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Model problem and perforated domain
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Model geometry. Left to right: buildings no walls, buildings with
walls. Top to bottom: larger data set, smaller data set. Both data sets

share the same centre and are partitioned into 8 X 8 nonoverlapping
subdomains.

Model geometry

e D: Open simply connected domain polygonal in R?;
. (Q S, k) % Finite family of perforations in D;
* Qg =y Qg and Q = D\ Qg.

Model problem
(_Au=f in
\ —g—z =0 on  90NINg, (1)
- ou=0 on 082\ 0€2g.

Finite element approximation

Notations:
e L2 scalar product u, f) = [quf;

e Bilinear form a(u,v) = [ Vu- Vv, wu,v € HYQ);
H{ 50, (Q) = {u € HY(Q) [ugoy g0 = 0}
* Finite element space V}, ((§2) C H \1 8QS(Q>°
The finite element solution of (1) is given by: Find uj, € V}, o(€2) s.t.
alup,vp) = (f,vp) Yo, € Vp 0(9).

Additive Schwarz Framework

Notations
o (Q’) | : Nonoverlapping partitioning;
JE { L.

. (Q ) jefl. NV Overlapping partitioning such that Q; C (3
* V3(€25) = {v]q, : v € Vj}: Space of restrictions to {2;;

* Vi o(&2)) = {?)|Q v € Vj,supp(v) C €2;}: Space of finite element
functlons supported in {2}

. RT Vh.0(§2;) — V},: Extension (by zero) operators.
Discrete ASM preconditioner [3]

N
M&Sl2 — RE(RyARI IRy + Z R;F(RjARJT)—le.
j=1

* R; and R]T: matrix representations of R ; and RJT;

e R corresponds to the coarse space.

Trefftz-like coarse space

Notations

» Nonoverlapping skeleton: I' = (J g1y 02
* Nx coarse grid nodes generated at I' N {2t (Xs)ocq1 . N}
e Locally harmonic functions for each coarse grid node:
<¢8)se{1,...,NX};
Continuously, the coarse space is given by

Ve = span{¢s}.
* supp(¢s) = { U; Q; | x4 is a coarse grid node belonging to 8@;}
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Coarse grid nodes (large red Basis function at a given coarse
dots). grid node.

Basis functions

For each coarse grid node x4, define g5 : ' — [0,1] as: for ¢ =

... Ny,
I, s=nu,
X;) =
95 (i) {0, s,

* g5 1s linearly extended on the remainder of 1.

For all nonoverlapping (Q’ ) - and s = 1,..., Nx, to obtain
] 7° 7

s, = Psl,» solve

AngJ =0 in

Nicolaides by connected component

New partitioning

Given 1nitial nonoverlapping partitioning; (Q’ - and:

J)je{l,...,N}

oy connected components in each Q). (Q’ - l) ;
J DU/ le{1,...m;}

N
*m = Z j=1 m e
The new subdomain partioning is given by

(Qk)ke{l,...,m} B (( ZE{L ’m]}) j€{1,....N}

Original partitioning (Trad. Nic.) New partitioning (Enhanced Nic.)

Coarse space

The coarse space 1s defined as a column space of the matrix Z, with
columns given by

Zp = RLDLR,1,  k=1,...,m.
«Ry= 27" gives the coarse matrix;

. }A%j: The restriction matrices corresponding to (ﬁ k)

kE{l,...,m};
D ;- The discrete partition of unity matrices satistying
m
_ pPI'D D
= Z R; D;R;.
Numerical Results
N Trad. Nic Enr. Nic Trefftz
1t. dim 1t. dim (rel) it. dim (rel)

4 no walls 48 16 48 17 (1.1) 20 192 (7.7)
walls 85 16 95 50 (3.1) 24 408 (16)
8 no walls 73 64 73 68 (1.1) 20 443 (5.5)
walls 145 64 136 174 (2.7) | 28 868 (11)
16 no walls 77 256 73 289 (1.1) | 20 1047 (3.6)
walls| 212 256 154 60724)| 27 1918 (6.6)
32 no walls 76 1024 66 1139 (1.1)| 21 2556 (2.3)
walls| 286 1024 162 1884 (1.8)| 27 4262 (3.9)

GMRES iterations and corresponding (relative) dimensions of the
coarse spaces shown for strong scalabiltiy experiments for N X N
subdomains. The total domain and its heterogeneities (buildings and
walls) are fixed and N is varied, creating smaller subdomains as we
increase N. Overlap is 1 sgl, where L is the nonoverlapping subdo-
main size. Average degrees of freedom =~ 60k (no walls), 1 20k ( walls ).

fr

Relative dimension (rel) of the coarse space is computed as ¢

Nicolaides space and as ?]\Til for a vertex-based Trefftz space.
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GMRES convergence curves shown for strong Scalabzltly experiments
for N x N subdomains. The total domain and its heterogeneities
(buildings and walls) are fixed and N is varied, creating smaller sub-

domains as we increase N. Left to right: Minimal geometric overlap,
overlap 2—10L. Top to bottom: Trad. Nic, enhanced Nic, Trefftz.

Conclusions and future work

e The enriched Nicolaides coarse space 1s robust with respect to the
complexity of the data and the number of subdomains on a fixed
total domain size.

e The Trefftz-like coarse space 1s also robust, and provides an addi-
tional acceleration in terms of Krylov iteration count.

 However, the dimention of the Trefftz-like coarse space 1s larger
and controlled by the model geometry.

e Future work: Coarse approximation error estimates and exten-
tion to nonlinear parabolic problems. Nonlinear problems can

be approached with a nonlinear preconditioning method such as
RASPEN [2].

Motivations: The nonlinear problem

The Diffusive Wave model [1] 1s given by
Oih(u, 2(x)) — div (h(u, 2(x))°||Vul /"I Vu) = f,

* 2;(x): Bathymetry;
* h(u, zp(x)) = max(u — zp(x),0): Water depth;
. Friction coefficient;

ea > 1,0 <~ < 1: Depend on flow regimes and head-loss formula;

Ongoing work: Assuming laminar flow (y = 1) and 2, = 0, x = 1, the
model can be simplified to the Porous Medium Equation

Oru + div(u®Vu) = f.
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