Numerical modeling of two-phase flow in fractured porous media

Konstantin Brenner

Laboratoire J.A. Dieudonné

Inria & Univ. Côte d'Azur

Computational Techniques and Applications Conference 2020

September 2, 2020

Motivation

Why fractures?

- Omnipresent: almost any geological formation is naturally fractured
- May control flow pattern

Characteristics

- Very large $\frac{\text{length}}{\text{width}}$ ratio
- Extreme contrast in hydrodynamical properties: fracture/matrix
- Exist at many scales: from few *cm* to *km* (faults)

Motivation

Multiple industrial applications

- Geothermal energy production
- Tight gas and oil extraction
- Nuclear safety

Application: High temperature geothermal energy

Geothermal energy extraction

- Flow manly through fracture network
- Heat exchange with matrix

Application: Tight gas production

Gas extraction from low permeability reservoir

create new or activate existing fractures

Features:

- Strong capillary forces at matrix-fracture interface
- Mass exchange between matrix and fracture

Storage project Cigéo:

- High- and intermediate-level waste
- 500m below the ground
- Very low permeability clay:

$$K_m \approx 10^{-20} m^2$$

Small fractures: $d_f = 10 \mu m$ -1mm

originated during excavation phase

Fracture permeability

$$K_f = \frac{d_f^2}{12} = 10^{-11} - 10^{-7} m^2 \gg K_m$$

Kinds of fractures

- Open or filled with porous material
- Drains or barriers

Characterization

- Apertures d_f distribution
- Permeability and porosity

Kinds of fractures

- Open or filled with porous material
- Drains or barriers

Highly conductive fractures are the most studied

Characterization

- Apertures d_f distribution
- Permeability and porosity

Discrete Fractures Matrix model

I. Berre et al., 2018

Fracture modeling

- Upscaling: one or multiple (overlapping) equivalent media
- Discrete Fracture models:
 - DFN only fractures
 - DFM fractures and matrix

Outline

Single-phase DFM

- Drains and barriers
- Numerical modeling

Two-phase DFM

- Two-phase flow in homogeneous and heterogeneous media
- Drains are barriers?!

Acceleration of Newton's method

- Variable switching
- Nonlinear Jacobi preconditioning

Outline

Single-phase DFM

- Drains and barriers
- Numerical modeling

Two-phase DFM

- Two-phase flow in homogeneous and heterogeneous media
- Drains are barriers?!

Acceleration of Newton's method

- Variable switching
- Nonlinear Jacobi preconditioning

Dimension reduction

Reduced model:

- Tangential flow equation
- Matrix-fracture coupling conditions
 - continuous pressure
 - discontinuous pressure

Open fractures/continuous pressure model

Assumptions:

 \blacksquare Laminar flow parabolic velocity profile along Γ with an average velocity

$$\mathbf{v}_f = -\frac{d_f^2}{12\mu} \left(\nabla_\tau p_f + \rho \mathbf{g}_\tau \right)$$

Open fractures/continuous pressure model

Hybrid-dimensional model

13

Matrix equations:

div
$$\mathbf{q}_m = 0$$
, $\mathbf{q}_m = -\frac{K_m}{\mu} \left(\nabla p_m + \rho \mathbf{g} \right)$

Fracture equations:

$$\operatorname{div}_{\tau} \mathbf{q}_{f} = \underbrace{\mathbf{q}_{m}|_{\Gamma^{+}} \cdot \mathbf{n}^{+} + \mathbf{q}_{m}|_{\Gamma^{-}} \cdot \mathbf{n}^{-}}_{12\mu} \quad , \qquad \mathbf{q}_{f} = d_{f} \mathbf{v}_{f} = -\frac{d_{f}}{12\mu} \left(\nabla_{\tau} p_{f} + \rho \mathbf{g}_{\tau} \right)$$

jump of the normal trace across Γ

No pressure drop: $p_m|_{\Gamma^+} = p_m|_{\Gamma^-} = p_f$.

Open fractures/continuous pressure model

Hybrid-dimensional model

13

Matrix equations:

div
$$\mathbf{q}_m = 0$$
, $\mathbf{q}_m = -\frac{K_m}{\mu} \left(\nabla p_m + \rho \mathbf{g} \right)$

Fracture equations:

$$\operatorname{div}_{\tau} \mathbf{q}_{f} = \underbrace{\mathbf{q}_{m}|_{\Gamma^{+}} \cdot \mathbf{n}^{+} + \mathbf{q}_{m}|_{\Gamma^{-}} \cdot \mathbf{n}^{-}}_{\mathbf{q}_{f} = \mathbf{q}_{f} \mathbf{v}_{f} = -\frac{d_{f}^{*}}{12\mu} \left(\nabla_{\tau} p_{f} + \rho \mathbf{g}_{\tau} \right)$$

jump of the normal trace across Γ

No pressure drop: $p_m|_{\Gamma^+} = p_m|_{\Gamma^-} = p_f$.

