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1. Traffic models: overview on fluid models
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4Fluid models (1)

➠ Conservation of car density

∂tn + ∂xq = 0

➠ What expression for the flux q ?

➠ First order models:

q = qeq(n)

[Lighthill, Witham (1955)], . . .

qeq

n
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5Fluid models (2)

➠ Second order models: q = nu and gas
dynamics-like eq. for u:

∂tnu + ∂x(nu2 + p) = −
nu − qeq(n)

τ

➟ [Payne (1971)], . . .

➠ [Daganzo (1995)]: Inacceptable properties (e.g.
Vehicles going backwards)
➟ Fluid ⇒ sound propagation is isotropic in a

comoving frame
➟ Traffic: information propagates backwards
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6The Aw-Rascle model (1)

➠ Modified 2nd order model (see also [Zhang
(2002)])

➠ Preferred velocity w is a Lagrangian quantity:

ẇ := (∂t + u∂x)w = 0

➠ The actual velocity u offsets the preferred velocity
w by a quantity p(n) which increases with n

w = u + p(n) , p ↗ as n ↗

➠ Typically p(n) = nγ, γ > 0
p

n
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7AR model (2)

∂tn + ∂x(nu) = 0

(∂t + u∂x)(u + p(n)) = 0

➠ Second eq. equivalent to

(∂t + (u − np′(n))∂x)u = 0

➠ Two characteristic velocities:
➟ λ1 = u − np′(n) (assoc.w. u, GNL)
➟ λ2 = u (assoc.w. w = u + p(n), LD)
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8Properties of AR model

➠ Invariant regions: (u,w) - rectangles
➟ If

a < u0 < b and c < w0 < d

then for all times

a < u(t) < b and c < w(t) < d

➟ Prevents u < 0 (no vehicle going backwards !)

➠ AR model in Lagrangian coordinates = continuous
version of Follow-the-Leader model [Aw, Klar,
Materne, Rascle (2002)]
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9No invariant region for n !

➠ Problem: there is no invariant region for n

➟ n > 0 BUT:
➟ n can exceed the upper limit n∗ (if any) even if

initially n < n∗)

➠ Goal:
➟ Modify AR model s.t. it enforces an upper limit

constraint on the density n ≤ n∗

➟ Investigate the dynamics of the clustered
regions where n = n∗
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2. Modified Aw-Rascle model
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11Modified AR model (M-AR)

➠ AR model which guarantees the constraint

n < n∗

at all times

➠ Modify p(n) s.t.

p(n) −→ ∞ as n −→ n∗

➠ For instance

p(n) =
1

(

1
n
− 1

n∗

)γ

n
n∗

p
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12Density constraint

➠ M-AR has the same properties as the standard AR
model
➟ Hyperbolicity
➟ Invariant regions

➠ Satisfies the density constraint

n < n∗

at all times
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13A singular situation

➠ In practice: two traffic regimes:
➟ Uncongested traffic (n < n∗): driver goes its

preferred velocity
➟ Congested traffic (n ∼ n∗): velocity is

determined by the traffic conditions.

➠ in the M-AR model:
➟ p(n) very small as long as n not close to n∗

➟ p(n) large (and possibly ∞) only when n
∼
≤ n∗

➠ Modeled by the rescaling:

p(n) = εp̃(n)
n

n∗

p
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14Rescaled Modified AR model (RM-AR)

➠ Perturbed AR system

∂tn
ε + ∂x(n

εuε) = 0

(∂t + uε∂x)(u
ε + εp(nε)) = 0

➠ with modified velocity offset:

p(n) =
1

(

1
n
− 1

n∗

)γ

➠ Question: what happens in the limit

ε −→ 0
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3. Limit ε → 0: Constrained Pressureless
Gas Dynamics
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16ε → 0: Case I (uncongested)

➠ Suppose nε → n < n∗ (uncongested case)
➟ Then εp(nε) → 0 in (RM-AR) model:

∂tn
ε + ∂x(n

εuε) = 0

(∂t + uε∂x)(u
ε + εp(nε)) = 0

➠ Limit system = Pressureless Gas Dynamics

∂tn + ∂x(nu) = 0

(∂t + u∂x)u = 0

➠ ➟ Mass conservation
➟ Burger’s eq. for the velocity
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17Pressureless Gas Dyn. properties

➠ Not strictly hyperbolic
➟ 2 identical eigenvalues u

➟ But not diagonalizable: Jacobian =

(

u n

0 u

)

➠ Weak instability:
➟ linearized solution increase like O(t)

➠ Generates mass concentrations
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18Pressureless Gas Dyn. concentrations

A

x
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19Beyond concentrations

➠ Concentrations = ’particles’

➠ Beyond concentration: solution not unique
Depends on particle interaction model

➟ Particles cross with no interaction

21 12

➟ Sticky particles (Zeldowitch, E, ...)

