Modelling junctions for class of Second-Order models of traffic flow

Michael Herty ${ }^{1}$ and Michel Rascle ${ }^{2}$
Extensions with S. Moutari ${ }^{3}$

November, 2nd

[^0]
SUMMING UP

Solutions to a network problem
... can be constructed by solving one (half)-Riemann problems for each incoming or outgoing road:

$$
\partial_{t}\binom{\rho_{i}}{\rho_{i} w_{i}}+\partial_{x}\binom{\rho_{i} v_{i}}{\rho_{i} v_{i} w_{i}}=0, U_{i}(x, 0)=\left(\begin{array}{cc}
U_{i}^{-} & x<x_{0} \tag{1}\\
U_{i}^{+} & x>x_{0}
\end{array}\right)
$$

... have parts of their initial data unknown, i.e., right U_{i}^{+}(left) state for incoming (outgoing) roads.
... are constructed such that arising waves in the solution travel with negative (incoming) or positive (outgoing) speed, only.
... are such that, cars passing through a junction conserve their own (Lagrangian) property (like a "color") or formally conserve the value $w=$ $w_{i}\left(U_{i, 0}\right) i \in \delta^{-}$.

THE CASE OF A $2 \mapsto 1$ INTERSECTION

Last property restated important observation in a microscopic view for a junction where two roads merge:

Cars from both incoming roads enter the outgoing road and we see a mixture on the outgoing road.

Next steps:

- Mathematical statement of the above observation in the microscopic situation (Follow-The-Leader model)
- Reinterpretation for the macroscopic setting (Homogenization limit)
- Translation from Lagrangian to Eulerian coordinate system
- Solving the (half-)Riemann Problems at the intersection

Finally, the $n \mapsto m$ junction is discussed

THE MICROSCOPIC SITUATION AT THE INTERSECTION

Returning to the situation on the outgoing and taking a discrete, microscopic view, i.e., considering the Follow-The-Leader Model

Assume cars entering from road one and two in an alternate way, then, on the outgoing road, the picture near the junction for constant initial data is as follows:

Figure 1: Each bar corresponds to a car. Cars from road one conserve their property (black) and so do cars from road two (white).

Now, imaging a zooming of the above situation: We eventually observe oscillations in w on the outgoing road.

OSCILLATING INITIAL DATA

Question: Given a sequence of oscillating initial data $w(X, 0)$ and constant initial data $v(X, 0)$, is there a solution to the AR-model (in Lagrangian coordinates)?

Answer: Yes, see Bagnerini, Rascle (2003): There exists a (homogenized) solution $\left(\tau^{*}, v^{*}, w^{*}\right)$ and a family of measures μ_{X} (associated with a sequence of approximate solutions of the Follow-The-Leader model), such that

$$
\begin{align*}
\partial_{t} \tau^{*}-\partial_{X} v^{*} & =0 \tag{2a}\\
\partial_{t} w^{*} & =0 \tag{2b}\\
\tau^{*}(X, t) & =\int P^{-1}\left(w^{*}-v^{*}\right) d \mu_{X}(w) \tag{2c}
\end{align*}
$$

and $w^{*}(X, 0)=\int w d \mu_{X}(w)$ obtained as limit $\Delta X \rightarrow 0$ of the solutions to the semi-discretization (Follow-The-Leader model).

In the special case of initial data oscillating between two values w_{1} (black) and w_{2} (white): $\mu_{X}=\frac{1}{2}\left(\delta_{w_{1}}+\delta_{w_{2}}\right)$.

TRANSLATION TO EULERIAN COORDINATES

Up to now: On the outgoing road and near the junction we can obtain a macroscopic description of the situation by considering the homogenized solution $\left(\tau^{*}, w^{*}, v^{*}\right)$

Next, we express this solution in Eulerian coordinates.