Remark:
$$p_m \in H^1(\Omega) \cap H^1(\Gamma)$$

Filled fractures/discontinuous pressure model

Fracture mass balance:

$$\operatorname{div}_{\tau} \mathbf{q}_{f} = \mathbf{q}_{m} \big|_{\Gamma^{+}} \cdot \mathbf{n}^{+} + \mathbf{q}_{m} \big|_{\Gamma^{-}} \cdot \mathbf{n}^{-}$$

Width-averaged Darcy law: $\mathbf{q}_f = - \frac{d_f \frac{K_f}{\mu}}{(\nabla_{\tau} p_f + \rho \mathbf{g}_{\tau})}$

$$\text{Matrix-fracture flow: } \mathbf{q}_m|_{\Gamma^{\pm}} \cdot \mathbf{n}^{\pm} = \mathbf{q}_{mf}^{\pm} := -\frac{K_f}{\mu} \left(\frac{p_m|_{\Gamma^{\pm}} - p_f}{d_f/2} - \rho \mathbf{g} \cdot \mathbf{n}^{\pm} \right)$$

Filled fractures/discontinuous pressure model

Fracture mass balance:

$$\operatorname{div}_{\tau} \mathbf{q}_{f} = \mathbf{q}_{m} \big|_{\Gamma^{+}} \cdot \mathbf{n}^{+} + \mathbf{q}_{m} \big|_{\Gamma^{-}} \cdot \mathbf{n}^{-}$$

Width-averaged Darcy law: $\mathbf{q}_f = - d_f \frac{\kappa_f}{\mu} \left(\nabla_{\tau} p_f + \rho \mathbf{g}_{\tau} \right)$

Matrix-fracture flow: $\mathbf{q}_m|_{\Gamma^{\pm}} \cdot \mathbf{n}^{\pm} = \mathbf{q}_{mf}^{\pm} := -\frac{K_f}{\mu} \left(\frac{p_m|_{\Gamma^{\pm}} - p_f}{d_f/2} - \rho \mathbf{g} \cdot \mathbf{n}^{\pm} \right)$ Remarks:

- $\blacksquare \text{ Pressure jumps across } \Gamma: \ p_m \in H^1(\Omega \backslash \Gamma) \text{ and } p_f \in H^1(\Gamma)$
- Extension: Rigorous derivation leads to a family of coupling conditions

Similarities: Coupling of Darcy flow in matrix (3D) and fracture (2D)

$$\begin{cases} \operatorname{div} \mathbf{q}_m = 0 \\ \operatorname{div}_{\tau} \mathbf{q}_f = \mathbf{q}_m |_{\Gamma^+} \cdot \mathbf{n}^+ + \mathbf{q}_m |_{\Gamma^-} \cdot \mathbf{n}^- \end{cases}$$

Continuous pressure model

Discontinuous pressure model

• No pressure jump across Γ

$$p_m|_{\Gamma^+} = p_m|_{\Gamma^-} = p_f.$$

• Extra regularity: $p_m \in H^1(\Omega) \cap H^1(\Gamma)$

• Pressure jump-flux relation on
$$\Gamma^{\pm}$$

$$\mathbf{q}_m|_{\Gamma^{\pm}} \cdot \mathbf{n}^{\pm} = -\frac{K_f}{\mu} \left(\frac{p_m|_{\Gamma^{\pm}} - p_f}{d_f/2} - \rho \mathbf{g} \cdot \mathbf{n}^{\pm} \right)$$

Broken Sobolev space:
$$p_m \in H^1(\Omega \setminus \Gamma)$$

Fracture network model

- Flux conservation at fracture intersections
- No-flow condition at fracture tips

Outline

Single-phase DFM

- Drains and barriers
- Numerical modeling

Two-phase DFM

- Two-phase flow in homogeneous and heterogeneous media
- Drains are barriers?!

Acceleration of Newton's method

- Variable switching
- Nonlinear Jacobi preconditioning

- Geometric complexity: dense networks, acute angles
 - Efficient mesh generators
 - Nonconforming methods
- Linear solvers: high contrasts (barriers, drains), large correlation length
 - Direct solvers
 - Domain decomposition with an adequate coarse space

Discretization methods

Usual assumption: planar fractures

- Conforming methods: Mesh on Γ is maid of faces of the mesh on Ω_m
 FVM, FEM, DG, VEM, HHO, ...
- Geometrically conforming methods: computational mesh resolves $\Omega \backslash \Gamma$
 - Domain decomposition, mortar methods
- \blacksquare Nonconforming: Ω and Γ and meshed independently
 - X-FEM, E-FEM

Discretization methods

Non-conforming

Usual assumption: planar fractures

- Conforming methods: Mesh on Γ is maid of faces of the mesh on Ω_m
 FVM, FEM, DG, VEM, HHO, ...
- Geometrically conforming methods: computational mesh resolves $\Omega \backslash \Gamma$
 - Domain decomposition, mortar methods
- \blacksquare Nonconforming: Ω and Γ and meshed independently
 - X-FEM, E-FEM

Conforming mesh

Motivation: much fewer DOF at tetrahedral meshes

- P_1 FEM discretization
 - Conforming mesh \mathcal{T}_h
 - A broken $\mathbb{P}_1(\mathcal{T}_h)$ space of element-wise affine functions