21 1 + 2

➠ see e.g. [Bouchut (94)], [Grenier (95)], [Rykov, Sinai (96)],
[Brenier, Grenier (98)], . . .
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20Here: no concentrations

➠ Density constraint: no concentration formation
➟ No need to define a particle dynamics

➠ Instead: formation of ’clusters’ (traffic jams)
➟ Cluster dynamics follows from the asymptotic

limit
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21ε → 0: Case II (congested)

➠ Suppose nε → n∗ (then p(nε) → ∞)
➟ Suppose εp(nε) → p̄ < ∞

➠ Then ε → 0 in (RM-AR) model:

∂tn
ε + ∂x(n

εuε) = 0

(∂t + uε∂x)(u
ε + εp(nε)) = 0

➠ Gives
∂tn + ∂x(nu) = 0

(∂t + u∂x)(u + p̄) = 0

n = n∗

➠ p̄ unknown: Lagrange multiplier
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22Cluster formation

x
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n
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23Unified formulation

➠ Constrained Pressureless Gas Dynamics (CPGD)

∂tn + ∂x(nu) = 0

(∂t + u∂x)(u + p̄) = 0

p̄(n∗ − n) = 0

p̄ ≥ 0 , 0 ≤ n ≤ n∗

➠ see e.g. [Brenier, ...], [B. and Bouchut] for gaseous corks in
pipes



(Summary) (Conclusion)Florent Berthelin - Traffic flows - Nice November 2-4, 2005

24

4. Constrained Pressureless Gas Dynamics:
additional laws
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25CPGD model

➠ CPGD formulation ill-posed
lack of information for defining a unique solution

➠ To be defined
➟ Cluster dynamics

➟ Value of p̄ inside clusters

➟ What if clusters meet ?
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26Characteristic velocities

➠ If nε → n∗ with εp(nε) → p̄ < ∞, then:

εnεp′(nε) → ∞

➠ Characteristic velocities:
➟ λε

1 = uε − nεp′(nε) → −∞

➟ λε
2 = uε → u

➠ Riemann invariant associated with λ1 is u:

∂tu
ε + λε

1∂xu
ε = 0

➠ In the limit ε → 0, u is constant in a cluster
∂xu = 0
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27Characteristic velocities (2)

➠ In a cluster, all cars have the same velocity (the
cluster velocity)

➠ Since λε
1 → −∞, all variations of the cluster

velocity originate from the leading vehicle of the
cluster

➠ Any variation of the velocity of the leading vehicle
instantaneously propagates to the whole cluster
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28How to complete CPGD formulation

➠ Limit (RM-AR) → (CPGD) is formal
➟ Gives no information about cluster dynamics

beyond what has been noticed above

➠ But Riemann problem solutions of (RM-AR) are
explicit
➟ Limit ε → 0 in these solutions give information

about cluster dynamics
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29Cluster dynamics (from Riemann pbm)

➠ When two clusters meet, they merge
➟ The resulting cluster takes the velocity of the

front cluster (the slowest one)

21 1 + 2

➠ At the right-most end of a cluster, there is
➟ either vacuum (and p̄ = 0 at the right-most

point of the cluster)
➟ or the velocity is continuous accross the right

most point of the cluster
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30Cluster dynamics (2)

➠ These rules allow to determine
➟ p̄ everywhere
➟ The velocity of the extreme points of the cluster

➠ Cluster dynamics 6= from that of [Brenier, ...] and
[B. and Bouchut]
➟ no momentum conservation at cluster collapse
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31

5. Existence theorem for CPGD
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32Cluster approximate solution

➠ Idea (follows from [B. and Bouchut (2002,
2003)]),
➟ Approximate (in D′) the solution by clusters
(

n(x, t)

(nu)(x, t)

)

≈

N
∑

1

(

n∗

n∗ui(t)

)

χai(t)≤x≤bi(t)

x

n∗

n
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33Cluster dynamics

➠ Free motion (at velocity ui(t)) between contacts

➠ At a contact:
➟ 2 clusters merge
➟ the resulting cluster takes the velocity of the

front cluster (the slowest one)
➟ p̄ in the near cluster is increased by the velocity

difference
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34Properties of cluster dynamics

➠ Is a weak solution of (CPGD)

➠ Satisfies an ’Oleinik’ condition

∂xu ≤
1

t

➠ Satisfies L∞ and BV bounds:

inf u0 ≤ u(., t) ≤ supu0

TVK(p̄) ≤ 2TV (u0) , ∀K compact
0 ≤ p̄ ≤ 2 sup u0



(Summary) (Conclusion)Florent Berthelin - Traffic flows - Nice November 2-4, 2005

35Properties of cluster dynamics (2)

➠ Satisfies an ’entropy’ equality

➟ For any S ∈ C1, ∃p̄S s.t.