- We rewrite (2c) as $v=w-P_{3}^{*}(\tau)$ for the fixed (homogenized) value $w=\int w d \mu(w)=\frac{1}{2}\left(w_{1}\left(U_{1,0}\right)+w_{2}\left(U_{2,0}\right)\right)=$: \bar{w}_{3}. I.e., for each fixed value of τ we define P_{3}^{*} so, that (v, τ) is a solution to (2c).
- Due to results of Klar, Rascle et. al. (2002) we can rewrite the Lagrangian in Eulerian coordinates (even for weak solutions) with $p_{3}^{*}(\rho)=P_{3}^{*}(1 / \rho)$.
- In the (x, t)-plane the portion of road 3 concerned with this self-similar, homogenized flow is a triangle bounded by $x=a_{3}$ and by $x=a_{3}+t v_{3,0}$ for initial data $v_{3,0}$ on the outgoing road $j=3$. In this plane $w_{3}^{*}(U)=v+p_{3}^{*}(\rho)$ is constant and equal to the homogenized value $\frac{1}{2}\left(w_{1}\left(U_{1,0}\right)+w_{2}\left(U_{2,0}\right)\right)$.

IMPLICATIONS OF THE PREVIOUS DISCUSSION (I/II)

Construction of the solution at a $2 \mapsto 1$ junction ($\delta^{-}=\{1,2\}, \delta^{+}=3$) with constant initial data $U_{i, 0}$ and assuming fluxes entering in an alternating way.

- Compute the homogenized value $\bar{w}_{3}:=\frac{1}{2}\left(w_{1}\left(U_{1,0}\right)+w_{2}\left(U_{2,0}\right)\right)$ and the homogenized function p_{3}^{*}.
- Solve a maximization problem at the interface to obtain unique flux at the intersection:

$$
\begin{array}{r}
\max q_{1}+q_{2} \text { subject to } \\
0 \leq q_{i} \leq d_{i}\left(\rho_{i, 0} ; w_{i}(U)=v+p_{i}(\rho), w_{1}\left(U_{1,0}\right)\right) i=1,2 \\
0 \leq q_{3}:=q_{1}+q_{2} \leq s\left(\rho^{m} ; w_{3}^{*}(U)=v+p_{3}^{*}(\rho), \bar{w}_{3}\right) \\
q_{1}=q_{2} \tag{3d}
\end{array}
$$

where $\left(\rho^{m}, v^{m}\right)$ is the point of intersection in the $\rho-\rho v$ plane of the level curve $\left\{w_{3}^{*}=\bar{w}_{3}\right\}$ and $\left\{v_{3}(U)=v_{3,0}\right\}$; (3b) guarantees waves of negative speed; (3c) guarantees waves of positive speed and incorporates the homogenized function w_{3}^{*} and value \bar{w}.

EXAMPLE FOR THE OUTGOING ROAD

Recall, the homogenized value $\bar{w}_{3}:=w_{1}\left(U_{1,0}\right)+w_{2}\left(U_{2,0}\right)$ and the homogenized functions $\tau^{*}=\left(P_{3}^{*}\right)^{-1}\left(\bar{w}_{3}-v^{*}\right)$ or equivalently $v+p_{3}^{*}(\rho)=\bar{w}_{3}$.

Figure 2: Supply s_{3} corresponds to the curve $w(U):=v+p_{3}^{*}(\rho)=\bar{w}_{3}$ and to the unique point $U_{3}^{m} \equiv U_{3}^{*}$ on this curve with velocity $v_{3,0}$, with $w_{1} \equiv w_{1}\left(U_{1,0}\right), w_{2} \equiv w_{2}\left(U_{2,0}\right)$.