Continuous pressure model

- Discrete functional space $V_h = \mathbb{P}_1(\mathcal{T}_h) \cap H^1(\Omega)$
- Weak formulation (modulo B.C. on $\partial \Omega$): Find $p \in V_h$

$$\int_{\Omega} K_m \nabla p \cdot \nabla v \mathrm{d}\mathbf{x} + \int_{\Gamma} K_f \nabla_{\tau} p|_{\Gamma} \cdot \nabla_{\tau} v|_{\Gamma} \mathrm{d}\sigma(\mathbf{x}) = 0 \quad \forall v \in V_h$$

Discontinuous pressure model

Discrete functional spaces

$$V_{m,h} = \mathbb{P}_1(\mathcal{T}_h) \cap H^1(\Omega \setminus \Gamma) \text{ and } V_{f,h} = \mathbb{P}_1(\mathcal{T}_h)|_{\Gamma} \cap H^1(\Gamma)$$

• Weak formulation (modulo B.C. on $\partial \Omega$): Find p_m and p_f

$$\int_{\Omega} K_m \nabla p_m \cdot \nabla v_m \mathrm{d}\mathbf{x} + \int_{\Gamma} K_f \nabla_{\tau} p_f \cdot \nabla_{\tau} v_f \mathrm{d}\sigma(\mathbf{x}) + \sum_{\pm} \int_{\Gamma} \frac{2K_f}{d_f} \llbracket p \rrbracket_h^{\pm} \llbracket v \rrbracket_h^{\pm} \mathrm{d}\sigma(\mathbf{x}) = 0$$

for all $v_m \in V_h(\mathcal{T}_h), v_f \in V_h(\Gamma)$.

Standard jump operator defined as $\llbracket u \rrbracket^{\pm}_{h} = u_{m}|_{\Gamma^{\pm}} - u_{f}$

Discontinuous pressure model

Discrete functional spaces

$$V_{m,h} = \mathbb{P}_1(\mathcal{T}_h) \cap H^1(\Omega \setminus \Gamma) \text{ and } V_{f,h} = \mathbb{P}_1(\mathcal{T}_h)|_{\Gamma} \cap H^1(\Gamma)$$

• Weak formulation (modulo B.C. on $\partial \Omega$): Find p_m and p_f

$$\int_{\Omega} K_m \nabla p_m \cdot \nabla v_m \mathrm{d}\mathbf{x} + \int_{\Gamma} K_f \nabla_{\tau} p_f \cdot \nabla_{\tau} v_f \mathrm{d}\sigma(\mathbf{x}) + \sum_{\pm} \int_{\Gamma} \frac{2K_f}{d_f} \llbracket p \rrbracket_h^{\pm} \llbracket v \rrbracket_h^{\pm} \mathrm{d}\sigma(\mathbf{x}) = 0$$

for all $v_m \in V_h(\mathcal{T}_h), v_f \in V_h(\Gamma)$.

Jump operator defined as $\llbracket u \rrbracket_h^\pm = \pi_h u_m |_{\Gamma^\pm} - \pi_h u_f$ using mass lumping

Outline

Single-phase DFM

- Drains and barriers
- Numerical modeling

Two-phase DFM

- **Two-phase flow in homogeneous and heterogeneous media**
- Drains are barriers?!

Acceleration of Newton's method

- Variable switching
- Nonlinear Jacobi preconditioning

Two fluids shares the pore space

Assumptions

- Two immiscible phases: sharp interfaces at pore scale
- Wetting (say liquid) and non-wetting (say gas) phases

Two-phase flow in porous media

Two fluids shares the pore space

Assumptions

- Two immiscible phases: sharp interfaces at pore scale (essential)
- Phases are: liquid wetting and gas non-wetting

Saturation of phase α

$$s^{\alpha} = \frac{\text{volume of phase } \alpha \text{ in REV}}{\text{volume of void space in REV}}$$

Volume conservation
$$\sum_{\alpha} s^{\alpha} = 1$$

At the pore scale: pressure jump across free surface

Laplace capillary pressure law:

$$\Delta p = \sigma \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

Observations:

- Small pore size \Rightarrow large pressure jump (if shared by both phases!)
- Wetting phase "prefers" small pores

K. Brenner (Inria, LJAD)

Capillary pressure at Darcy scale

 Capillary pressure law depends on pore-size distribution

Entry pressure p_e

As the rock dries

 \blacksquare Interface between the phases moves to smaller pores \Rightarrow pressure jump increases

As the rock dries

 \blacksquare Interface between the phases moves to smaller pores \Rightarrow pressure jump increases

As the rock dries

 \blacksquare Interface between the phases moves to smaller pores \Rightarrow pressure jump increases

Capillary hysteresis (not covered)

Capillary pressure depends on the rate of wetting (or drying):

$$p_c = p_c \left(s^l, \partial_t s^l \right)$$
Incompressible two-phase flow equations

Conservation of each phase $\alpha = l,g$

$$\phi \partial_t s^{\alpha} + \operatorname{div} \mathbf{q}^{\alpha} = 0, \qquad \mathbf{q}^{\alpha} = -\frac{k_r^{\alpha}(s^{\alpha})K}{\mu^{\alpha}} \left(\nabla p^{\alpha} + \rho^{\alpha} \mathbf{g} \right)$$