∂t(nS(u) + np̄S) + ∂x(nuS(u) + nup̄S) = 0

➠ p̄S has a BV bound:

TVK(p̄S) ≤ 2|S ′|∞TV u0
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36Proof of existence

➠ Step 1: approximate initial condition (n0, u0) by a
converging sequence of clusters (nk

0, u
k
0) [B. (02)]

➟ Defines a sequence of cluster sol. (nk, uk)
satisfying the above a priori bounds

➠ Step 2: prove that (nk, uk) converges in weak
sense i.e. L∞

w∗((0,∞) × R) to a weak sol. of
(CPGD)

➠ Key point: an extension of the compensated
compactness lemma using Oleinik estimate [B.
(02)]
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37Existence result

➠ Suppose
➟ n0 ∈ L1 , 0 ≤ n0 ≤ n∗

➟ u0 ∈ L∞ ∩ BV

➠ ∃n ∈ L∞
t (L∞

x ∩ L1
x) , u, p̄ ∈ L∞

x,t

➟ a solution of CPGD
➟ satisfying Oleinik estimate
➟ satisfying entropy equality for any S ∈ C1

➠ No uniqueness so far

➠ No convergence proof (RM-AR) → (CPGD)



(Summary) (Conclusion)Florent Berthelin - Traffic flows - Nice November 2-4, 2005

37Existence result

➠ Suppose
➟ n0 ∈ L1 , 0 ≤ n0 ≤ n∗

➟ u0 ∈ L∞ ∩ BV

➠ ∃n ∈ L∞
t (L∞

x ∩ L1
x) , u, p̄ ∈ L∞

x,t

➟ a solution of CPGD
➟ satisfying Oleinik estimate
➟ satisfying entropy equality for any S ∈ C1

➠ No uniqueness so far

➠ No convergence proof (RM-AR) → (CPGD)



(Summary) (Conclusion)Florent Berthelin - Traffic flows - Nice November 2-4, 2005

37Existence result

➠ Suppose
➟ n0 ∈ L1 , 0 ≤ n0 ≤ n∗

➟ u0 ∈ L∞ ∩ BV

➠ ∃n ∈ L∞
t (L∞

x ∩ L1
x) , u, p̄ ∈ L∞

x,t

➟ a solution of CPGD
➟ satisfying Oleinik estimate
➟ satisfying entropy equality for any S ∈ C1

➠ No uniqueness so far

➠ No convergence proof (RM-AR) → (CPGD)



(Summary) (Conclusion)Florent Berthelin - Traffic flows - Nice November 2-4, 2005

37Existence result

➠ Suppose
➟ n0 ∈ L1 , 0 ≤ n0 ≤ n∗

➟ u0 ∈ L∞ ∩ BV

➠ ∃n ∈ L∞
t (L∞

x ∩ L1
x) , u, p̄ ∈ L∞

x,t

➟ a solution of CPGD
➟ satisfying Oleinik estimate
➟ satisfying entropy equality for any S ∈ C1

➠ No uniqueness so far

➠ No convergence proof (RM-AR) → (CPGD)
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6. Numerical simulations
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39Method: modified Follow-the-Leader

➠ Rescaled Modified Follow-the-Leader

ẋi = vi , v̇i =
ε

γ

vi+1 − vi

(xi+1 − xi − d)γ+1

➠ Limit ε → 0

ẋi = vi , v̇i =

{

v̇i = 0 if xi+1 − xi > d

vi = vi+1 if xi+1 = xi + d

➠ Cluster = sequence of vehicles separated by d
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40Riemann problem: Cluster formation
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41Riemann problem: vacuum formation
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42Random initial velocity: cluster formation
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43Random initial velocity: cluster statistics
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44Random initial velocity: velocity distribution
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45Bottelneck: jam formation
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7. Conclusion
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47Summary

➠ Modified Aw-Rascle model
➟ Density constraint
➟ Rescaled for small difference between

preferred velocity and actual velocity in
uncongested situations

➠ Limit model
➟ Constrained Pressureless Gas Dynamics
➟ Describes well cluster formation and dynamics
➟ Existence theorem
➟ Numerical simulations
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48Perspectives

➠ CPGD:
➟ Convergence proof (RM-AR) → (CPGD)
➟ Lagrangian formulation and scheme

➠ More elaborate model
➟ Density constraint depends on velocity (work

in progress with P. degond, V. Leblanc, M.
Rascle and J. Royer)

➟ Multi-lane
➟ Multi-class
➟ etc.
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