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» Pedestrian behavior:

We will assume that pedestrians enter the sidewalk of the
street at the crossing point O with probability p = A\dt per
time step dt ( A denotes the arrival rate of pedestrians).
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If there is no sufficient gap in the vehicle stream to

cross the road, pedestrians accumulate around point O, [E=
but they start immediately to enter the road at time t, if

(i.e. If the vehicle velocity Is zero) or if w»(t) =0

d(t) > dy and At(t) := % > o7

)

- At time to collision of the nearest approaching vehicle
« o0 safety factor of pedestrians

« 7 time period required for a pedestrian to cross (one
lane of) the road.
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The vehicle dynamics is given by a simple variant of the
intelligent driver model (IDM)

4 * 3
f(A.I' ’Uﬂz’?l) =0 |1 - (%) B (i)

Un\Up — Un-1
s* =89+ Tv, + ( 57 ) >]
)

For the nearest vehicle n upstream of the crossing point O,

If a pedestrian is on the street, we have
Az(t) = d(t) = xo — x,(t)

and v,_1 =0
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Representative space-over-time plots of vehicle trajectories
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Self-Organization of Intersecting Pedestrian Flows
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Dynamically changing time gap d(t)/v(t) of a vehicle, if pedestrians
enter the street 100 meters ahead. If o7 < 1.83, pedestrians
continue entering the street, which may stop the vehicle (solid
growing curve). Otherwise, the crossing criterion is violated after
some time and the vehicle can accelerate (dashed falling curve).
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» Pedestrian behavior is specified in the same way

» Vehicle behavior must be simplified:

A vehicle with the speed v following a leading vehicle with

speed U is assumed to decelerate with dv / dt = —a,
Ax <lg+dyg+ — —
2a 2a

For a “>” sign, the vehicle accelerates with d—v/dt =" .
delayed by the reaction time T, until the maximum (free)
speed is reached. For an “=* sign, the velocity is not
changed.
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Careful drivers: The closest car to a pedestrian on the street

decelerates, If the distance to the crossing point O is within
the range

2

0 < d(t) < do+ -

2a
Aggressive drivers: The closest car starts to decelerate at

the time t, determined so that the distance to the
pedestrian corresponds to the safety distance

d(t,, +7) = do at the time t,, + T when the last
pedestrian on the street (entering at time t) leaves the
road after the crossing time 7
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In our vehicle simulations, we have generated vehicles with initial velo-
city vg at the upstream boundary of the simulation stretch according to the
exponential time gap distribution (), e~ @=:T"  where 7' denotes the
actual time gap. However, according to our car-following model, vehicles
have gained at least their preferred distance, D = [y + dy + voT
when they reach the maximum speed. According to theoretical
considerations, this changes the effective time-gap distribution at the
crossing point to

P(T") = QuuTy0(T' —Tp)
+ (1 — CgarfT[] ) Cgal‘l‘e_ Qarl‘ (Tf —'T[])@ (T.’ L TO )

with 7o = D /vy Thatis, a fraction Q... 1o of vehicles will follow with
the desired time gap 7, , while the rest has an exponentially distributed,
larger time gap 77 > 7T .
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The time to collision evolves in time according to

d(t d(0) — vt d(0
At(ﬂzﬁz (0) —wt _ dl0) _, if t>tg
v(t) Vo Vo
ty: time point when the car starts to decelerate as
response to a crossing pedestrian

_ d(O) — d[] V0o
Careful drivers: to = —— 5
oy za
Aggressive drivers: QoT d(0) — dq
fg - 7 — — 2
a a
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do +v0°/(2a) —vo(t —to) + a(t —to)?2

vo T —To

2a 2

v(to+7) =vo—a(rt —tyg) = 5 —aT +a

14 -

time gap (s)

time t (s)
Institute for Transport & Economics

vn — {.'L(IL- — IL-{})
{.'Z{]

vg — a(t — tp)

if t > tg

[y d('[j] — {i{}

vy
Time-dependent time to collision for
careful drivers, when pedestrians
enter the road with probability

p=1and o = 1.05

(symbols = numerically determined
values, solid line = analytical formula)
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Let us denote by v,in the minimum velocity before
the car accelerates again. If only one pedestrian
obstructs the car, we have vy,;;, = v(t,+7). The
time delay to the car compared to a movement with
the free velocity can be calculated as the distance
2(vo — vmin)?/(2a) travelled less, divided by the
desired velocity, which results in