Closure laws

$$\sum_{\alpha} s^{\alpha} = 1 \qquad \text{and} \qquad p^g - p^l = p_c(s^l)$$

Relative permeability $k_r^\alpha:[0,1]\to [0,1]$

Natural energy estimate:

$$\sum_{\alpha} \int_0^T \int_{\Omega} \frac{k_r^{\alpha}(s^{\alpha})K}{\mu^{\alpha}} |\nabla p^{\alpha}|^2 \leqslant C^{te}$$

Loss of control on $\|\nabla p^\alpha\|_{L^2(L^2)}$ as $s^\alpha \to 0$

Flow in heterogeneous porous medium

Flow equations

$$\phi_i \partial_t s^{\alpha} - \operatorname{div} \left(\left(\frac{k_{r,i}^{\alpha}(s^{\alpha})K_i}{\mu^{\alpha}} \nabla p^{\alpha} - \rho^{\alpha} \mathbf{g}_{\tau} \right) \right) = 0 \qquad \text{in} \quad \Omega_i$$

Interface conditions:

- Flux continuity
- Continuity of some variable?
 - Pressure continuity (in some sens)
 - Saturation is not continuous

If $s_1^\alpha,s_2^\alpha>0$ then p^α is cont. and

$$p_{c,1}(s_1^l) = p_{c,2}(s_2^l)$$

If
$$s_1^l = 0$$
 then

 $p_{c,1}(s_1^l) \cap p_{c,2}(s_2^l) \neq \emptyset$

Flow in heterogeneous porous medium

Flow equations

$$\phi_i \partial_t s^\alpha - \operatorname{div} \left(\left(\frac{k_{r,i}^\alpha(s^\alpha) K_i}{\mu^\alpha} \nabla p^\alpha - \rho^\alpha \mathbf{g}_\tau \right) \right) = 0 \qquad \text{in} \quad \Omega_i$$

Interface conditions:

- Flux continuity
- Continuity of some variable?
 - Pressure continuity (in some sens)
 - Saturation is not continuous

If $s_1^\alpha,s_2^\alpha>0$ then p^α is cont. and

$$p_{c,1}(s_1^l) = p_{c,2}(s_2^l)$$

If
$$s_1^l = 0$$
 then

$$p_{c,1}(s_1^l) \cap p_{c,2}(s_2^l) \neq \emptyset$$

Flow in heterogeneous porous medium

Flow equations

$$\phi_i \partial_t s^\alpha - \operatorname{div} \left(\left(\frac{k_{r,i}^\alpha(s^\alpha) K_i}{\mu^\alpha} \nabla p^\alpha - \rho^\alpha \mathbf{g}_\tau \right) \right) = 0 \qquad \text{in} \quad \Omega_i$$

Interface conditions:

- Flux continuity
- Continuity of some variable?
 - Pressure continuity (in some sens)
 - Saturation is not continuous

If $s_1^\alpha,s_2^\alpha>0$ then p^α is cont. and

$$p_{c,1}(s_1^l) = p_{c,2}(s_2^l)$$

If $s_1^l = 0$ then

 $p_{c,1}(\boldsymbol{s_1^l}) \cap p_{c,2}(\boldsymbol{s_2^l}) \neq \emptyset$

Oil and gas reservoir formation:

- Generation of the hydrocarbons in a deep formations
- Upward migration due to buoyancy
- Why hydrocarbons don't reach the ground surface?

$$(p_c)_{\Gamma} = \underbrace{p_B^g}_{\text{oil pressure below}} - \underbrace{p_A^l}_{\text{water pressure above}}$$

- \blacksquare Extra oil pressure due to buoyancy $\Delta p\approx \Delta \rho g \times {\rm depth}$
- \blacksquare No oil flow trough Γ as long as $p_B^g \leqslant p_A^l + {p_{e,A}}$

$$(p_c)_{\Gamma} = \underbrace{p_B^g}_{\text{oil pressure below}} - \underbrace{p_A^l}_{\text{water pressure above}}$$

- \blacksquare Extra oil pressure due to buoyancy $\Delta p\approx \Delta \rho g\times {\rm depth}$
- \blacksquare No oil flow trough Γ as long as $p_B^g \leqslant p_A^l + {p_{e,A}}$

$$(p_c)_{\Gamma} = \underbrace{p_B^g}_{\text{oil pressure below}} - \underbrace{p_A^l}_{\text{water pressure above}}$$

- \blacksquare Extra oil pressure due to buoyancy $\Delta p\approx \Delta \rho g \times {\rm depth}$
- \blacksquare No oil flow trough Γ as long as $p_B^g \leqslant p_A^l + {p_{e,A}}$

$$(p_c)_{\Gamma} = \underbrace{p_B^g}_{\text{oil pressure below}} - \underbrace{p_A^l}_{\text{water pressure above}}$$

- \blacksquare Extra oil pressure due to buoyancy $\Delta p\approx \Delta \rho g \times {\rm depth}$
- \blacksquare No oil flow trough Γ as long as $p_B^g \leqslant p_A^l + {p_{e,A}}$