IMPLICATIONS OF THE PREVIOUS DISCUSSION (II/II)

- For each $q_{i}, i=1,2,3$ find the corresponding states $\bar{U}_{i}=\left(\bar{\rho}_{i}, \bar{\rho}_{i} v_{i}=: q_{i}\right)$ and solve the (half-)Riemann problems

$$
\partial_{t}\binom{\rho_{i}}{\rho_{i} w_{i}}+\partial_{x}\binom{\rho_{i} v_{i}}{\rho_{i} v_{i} w_{i}}=0, U_{i}(x, 0)=\left(\begin{array}{cc}
U_{i}^{-} & x<x_{0} \tag{4}\\
U_{i}^{+} & x>x_{0}
\end{array}\right)
$$

where $i \in \delta^{-}: U_{i}^{-}=U_{i, 0}, U_{i}^{+}=\bar{U}_{i}$ and for $i=3 \in \delta^{+}: U_{i}^{-}=\bar{U}_{i}, U_{i}^{+}=$ $U_{i, 0}$.

- By construction the solution U_{i} conserves the mass $\rho_{1} v_{1}\left(x_{0}-, t\right)+$ $\rho_{2} v_{2}\left(x_{0}-, t\right)=\rho_{3} v_{3}\left(x_{0}+, t\right)$, c.f. (3c).
- By construction the solution U_{i} conserves the (pseudo-)mass:

$$
\begin{align*}
& w_{3} \rho_{3} v_{3}\left(x_{0}+, t\right) \tag{5a}\\
& =\bar{w} \rho_{3} v_{3}\left(x_{0}+, t\right)=\frac{1}{2}\left(w_{1}\left(x_{0}-, t\right)+w_{2}\left(x_{0}-, t\right)\right) \rho_{3} v_{3}\left(x_{0}+, t\right) \tag{5b}\\
& =w_{1} \rho_{1} v_{1}\left(x_{0}-, t\right)+w_{2} \rho_{2} v_{2}\left(x_{0}-, t\right) \tag{5c}
\end{align*}
$$

SHORT SUMMARY

Consider three roads $i=1,2,3$ with $a_{1}=a_{2}=-\infty, b_{1}=b_{2}=a_{3}$ and $b_{3}=\infty$ and constant initial data $U_{i, 0}=\left(\rho_{i, 0} \rho_{i, 0} v_{i, 0}\right), i=1,2,3$.

Then there exists a unique solution $U_{i}(x, t), i=1,2,3$ of the (half-)Riemann problems at the junction with the following properties.

- $U_{i}(x, t)$ is a weak solution of the network problem, where $p_{i}^{*} \equiv p_{i}$ for the incoming roads $i=1,2$.
For the outgoing road $i=3$, we obtain two different expressions for p_{i}^{*} : In the $x-t$ plane, in a triangle near the junction, we consider the homogenized solution p_{3}^{*} defined as previously introduced. The triangle is bounded at any fixed time $t>0$ by $x=a_{3}$ and $x=a_{3}+t v_{3,0}$. In the remaining part of the outgoing road we have $p_{3}^{*} \equiv p_{3}$.
- In particular $U_{3}\left(a_{3}^{+}, t\right)$ satisfies $w_{3}^{*}\left(U_{3}\left(a_{3}^{+}, t\right)\right):=v_{3}\left(a_{3}^{+}, t\right)+p_{3}^{*}\left(\rho_{3}\left(a_{3}^{+}, t\right)\right)=$ $\frac{1}{2}\left(w_{1}\left(U_{1,0}\right)+w_{2}\left(U_{2,0}\right),\right)$.
- The two incoming fluxes are equal, and the total flux $2\left(\rho_{1} v_{1}\right)\left(b_{1}^{-}, t\right)=$ $2\left(\rho_{2} v_{2}\right)\left(b_{2}^{-}, t\right)=\left(\rho_{3} v_{3}\right)\left(a_{3}^{+}, t\right)$ is maximal subject to the other conditions.

THE GENERAL CASE

For notation introduce initially unknown quantities
$q_{j i}$ is the initially unknown flux going from road i to j
$q_{j}=\sum_{i \in \delta^{-}} q_{j i}$ is the total outgoing flux on road j at the intersection
$q_{i}=\sum_{j \in \delta^{+}} q_{j i}$ is the total incoming flux on road i

The proportion

$$
\begin{equation*}
\alpha_{j i}:=\frac{q_{j i}}{q_{i}} \tag{6}
\end{equation*}
$$

is the percentage of flux going from road i to road j. This controls the distribution of incoming flow.