('UO _ 'Umin)g (**)
avp

Atbr —
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time
free flow speed
|
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, L At,  Queue formation
queue N

resolution A© and queue

speed /////
queue / : :

formation | at, resolution mechanism

speed =0

end of vehicle queue O

At - waiting time of the first stopped vehicle

1+ |c|/vo
Aty = C Al — o jam resolution time with

—1
C = (pjam — l) and ¢ = —1/(pjam?’) = —15 km/h

Qarr U
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If the vehicle is stopped, the time lost by the acceleration and
deceleration process amounts to "Uo/(l-. On top of this, we
have to add the average waiting time 7, .

This can be obtained as follows: If At; denotes the waiting
time of the first stopped vehicle, the number of vehicles
queuing up behind it until the first car in the queue starts to
accelerate is given by pjamC Aty . The delay of the last
vehicle in the queue is the queue length | = C' At ,
divided by the queue resolution speed c. As the waiting time
between the first and the last vehicle in the queue progresses
approximately linearly, their cumulative waiting time is

- OAL C At (A2 C
Pi: 1 (Atl 4 l) _ Pi: ( l) (1 4 _)

) c ) C

Institute for Transport & Economics Dirk Helbing

Chair for Traffic Modeling and Econometrics



TECHNISCHE

UNIVERSITAT Average Delay to Vehicles

DRESDEN

Moreover, up to the time point when the queue formed
within the stopping time At has resolved, another
piamlC/(c — C') vehicles have joined the queue. While
the waiting time of the first of these additional vehicles
is approximately //c = C' At,/c (as the one of the last
vehicle in the first part of the queue), the waiting time of
the last vehicle is basically zero, which implies a
cumulative waiting time of
PiamC Aty C  C At ) PiamC(Aty)?  C?

+0) = ,. :

2 c—C ¢ 2 2 — cC
Adding this to the average delay shown in previous
slide gives the cumulative waiting time

5 cC
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At, (s)
Average of the cumulative waiting times t_ of vehicles as a

function of the time period At; the first vehicle in the queue
has to wait, for different values of the vehicle arrival rate Q...
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For small values of &, there exists a time point #_ ,after
which the safety criterion prohibits a further entering of
pedestrians into the road. This time point is given by the
earlier time fulfilling the critical safety condition At(t+) = o7 .
Together with the expressions for the times to collision, this
eventually implies

v o 2d
t$t0_t—057$\/(m')2ﬂ

(L (1

for careful drivers. ¢, is the first time point at which
pedestrians may re-enter the road again, as the time to
collision At(t) increases close to the crossing point.
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The car reaches its minimum possible velocity a time
period 7T after 7_, i.e. after the latest entering pedestrian
has left the road at time 7_ + 7 . This implies

vt +7)=ar(oc —1) + /(aoT)? — 2ad,

for careful drivers. To exclude stopped vehicles, on the
one hand, this minimum velocity should be positive, i.e.

o — i) at? > d (*)
2
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In order to avoid the stopping of vehicles by multiple
crossing pedestrians, we have to demand

S 2dg
ty —1_ 2\/(5’?)9L>’r

(1

_+_

which results in \/2([0 1
a >
7> 4

Together with condition (*) on the previous slide, we find
that a careful driver cannot be stopped completelv under

the condition a’o \/ do

o > o) = Imax

CIT“ G‘,’T“
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Due to the statistical arrival of pedestrians, it is likely that
the time point 7., = t— of the last (nth) pedestrian entering
the road is smaller than the latest possible entering time 7_ .
We are, therefore, interested in calculating the mean value
of the time gap (t_ —1,,).