 \blacksquare Capillary pressure at the interface Γ

- \blacksquare Extra oil pressure due to buoyancy $\Delta p\approx \Delta \rho g \times {\rm depth}$
- \blacksquare No oil flow trough Γ as long as $p_B^g \leqslant p_A^l + {p_{e,A}}$

$$(p_c)_{\Gamma} = \underbrace{p_B^g}_{\text{oil pressure below}} - \underbrace{p_A^l}_{\text{water pressure above}}$$

- \blacksquare Extra oil pressure due to buoyancy $\Delta p\approx \Delta \rho g \times {\rm depth}$
- \blacksquare No oil flow trough Γ as long as $p_B^g \leqslant p_A^l + {p_{e,A}}$

- Capillary trapping controls reservoir depth
- Similar process can be used for geological CO2 sequestration

Outline

Single-phase DFM

- Drains and barriers
- Numerical modeling

Two-phase DFM

- Two-phase flow in homogeneous and heterogeneous media
- Drains are barriers?!

Acceleration of Newton's method

- Variable switching
- Nonlinear Jacobi preconditioning

$$\begin{aligned} \operatorname{div} \mathbf{q}_m &= 0\\ \operatorname{div}_{\tau} \mathbf{q}_f &= \mathbf{q}_m |_{\Gamma^+} \cdot \mathbf{n}^+ + \mathbf{q}_m |_{\Gamma^-} \cdot \mathbf{n}^- \end{aligned}$$

Continuous pressure model

Discontinuous pressure model

Pressure jump-flux relation on Γ^{\pm}

$$p_m|_{\Gamma^+} = p_m|_{\Gamma^-} = p_f.$$

$$\mathbf{q}_m|_{\Gamma^{\pm}} \cdot \mathbf{n}^{\pm} = -\frac{K_f}{\mu} \left(\frac{p_m|_{\Gamma^{\pm}} - p_f}{d_f/2} \right)$$

$$\begin{cases} \phi_m \partial_t s_m^{\alpha} + \operatorname{div} \mathbf{q}_m^{\alpha} = 0 \\ \phi_f d_f \partial_t s_f^{\alpha} + \operatorname{div}_\tau \mathbf{q}_f^{\alpha} = \mathbf{q}_m^{\alpha}|_{\Gamma^+} \cdot \mathbf{n}^+ + \mathbf{q}_m^{\alpha}|_{\Gamma^-} \cdot \mathbf{n}^- \end{cases}$$

Continuous pressure model

■ No pressure jump across Γ

$$p_m|_{\Gamma^+} = p_m|_{\Gamma^-} = p_f.$$

Discontinuous pressure model

• Pressure jump-flux relation on Γ^{\pm}

$$\mathbf{q}_m|_{\Gamma^{\pm}} \cdot \mathbf{n}^{\pm} = -\frac{K_f}{\mu} \left(\frac{p_m|_{\Gamma^{\pm}} - p_f}{d_f/2} \right)$$

$$\begin{cases} \phi_m \partial_t s_m^{\alpha} + \operatorname{div} \mathbf{q}_m^{\alpha} = 0 \\ \phi_f d_f \partial_t s_f^{\alpha} + \operatorname{div}_{\tau} \mathbf{q}_f^{\alpha} = \mathbf{q}_m^{\alpha}|_{\Gamma^+} \cdot \mathbf{n}^+ + \mathbf{q}_m^{\alpha}|_{\Gamma^-} \cdot \mathbf{n}^- \end{cases}$$

Continuous pressure model

Discontinuous pressure model

No pressure jump across Γ **Pressure jump-flux relation on** Γ^{\pm}

$$p_m^{\alpha}|_{\Gamma^+} = p_m^{\alpha}|_{\Gamma^-} = p_f^{\alpha}.$$

$$\mathbf{q}_m|_{\Gamma^{\pm}} \cdot \mathbf{n}^{\pm} = -\frac{K_f}{\mu} \left(\frac{p_m|_{\Gamma^{\pm}} - p_f}{d_f/2} \right)$$

$$\begin{cases} \phi_m \partial_t s_m^{\alpha} + \operatorname{div} \mathbf{q}_m^{\alpha} = 0 \\ \phi_f d_f \partial_t s_f^{\alpha} + \operatorname{div}_{\tau} \mathbf{q}_f^{\alpha} = \mathbf{q}_m^{\alpha}|_{\Gamma^+} \cdot \mathbf{n}^+ + \mathbf{q}_m^{\alpha}|_{\Gamma^-} \cdot \mathbf{n}^- \end{cases}$$

Discontinuous pressure model

Continuous pressure model

.

