fonction

α ∈ R → β(x, α, t) ∈ [0, Q]

is increasing

➠ Denoteβ−1(x, ·, t) its inverse
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39Implementing policy II

➠ Processors process all parts with attribute≤ α

➟ whereα s.t. associated flux= processor
capacity

β(x, α, t) = q (⇔ α = β−1(x, q, t) )
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➠ Processors process all parts with attribute≤ α

➟ whereα s.t. associated flux= processor
capacity

β(x, α, t) = q (⇔ α = β−1(x, q, t) )

➠ except if maximal possible fluxQ lower than
processor capacityq
➟ in which caseα = ∞

q > Q =⇒ α = ∞
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39Implementing policy II

➠ Processors process all parts with attribute≤ α

➟ whereα s.t. associated flux= processor
capacity

β(x, α, t) = q (⇔ α = β−1(x, q, t) )

➠ except if maximal possible fluxQ lower than
processor capacityq
➟ in which caseα = ∞

q > Q =⇒ α = ∞

➠ Then
β(x, α, t) = min{q,Q}
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➠ Note: processor velocityV0 can be attribute
dependent

V0 = V0(x, ξ)
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40Actual velocity V (x, ξ, t)

➠ Note: processor velocityV0 can be attribute
dependent

V0 = V0(x, ξ)

➠ Actual velocity

V (x, ξ, t) =

{

V0(x, ξ) if ξ ≤ α(x, t)

0 if ξ > α(x, t)
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40Actual velocity V (x, ξ, t)

➠ Note: processor velocityV0 can be attribute
dependent

V0 = V0(x, ξ)

➠ Actual velocity

V (x, ξ, t) =

{

V0(x, ξ) if ξ ≤ α(x, t)

0 if ξ > α(x, t)

➠ or

V (x, ξ, t) = V0(x, ξ)H(α(x, t)−ξ) H = Heaviside
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41Actual velocity II

➠ Sinceβ ր fonction ofα, we have

H(α(x, t) − ξ) = H(β(x, α(x, t), t) − β(x, ξ, t))

= H(min{q,Q} − β(x, ξ, t))

= H(q − β(x, ξ, t)) (sinceβ ≤ Q)
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41Actual velocity II

➠ Sinceβ ր fonction ofα, we have

H(α(x, t) − ξ) = H(β(x, α(x, t), t) − β(x, ξ, t))

= H(min{q,Q} − β(x, ξ, t))

= H(q − β(x, ξ, t)) (sinceβ ≤ Q)

➠ and

β(x, ξ, t) =

∫ ξ

−∞

V0(x, ξ′) f(x, ξ′, t) dξ′

=

∫

R

V0(x, ξ′) f(x, ξ′, t)H(ξ − ξ′) dξ′



(Summary) (Conclusion)Pierre Degond - Traffic-like models for supply chains - Nov 2005

42Actual velocity III

➠ Finally

V (x, ξ, t) = V0(x, ξ)H(q − β(x, ξ, t))

β(x, ξ, t) =

∫

R

V0(x, ξ′) f(x, ξ′, t)H(ξ − ξ′) dξ′
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43Part dynamics

➠ By analogy with fluid model

Ẋ = V (X,Ξ, t) = V0(X,Ξ)H(q − β(X,Ξ, t))

ḟ = −f(∂xV )|(X,Ξ,t)

Ξ̇ = 0
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43Part dynamics

➠ By analogy with fluid model

Ẋ = V (X,Ξ, t) = V0(X,Ξ)H(q − β(X,Ξ, t))

ḟ = −f(∂xV )|(X,Ξ,t)

Ξ̇ = 0

➠ Characteristics of the first order kinetic eq.

∂tf + ∂x(V f) = 0
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44When attribute value evolves

➠
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61Case 2: Multiphase and kinetic models
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63Case 2: Multiphase and kinetic models
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9. Conclusion
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➠ (Rigorous) derivation of continuum model from
Discrete Event Simulator
➟ Nonlinear hyperbolic model with saturated flux
➟ Reproduces DES model satisfactorily even in

situations where capacity has large variations
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65Summary

➠ (Rigorous) derivation of continuum model from
Discrete Event Simulator
➟ Nonlinear hyperbolic model with saturated flux
➟ Reproduces DES model satisfactorily even in

situations where capacity has large variations

➠ Kinetic model with an internal variable (policy
attribute)
➟ Simple closure recovers the fluid model
➟ Multiphase closure allows to implement

policies
➟ Correct agreement between two-phase and

kinetic models
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66Work in progress

➠ Fluid model
➟ Networks

➠ Kinetic model
➟ Randomness (random failures)

➠ More complex models
➟ Orders, payments, etc.
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