For this, let ' = t_/dt be the number of time steps
between the last entering pedestrian and ¢_. As the
probability that no pedestrian enters in a time step is given
by r = (1—p), (1—p)** is the probability that nobody
enters between t = 0and t = t_, and p(l —p)" " the
probability that the last pedestrian enters at time

t_ — (K — k)dt = kdt.
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The expected value of t_ — ¢, is

<1L— f? 1 > & - - K-k
- = K(1-p)® +pZ(K —k)(1 —p)
; k=1
1K . v K-k __ T(l - TK)
= Kr™ + (1 ??d?; = =7
1—-(1-pX

= (1-p) p
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average time span of
earlier acceleration(s)

AT
Average time span t_—(t,,) between the latest possible

entering of the street by a pedestrian and the time point
when the last pedestrian actually enters the street as a
function of the scaled pedestrian arrival rate At .
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If a vehicle is stopped by crossing pedestrians, it will have
to wait until a time gap of duration 7 in the pedestrian flow
occurs. A gap of length 7 = N dt or greater occurs with

probability
L=p)" =(1=p)7 " =[L-p)"] ="
N —— e’
—e—A

if pedestrian gap sizes are exponentially distributed, as
expected. Here, we have assumed In(1 — p) = —p, but
the required small values of p = Adt can be reached by
sufficiently small choice of the time steps dt. In fact, in the
following considerations, we will study the limit dt — 0.
Therefore, we have used the value dt =0.001 s in our
computer simulations.
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Now, let ki denote the size of the ithgap T, = t; — t; 1
(i.e. the number of time steps dt with no pedestrian arrival).
Then, the expected value for the time period until a time

gap of length 7 = N dt or greater starts is given by
o0 N N

Y (ki 14tk + 1)
n=0 k=0 ko, =0

X(l — p)fﬁlp e e (l L p)fﬁﬂp . (l B p)N—

(]

&
hE
3
.
j‘q
—

X (Tl + -+ ITH_)e_)\(\.Tl+"'+'T?z.}e—}\?'

 _ a—AT - n.f_i - . —AT;
— Y d/\”(/me )

n=0 0
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AT > - d. l ) A\
:_%f*EZAEa[;;u—e'*)}

n=>0
o0 —AT :
T 2 A\ TE 1
= —e Zn(l—e ) (1—9_”X)
n=>0 '.
1 Te_)w — AT d i 7 it] 1 — AT
= —_—— e S —_— L WILIl s = — e
XN T—e s 2= S
1

AT - )\TQ
= X[e —(1+ A7) = —

B (38)
Note, however, that the waiting time is reduced by the gap
between the time M dt := vg/a when the vehicle is
stopped and the time #,, < 7_ at which the last pedestrian
has entered the street before.
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We can calculate the expected value of this time gap as

. l — l — 17 M l . e—/\\’b‘[]f’aa
<'1?0/a_ — tﬂ> p— (J_ — }}) ( lt ) —

since we have (1 — p) — Llinthelimit dt — 0.Asa
consequence, the expected value (At1) that the first
vehicle in the queue has to wait can be estimated as

1 1 — e~ Avo/a
(At)) = —[e* — (1 + A7)] —
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Average waiting time of the first vehicle in the queue as a
function of the scaled pedestrian arrival rate \7.
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After a time interval Atq, i.e. a time period 7 after the last

pedestrian has entered the road, the first vehicle in the

gueue can accelerate again. When the vehicle has started

to move again, no pedestrian will be able to cross the road

until the last vehicle of the queue has passed point O.

1 + ¢/vo
c—C

This time period can be calculated as Aty = C' Aty

The expected value of Ats is

B 1 4+ ¢/vo [2d
(Atg) = C (At c—C T a

where we have also taken into account the additional
amount +/2dy/a required by a vehicle to get from © = —dj
to point O.
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400 . . - .
{—Q_ =0.2 pedestrian/s

3004 Q_ =0.1 pedestrian/s

O/ | 2(I)0 | 4(I)0 | 6(I)0 | 860 | 1000
<At>(s)

Average time (At2) needed to dissolve a vehicle queue as

a function of the average time (At1) for which the first

vehicle has been waiting, for various values of the vehicle
arrival rate Qarr.
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2.0

1.5 1

1.0

3

<At > (s)

0.5+

Q 1
Average waiting time (A%3) until a pedestrian enters the road
after a vehicle queue has completely dissolved, as a function of
the scaled venhicle arrival rate Q...7 for ¢ =1.05. Our
numerical simulation assumes the special case that a
pedestrian arrives just at time when a vehicle of the queue

passes the crossing point and vehicle time gaps are not smaller
than 7o .
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» Emergent oscillations have been discovered in so
different systems as the saline (i.e. saltwater-water)
oscillator, ticking hour glass, RNA Polymerase traffic
on DNA, pedestrians passing a bottleneck, and ants. Bl