 \blacksquare No pressure jump across Γ

$$p_m^{\alpha}|_{\Gamma^+} = p_m^{\alpha}|_{\Gamma^-} = p_f^{\alpha}.$$

$$\mathbf{q}_m^{\alpha}|_{\Gamma^{\pm}} \cdot \mathbf{n}^{\pm} = -\frac{k_{r,f}^{\alpha}(s_{mf}^{\alpha})K_f}{\mu^{\alpha}} \left(\frac{p_m^{\alpha}|_{\Gamma^{\pm}} - p_f^{\alpha}}{d_f/2}\right)$$

Relative permeability upwinding

• Pressure jump-flux relation on Γ^{\pm}

Discontinuous pressure model

Matrix-fracture interface

Interface capillary pressure

$$p_{c,m}|_{\Gamma^{\pm}} = \left(p_m^g - p_m^l\right)|_{\Gamma^{\pm}}$$

- Saturation jump at the interface $S^{\alpha}_{m}(p_{c,m}|_{\Gamma^{\pm}})$ and $S^{\alpha}_{f}(p_{c,m}|_{\Gamma^{\pm}})$
- $\begin{tabular}{ll} {\bf Pressure jump-flux relation on } \Gamma^{\pm} \\ {\bf q}_m^{\alpha}|_{\Gamma^{\pm}} \cdot {\bf n}^{\pm} = \frac{k_{r,f}^{\alpha}(s_{mf}^{\alpha})K_f}{\mu^{\alpha}} \left(\frac{p_m^{\alpha}|_{\Gamma^{\pm}} p_f^{\alpha}}{d_f/2} \right)$
- Relative permeability upwinding

$$s_{mf}^{\alpha} = \begin{cases} S_f^{\alpha}(p_{c,m}|_{\Gamma^{\pm}}), & p_m^{\alpha}|_{\Gamma^{\pm}} - p_f^{\alpha} \ge 0\\ S_f^{\alpha}(p_{c,f}), & p_m^{\alpha}|_{\Gamma^{\pm}} - p_f^{\alpha} < 0 \end{cases}$$

Discontinuous pressure model

Matrix-fracture interface

Interface capillary pressure

$$p_{c,m}|_{\Gamma^{\pm}} = \left(p_m^g - p_m^l\right)|_{\Gamma^{\pm}}$$

Saturation jump at the interface

$$S^{\alpha}_{\underline{m}}(p_{c,m}|_{\Gamma^{\pm}})$$
 and $S^{\alpha}_{f}(p_{c,m}|_{\Gamma^{\pm}})$

Pressure jump-flux relation on Γ^{\pm}

$$\mathbf{q}_{m}^{\alpha}|_{\Gamma^{\pm}} \cdot \mathbf{n}^{\pm} = -\frac{k_{r,f}^{\alpha}(s_{mf}^{\alpha})K_{f}}{\mu^{\alpha}} \left(\frac{p_{m}^{\alpha}|_{\Gamma^{\pm}} - p_{f}^{\alpha}}{d_{f}/2}\right)$$

Relative permeability upwinding

$$s_{mf}^{\alpha} = \begin{cases} S_{f}^{\alpha}(p_{c,m}|_{\Gamma^{\pm}}), & p_{m}^{\alpha}|_{\Gamma^{\pm}} - p_{f}^{\alpha} \ge 0\\ S_{f}^{\alpha}(p_{c,f}), & p_{m}^{\alpha}|_{\Gamma^{\pm}} - p_{f}^{\alpha} < 0 \end{cases}$$

Validity of cont. pressure models: drains becomes barriers?

Test case: Drying of a damaged zone

- Domain $\Omega = (0, 10m)^2$
- Fracture width d = 1mm
- Permeability contrast $K_f/K_m = 10^4$
- Capillary pressure contrast
- Boundary conditions

$$\begin{array}{lll} \mbox{Saturated top:} & s^l_m = 1, & p^g = 1atm \\ \mbox{Dry bottom:} & s^l_m = 0.9, & p^g = 1atm \end{array}$$

Discontinuous pressure

Disc. pressure model: some fractures acts as barriers. Why?

Continuous pressure models: validity

p^l and p^g plot over a vertical line

- disc. pressure
- cont. pressure

Fracture as capillary barrier

$$\begin{split} \mathbf{q}_{m}^{l}|_{\Gamma\pm} \cdot \mathbf{n}^{\pm} &= -k_{r,f}^{l}(s_{mf}^{l}) \frac{K_{f}}{\mu^{l} d_{f}/2} \left(p_{m}^{l}|_{\Gamma\pm} - p_{f}^{l} \right) \\ s_{mf}^{\alpha} &= \begin{cases} S_{f}^{\alpha}(p_{c,m}|_{\Gamma\pm}), & p_{m}^{\alpha}|_{\Gamma\pm} - p_{f}^{\alpha} \ge 0\\ S_{f}^{\alpha}(p_{c,f}), & p_{m}^{\alpha}|_{\Gamma\pm} - p_{f}^{\alpha} < 0 \end{cases} \end{split}$$

Outline

Single-phase DFM

- Drains and barriers
- Numerical modeling

Two-phase DFM

- Two-phase flow in homogeneous and heterogeneous media
- Drains are barriers?!

Acceleration of Newton's method

- Variable switching
- Nonlinear Jacobi preconditioning

Primary variable selection

Model problem

$$\partial_t S(p) - \Delta p = 0$$

Homogeneous medium

Discrete problem: $\mathcal{F}(S(\mathbf{p}), \mathbf{p}) = 0$

Apply Newton's method to

- $\mathcal{F}(S(\mathbf{p}), \mathbf{p}) = 0$: *p*-formulation
- $\mathcal{F}(\mathbf{s}, S^{-1}(\mathbf{s})) = 0$: *s*-formulation

Primary variable selection

Model problem

$$\partial_t S(p) - \Delta p = 0$$

Homogeneous medium

Discrete problem: $\mathcal{F}(S(\mathbf{p}), \mathbf{p}) = 0$

Apply Newton's method to

- $\mathcal{F}(S(\mathbf{p}), \mathbf{p}) = 0$: *p*-formulation
- $\mathcal{F}(\mathbf{s}, S^{-1}(\mathbf{s})) = 0$: s-formulation

Questions:

- Which formulation to chose?
- Does the choice matters?

