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SUMMING UP

Solutions to a network problem

... can be constructed by solving one (half)-Riemann problems for each
incoming or outgoing road:

∂t

(
ρi

ρiwi

)
+ ∂x

(
ρivi

ρiviwi

)
= 0, Ui(x, 0) =

(
U−

i x < x0

U+
i x > x0

)
. (1)

... have parts of their initial data unknown, i.e., right U+
i (left) state for

incoming (outgoing) roads.

... are constructed such that arising waves in the solution travel with negative
(incoming) or positive (outgoing) speed, only.

... are such that, cars passing through a junction conserve their own
(Lagrangian) property (like a ”color”) or formally conserve the value w =
wi(Ui,0) i ∈ δ−.
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THE CASE OF A 2 7→ 1 INTERSECTION

Last property restated important observation in a microscopic view for a junction
where two roads merge:

Cars from both incoming roads enter the outgoing road and we see a
mixture on the outgoing road.

Next steps:

– Mathematical statement of the above observation in the microscopic situation
(Follow–The–Leader model)

– Reinterpretation for the macroscopic setting (Homogenization limit)

– Translation from Lagrangian to Eulerian coordinate system

– Solving the (half-)Riemann Problems at the intersection

Finally, the n 7→ m junction is discussed
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THE MICROSCOPIC SITUATION AT THE INTERSECTION

Returning to the situation on the outgoing and taking a discrete, microscopic
view, i.e., considering the Follow–The–Leader Model

Assume cars entering from road one and two in an alternate way, then, on the
outgoing road, the picture near the junction for constant initial data is as follows:

Figure 1: Each bar corresponds to a car. Cars from road one conserve their property
(black) and so do cars from road two (white).

Now, imaging a zooming of the above situation: We eventually observe
oscillations in w on the outgoing road.
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OSCILLATING INITIAL DATA

Question: Given a sequence of oscillating initial data w(X, 0) and constant initial
data v(X, 0), is there a solution to the AR–model (in Lagrangian coordinates)?

Answer: Yes, see Bagnerini, Rascle (2003): There exists a (homogenized)
solution (τ∗, v∗, w∗) and a family of measures µX (associated with a sequence of
approximate solutions of the Follow–The–Leader model), such that

∂tτ
∗ − ∂Xv∗ = 0 (2a)

∂tw
∗ = 0 (2b)

τ∗(X, t) =
∫

P−1(w∗ − v∗)dµX(w) (2c)

and w∗(X, 0) =
∫

wdµX(w) obtained as limit ∆X → 0 of the solutions to the
semi–discretization (Follow–The–Leader model).

In the special case of initial data oscillating between two values w1 (black) and
w2 (white): µX = 1

2 (δw1 + δw2) .
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TRANSLATION TO EULERIAN COORDINATES

Up to now: On the outgoing road and near the junction we can obtain a
macroscopic description of the situation by considering the homogenized solution
(τ∗, w∗, v∗)

Next, we express this solution in Eulerian coordinates.

– We rewrite (2c) as v = w − P ∗3 (τ) for the fixed (homogenized) value
w =

∫
wdµ(w) = 1

2 (w1(U1,0) + w2(U2,0)) =: w̄3. I.e., for each fixed value of
τ we define P ∗3 so, that (v, τ) is a solution to (2c).

– Due to results of Klar, Rascle et. al. (2002) we can rewrite the Lagrangian
in Eulerian coordinates (even for weak solutions) with p∗3(ρ) = P ∗3 (1/ρ).

– In the (x, t)–plane the portion of road 3 concerned with this self-similar,
homogenized flow is a triangle bounded by x = a3 and by x = a3 + t v3,0 for
initial data v3,0 on the outgoing road j = 3. In this plane w∗3(U) = v + p∗3(ρ)
is constant and equal to the homogenized value 1

2 (w1(U1,0) + w2(U2,0)) .
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IMPLICATIONS OF THE PREVIOUS DISCUSSION (I/II)

Construction of the solution at a 2 7→ 1 junction (δ− = {1, 2}, δ+ = 3) with
constant initial data Ui,0 and assuming fluxes entering in an alternating way.

– Compute the homogenized value w̄3 := 1
2 (w1(U1,0) + w2(U2,0)) and the

homogenized function p∗3.

– Solve a maximization problem at the interface to obtain unique flux at the
intersection:

max q1 + q2 subject to (3a)

0 ≤ qi ≤ di (ρi,0; wi(U) = v + pi(ρ), w1(U1,0)) i = 1, 2 (3b)

0 ≤ q3 := q1 + q2 ≤ s (ρm; w∗3(U) = v + p∗3(ρ), w̄3) , (3c)

q1 = q2. (3d)

where (ρm, vm) is the point of intersection in the ρ−ρ v plane of the level curve
{w∗3 = w̄3} and {v3(U) = v3,0}; (3b) guarantees waves of negative speed;
(3c) guarantees waves of positive speed and incorporates the homogenized
function w∗3 and value w̄.
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EXAMPLE FOR THE OUTGOING ROAD

Recall, the homogenized value w̄3 := w1(U1,0) + w2(U2,0) and the homogenized
functions τ∗ = (P ∗3 )−1(w̄3 − v∗) or equivalently v + p∗3(ρ) = w̄3.

w = w̄

ρ3v

ρ3

U+
3

U∗3 v = v3

v = vc

U−3
w = w1

w = w2

s(ρ3, w3, w̄)

q∗3

s3(v3, β1)

Figure 2: Supply s3 corresponds to the curve w(U) := v + p∗3(ρ) = w̄3 and to the unique point

Um
3 ≡ U∗

3 on this curve with velocity v3,0, with w1 ≡ w1(U1,0), w2 ≡ w2(U2,0).