The proportion

$$
\begin{equation*}
\beta_{j i}:=\frac{q_{j i}}{q_{j}} \tag{7}
\end{equation*}
$$

is the percentage of flux arriving on road j and coming from i. This controls the mixture on each outgoing road.

ASSUMPTIONS FOR THE GENERAL CASE

We collect the assertions of the previous discussions:

H 1 . We assume the proportions $\alpha_{j i}=q_{j i} / q_{i}$ of fluxes going from road $i \in \delta^{-}$ to $j \in \delta^{+}$, i.e., $A=\left(\alpha_{j i}\right)_{(j, i) \in\left(\delta^{+}, \delta^{-}\right)}$, to be known.

H 2 . We assume the cars mix according to the proportion $\beta_{j i}=q_{j i} / q_{j}$, i.e., the homogenized value \bar{w}_{j} on each outgoing road j fulfills

$$
\bar{w}_{j}=\sum_{i \in \delta^{-}} \beta_{j i} w_{i}\left(U_{i, 0}\right)
$$

H3. We assume the ratios $\beta_{j i}$ are known. This is enforced e.g. by assuming that the total incoming fluxes $\left(q_{i}\right)_{i \in \delta^{-}}$are proportional to $(1, \ldots, 1)$:

$$
q_{i}=r 1 \Longrightarrow \beta_{j i}=\frac{\alpha_{j i}}{\sum_{j \in \delta^{+}} \alpha_{j i}}
$$

MAIN STATEMENT FOR THE GENERAL CASE

Consider a junction with m incoming and n outgoing roads, with constant initial data $U_{i, 0}=\left(\rho_{i, 0}, \rho_{i, 0} v_{i, 0}\right)$ for all $i \in \delta^{-} \cup \delta^{+}$under the assumptions (H 1) to (H 3).

Then there exists a unique solution $\left\{U_{i}(x, t)\right\}_{i}$ at the intersection which satisfies the following properties.
$1\left\{U_{i}(x, t)\right\}_{i}$ is a weak entropy solution of the network problem and for $i \in \delta^{-}$: $p_{i}^{\dagger} \equiv p_{i}$.
For the outgoing roads $j \in \delta^{+}$we obtain two different expressions for p_{j}^{\dagger}, depending on the region. In the $x-t$-plane in a triangle near the junction, we consider the homogenized solution and hence $p_{j}^{\dagger}(\cdot)=p_{j}^{*}(\cdot)$. This triangle is defined by $\left\{(x, t): a_{j} \leq x \leq t v_{j, 0}\right\}$ for any fixed time $t>0$. Beyond this triangle we have $p_{j}^{\dagger}(\cdot) \equiv p_{j}(\cdot)$.
Furthermore, mass and (pseudo)-momentum are conserved through the junction by the solution $\left\{U_{i}\right\}_{i}$.

2 The incoming fluxes $\left(U_{i}\left(b_{i}-, t\right)\right)_{i \in \delta^{-}}$are proportional to $(1, \ldots, 1)$ and distributed according to $\alpha_{j i}$. Moreover, they are maximal subject to the other conditions.

SUMMARY \& OUTLOOK

- We presented a solution for an arbitrary junction in the network conserving mass and (pseudo-)momentum
- Modelling of the coupling conditions is motivated by the microscopic interpretation of the AR-model
- Additional posed assumption in this talk: Mixture rule of the incoming fluxes, but other conditions are possible (c.f. recent work with S. Moutari)
- Up to now: Constant initial data on all roads
- Work in progress on numerical results

[^0]: ${ }^{1}$ TU Kaiserslautern, herty@rhrk.uni-kl.de
 ${ }^{2}$ Université de Nice, rascle@math.unice.fr
 ${ }^{3}$ Université de Nice, salissou@math.unice.fr