Example: 1D porous media equation

Porous media equation on $(0,1) \times (0,T)$

$$\partial_t S(p) - \partial_{xx}^2 p = 0, \qquad S(p) = p^{1/m}, \quad m > 1$$

with Neumann boundary conditions

- Inflow at x = 0: $-\partial_x p(0, t) = q \ge 0$
- $\blacksquare \text{ No-flow at } x = 1$
- Almost "dry" initial condition: $S(p(x,0)) = 10^{-10}$

Original *p*-formulation:

$$\partial_t S(p) - \partial_{xx}^2 p = 0,$$

Alternative *s*-formulation:

$$\partial_t s - \partial_{xx}^2 S^{-1}(s) = 0$$

- *s*-formulation (solid) is much more efficient
- Can we find an even better primary variable?

- \blacksquare Switching between s and p may be a good idea
- Well-known for Richards' equation

Efficiency of variable switching

- s-formulation: $\partial_t s \Delta S^{-1}(s) = 0$
- variable switching: PDE?

- Variable switching: is more efficient and is robust w.r.t. m
- Drawback: implementation using if/else conditions

Parametrization of the graph s = S(p): Let $\overline{p}, \overline{s} : \mathbb{R}^+ \to \mathbb{R}^+$ such that $\overline{s}(\tau) = S(\overline{p}(\tau)) \quad \forall \tau \in \mathbb{R}^+$

PDE in terms of the new variable τ

 $\partial_t \overline{s}(\tau) - \Delta \overline{p}(\tau) = 0$

Variable switching:

$$\max(\overline{s}'(\tau), \overline{p}'(\tau)) = 1$$

Estimates on
$$F_{\tau}(\boldsymbol{\tau}) = \mathcal{F}(\overline{s}(\boldsymbol{\tau}), \overline{p}(\boldsymbol{\tau}))$$

$$||F_{\tau}'(\tau)||, ||F_{\tau}'(\tau)||^{-1} < C$$

uniformly w.r.t. τ and the form of S.

Corollaries:

- Control of $\operatorname{cond}(F'_{\tau})$
- Stopping criterion:

$$\|F_{\tau}(\boldsymbol{\tau})\| < \epsilon \Rightarrow \|\boldsymbol{\tau} - \boldsymbol{\tau}_{\star}\| < C\epsilon \Rightarrow \begin{cases} \|\overline{s}(\boldsymbol{\tau}) - \mathbf{s}_{\star}\| < C\epsilon, \\ \|\overline{p}(\boldsymbol{\tau}) - \mathbf{p}_{\star}\| < C\epsilon \end{cases}$$

Application to the flow in heterogeneous porous medium

Heterogeneous model PDE

$$\partial_t S(p, \mathbf{x}) - \Delta p = 0$$

Piece-wise constant $S(\cdot, \mathbf{x})$

$$S(p,x)|_{\Omega_i} = S_i(p), \quad i = 1,2$$

Multiple variable switching

via simultaneous parametrization of $S_1(p)$ and $S_2(p)$

Using notations $\Lambda^{\alpha}=\frac{k_{r}^{\alpha}(s^{\alpha})K}{\mu^{\alpha}}$ and neglecting gravity

$$\begin{split} \phi \partial_t s^l &- \operatorname{div} \left(\Lambda^l \nabla p^l \right) &= 0 \\ \phi \partial_t s^g &- \operatorname{div} \left(\Lambda^g \nabla p^g \right) &= 0 \end{split}$$

Use s^l and p^g to eliminate dependent variables with $p^l=p^g-p_c(s^l)$ and $\sum_\alpha s^\alpha=1$

$$\begin{cases} \phi \partial_t s^l & - \operatorname{div} \left(\Lambda^l \nabla p^g - \Lambda^l \nabla p_c(s^l) \right) = 0 \\ -\phi \partial_t s^l & - \operatorname{div} \left(\Lambda^g \nabla p^g \right) = 0 \end{cases}$$

Using notations $\Lambda^{\alpha}=\frac{k_{r}^{\alpha}(s^{\alpha})K}{\mu^{\alpha}}$ and neglecting gravity

$$\begin{split} \phi \partial_t s^l &- \operatorname{div} \left(\Lambda^l \nabla p^l \right) &= 0 \\ \phi \partial_t s^g &- \operatorname{div} \left(\Lambda^g \nabla p^g \right) &= 0 \end{split}$$

Use s^l and p^g to eliminate dependent variables with $p^l=p^g-p_c(s^l)$ and $\sum_\alpha s^\alpha=1$

$$\begin{cases} \phi \partial_t s^l & - \operatorname{div} \left(\Lambda^l \nabla p^g - \Lambda^l \nabla p_c(s^l) \right) &= 0 \\ & - \operatorname{div} \left((\Lambda^g + \Lambda^l) \nabla p^g - \Lambda^l \nabla p_c(s^l) \right) &= 0 \end{cases}$$