8



IMPLICATIONS OF THE PREVIOUS DISCUSSION (II/II)

– For each qi, i = 1, 2, 3 find the corresponding states Ūi = (ρ̄i, ρ̄i vi =: qi) and
solve the (half-)Riemann problems

∂t

(
ρi

ρiwi

)
+ ∂x

(
ρivi

ρiviwi

)
= 0, Ui(x, 0) =

(
U−

i x < x0

U+
i x > x0

)
(4)

where i ∈ δ− : U−
i = Ui,0, U

+
i = Ūi and for i = 3 ∈ δ+ : U−

i = Ūi, U
+
i =

Ui,0.

– By construction the solution Ui conserves the mass ρ1v1(x0−, t) +
ρ2v2(x0−, t) = ρ3v3(x0+, t), c.f. (3c).

– By construction the solution Ui conserves the (pseudo-)mass:

w3ρ3v3(x0+, t) (5a)

= w̄ ρ3v3(x0+, t) =
1
2

(w1(x0−, t) + w2(x0−, t)) ρ3v3(x0+, t) (5b)

= w1ρ1v1(x0−, t) + w2ρ2v2(x0−, t). (5c)
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SHORT SUMMARY

Consider three roads i = 1, 2, 3 with a1 = a2 = −∞, b1 = b2 = a3 and b3 = ∞
and constant initial data Ui,0 = (ρi,0ρi,0vi,0), i = 1, 2, 3.

Then there exists a unique solution Ui(x, t), i = 1, 2, 3 of the (half-)Riemann
problems at the junction with the following properties.

– Ui(x, t) is a weak solution of the network problem, where p∗i ≡ pi for the
incoming roads i = 1, 2.

For the outgoing road i = 3, we obtain two different expressions for p∗i : In
the x− t plane, in a triangle near the junction, we consider the homogenized
solution p∗3 defined as previously introduced. The triangle is bounded at any
fixed time t > 0 by x = a3 and x = a3 + tv3,0. In the remaining part of the
outgoing road we have p∗3 ≡ p3.

– In particular U3(a+
3 , t) satisfies w∗3(U3(a+

3 , t)) := v3(a+
3 , t) + p∗3(ρ3(a+

3 , t)) =
1
2 (w1(U1,0) + w2(U2,0), ) .

– The two incoming fluxes are equal, and the total flux 2(ρ1v1)(b−1 , t) =
2(ρ2v2)(b−2 , t) = (ρ3v3)(a+

3 , t) is maximal subject to the other conditions.
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THE GENERAL CASE

For notation introduce initially unknown quantities

qji is the initially unknown flux going from road i to j

qj =
∑

i∈δ− qji is the total outgoing flux on road j at the intersection

qi =
∑

j∈δ+ qji is the total incoming flux on road i

The proportion

αji :=
qji

qi
(6)

is the percentage of flux going from road i to road j. This controls the distribution
of incoming flow.

The proportion

βji :=
qji

qj
(7)

is the percentage of flux arriving on road j and coming from i. This controls the
mixture on each outgoing road.
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ASSUMPTIONS FOR THE GENERAL CASE

We collect the assertions of the previous discussions:

H1. We assume the proportions αji = qji/qi of fluxes going from road i ∈ δ−

to j ∈ δ+, i.e., A = (αji)(j,i)∈(δ+,δ−), to be known.

H2. We assume the cars mix according to the proportion βji = qji/qj, i.e., the
homogenized value w̄j on each outgoing road j fulfills

w̄j =
∑

i∈δ−
βji wi(Ui,0).

H3. We assume the ratios βji are known. This is enforced e.g. by assuming that
the total incoming fluxes (qi)i∈δ− are proportional to (1, . . . , 1) :

qi = r 1 =⇒ βji =
αji∑

j∈δ+ αji
.
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MAIN STATEMENT FOR THE GENERAL CASE

Consider a junction with m incoming and n outgoing roads, with constant initial
data Ui,0 = (ρi,0, ρi,0vi,0) for all i ∈ δ− ∪ δ+ under the assumptions (H1) to (H3).

Then there exists a unique solution {Ui(x, t)}i at the intersection which satisfies
the following properties.

1 {Ui(x, t)}i is a weak entropy solution of the network problem and for i ∈ δ− :
p†i ≡ pi.

For the outgoing roads j ∈ δ+ we obtain two different expressions for p†j,
depending on the region. In the x − t-plane in a triangle near the junction,
we consider the homogenized solution and hence p†j(·) = p∗j(·). This triangle
is defined by {(x, t) : aj ≤ x ≤ tvj,0} for any fixed time t > 0. Beyond this

triangle we have p†j(·) ≡ pj(·).
Furthermore, mass and (pseudo)-momentum are conserved through the
junction by the solution {Ui}i.

2 The incoming fluxes (Ui(bi−, t))i∈δ− are proportional to (1, . . . , 1) and
distributed according to αji. Moreover, they are maximal subject to the
other conditions.
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SUMMARY & OUTLOOK

– We presented a solution for an arbitrary junction in the network conserving
mass and (pseudo-)momentum

– Modelling of the coupling conditions is motivated by the microscopic
interpretation of the AR–model

– Additional posed assumption in this talk: Mixture rule of the incoming fluxes,
but other conditions are possible (c.f. recent work with S. Moutari)

– Up to now: Constant initial data on all roads

– Work in progress on numerical results
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