» In this contribution, we have studied the example of
intersecting pedestrian and vehicle flows. This system
Is found to show a transition to emergent oscillations.
However, contrary to our expectations, the
oscillations are not an efficient pattern of motion.
Instead, they are related with a considerable
reduction of the throughput and increased waiting
times (“faster-is-slower effect”).
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Physical Interactions and Friction Effects due to Uncontrolled Rush

and Pushy Behavior Faster-is-Slower Effect

Phantom Panics

Application to the
Simulation of Evacuation
Scenarios
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30 T T T T T T T 30 T T T T T T ——
25 25 T

20

20
with obstacle

no obstacle

Number of Escaped Persons
o

Number of Escaped Persons
o

Time (s) Time (s)

Without an obstacle one can observe clogging effects and a tendency of people to fall in panic situations
(left).

The clogging effect can be significantly reduced by a suitable obstacle, which increases the efficiency of
escape and diminishes the tendency of falling (right).
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Chemical Water Chemical Water GC Chemical Water Dryer Park Positions Input,

Output
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Conservation Of resources
(a;;) input matrix A

Nit ZG‘W Q;(t) — Yi(?) N;(t) inventory level
~—~— “ ~—— Q;(t) delivery rate
supply re—entrant outflow Y,

;(t)  consumption rate
) price level
Adaptation of delivery rates

Qit) _ (NO)_I) g Ni(t) P ()

Qi(t) Ni(t Ni(t)
N ~ S——
deviations from temporal
desired level changes

Adaptation of prices
P(t) _ y (NO _1) o Ni(t)

P.(1) N,(D) N,(0)
deviations from temporal fi b
desired level changes

Consumption
Yi(t) = [Y? +&(®)] fi (Bi(t))
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Input matrices with real eigenvalues only

PRI im ;? 1
EEEE i 4 Damped
MR R 107 oscillations
EREErTT T
aEciitad HEEHE opommemcomraX— e 1024
HE A 0.1 0.4 Re i
TR R 10°- Overdamped
P 0.1 ] +_behaviour
I m ) 1 I T I \\Rm- i
Overdamped behaviour possible. >

I : 102  10° 10* 10 a
Oscillations are never growing.

Input matrices with complex eigenvalues

‘ e m g Growing
ek S 0.1 - oscillations

S x x X

X% X x

B cogsnegon e
i oscillations
Always OSCiIIating- T T T I T LILAL T T =
Growing oscillations are likely. 10%  10°  10° 10*«
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Empirical Supply Networks

Commoadity flow (average of FRA, GER, JAP, UK, USA)

Network structure

Mining and Industrial
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medicines
Petroleum and
coal products .
Agriculture,

Non-metallic forestry, fishing

mineral products

Wood products
and furniture

Electricity, gas Construction
and water

N\
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» Investigation of the network structure:
» Positive and negative feedbacks in production processes

» Time lags in the information flow and adaptation process

Business cycles because of the structure of production networks?

H_ I
i £
N H _ A
<102 - \ ~
]
] ol =
L] 'g /_./
100 - \ / \
‘@‘ :
OY E
o
E 98
g B SCAN
EeeEele = 0.04 2 . . . —>
m! m: EEEEEEE E 88% 6) 0 10 20 30  Time (years)
Input output matrix ' Related delivery network

Resulting oscillations in the gross domestic
product
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Derivative Q. plays an
important role!
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Integration of LWR model leads to efficient, section-based traffic model!
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Qurr traffic traffic Qc}ep
-
—
L
i >
-L; i ©(t) 0
d ro_ AQ(21°)
H —7T pr—
» Movement of congestion d Ap (a:fc)
d
» Number of vehicles &Ni (t) = Q¥ (t) — QI (1)
dep
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» Side Conditions

. . dep rr
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* Non-negativit o
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d
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1

« Branching

» Goal function F = Zf(@?ep) — max

f(x) =2 withp < 1
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DRESDEN Bottlenecks and Synchronization

» Pressure-oriented, autonomous,
distributed signal control:
« Major serving direction
alternates, as in pedestrian
flows at intersections

« lIrregular oscillations, but
‘synchronized’

» In huge street networks:

« ‘Synchronization’ of traffic
lights due to vehicle streams
spreads over large areas
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» Simulation “Pirnaischer Platz” (City center of Dresden)
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