Using notations $\Lambda^{\alpha}=\frac{k_{r}^{\alpha}(s^{\alpha})K}{u^{\alpha}}$ and neglecting gravity $\begin{cases} \phi \partial_t s^l & - \operatorname{div} \left(\Lambda^l \nabla p^l \right) = 0 \\ \phi \partial_t s^g & - \operatorname{div} \left(\Lambda^g \nabla p^g \right) = 0 \end{cases}$

$$\phi \partial_t s^g \quad - \quad \operatorname{div} \left(\Lambda^g \nabla p^g \right) \quad = \quad 0$$

Use s^l and p^g to eliminate dependent variables with $p^l = p^g - p_c(s^l)$ and $\sum_{\alpha} s^{\alpha} = 1$

Using notations $\Lambda^{\alpha} = \frac{k_{r}^{\alpha}(s^{\alpha})K}{\mu^{\alpha}}$ and neglecting gravity $\begin{cases} \phi \partial_{t}s^{l} & - \operatorname{div}\left(\Lambda^{l}\nabla p^{l}\right) = 0\\ \phi \partial_{t}s^{g} & - \operatorname{div}\left(\Lambda^{g}\nabla p^{g}\right) = 0 \end{cases}$

Use s^l and p^g to eliminate dependent variables with $p^l=p^g-p_c(s^l)$ and $\sum_\alpha s^\alpha=1$

$$\begin{cases} \phi \partial_t s^l & - \operatorname{div}\left(\overbrace{\Lambda^l \nabla p^g}^{\mathsf{convection}} - \overbrace{\Lambda^l \nabla p_c(s^l)}^{\mathsf{diffusion}}\right) &= 0\\ & - \operatorname{div}\left(\underbrace{(\Lambda^g + \Lambda^l)}_{\geq cK} \nabla p^g - \Lambda^l \nabla p_c(s^l)\right) &= 0\\ & \geqslant cK \text{ with } c > 0 \end{cases}$$

 \blacksquare Elliptic equation for p^g

Degenerate parabolic equation for s^l
$$\begin{cases} \phi \partial_t s^l & - \operatorname{div} K \left(\Lambda^l \nabla p^g - \Lambda^l \nabla p_c(s^l) \right) &= 0 \\ & - \operatorname{div} K \left((\Lambda^g + \Lambda^l) \nabla p^g - \Lambda^l \nabla p_c(s^l) \right) &= 0 \end{cases}$$

Primary variable selection

$$\begin{array}{l} \hline \quad & \mbox{Good choice } (p^g,s^l): \ \Lambda^l p_c'(s^l) < \infty \\ \hline \quad & \mbox{Bad choice } (p^g,p_c): \ \frac{\partial s^l}{\partial p_c} \ \mbox{and} \ \Lambda^l \ \mbox{vanish at dry regions:} \\ \hline & \mbox{equation gives } 0 \approx 0 \end{array}$$

$$\begin{cases} \phi \partial_t s^l & - \operatorname{div} K \left(\Lambda^l \nabla p^g - \Lambda^l p'_c(s^l) \nabla s^l \right) &= 0 \\ & - \operatorname{div} K \left((\Lambda^g + \Lambda^l) \nabla p^g - \Lambda^l \nabla p_c(s^l) \right) &= 0 \end{cases}$$

Primary variable selection

- $\blacksquare \ \ {\rm Good \ choice} \ (p^g,s^l): \ \Lambda^l p_c'(s^l) < \infty$
- Bad choice (p^g, p_c) : $\frac{\partial s^l}{\partial p_c}$ and Λ^l vanish at dry regions: equation gives $0 \approx 0$

$$\begin{cases} \phi\left(p_c^{-1}\right)'\partial_t p_c & - \operatorname{div} K\left(\Lambda^l \nabla p^g - \Lambda^l \nabla p_c\right) &= 0\\ & - \operatorname{div} K\left((\Lambda^g + \Lambda^l) \nabla p^g - \Lambda^l \nabla p_c(s^l)\right) &= 0 \end{cases}$$

Primary variable selection

$$\begin{array}{l} \hline \quad \mbox{Good choice } (p^g,s^l): \Lambda^l p_c'(s^l) < \infty \\ \hline \quad \mbox{Bad choice } (p^g,p_c): \ \begin{subarray}{c} \frac{\partial s^l}{\partial p_c} \\ \frac{\partial p_c}{\partial p_c} \end{array} \mbox{ and } \Lambda^l \mbox{ vanish at dry regions: } \end{array} \\ \hline \end{array}$$

$$\begin{cases} \phi\left(p_c^{-1}\right)'\partial_t p_c & - \operatorname{div} K\left(\Lambda^l \nabla p^g - \Lambda^l \nabla p_c\right) &= 0\\ & - \operatorname{div} K\left((\Lambda^g + \Lambda^l) \nabla p^g - \Lambda^l \nabla p_c(s^l)\right) &= 0 \end{cases}$$

Primary variable selection

 $\begin{array}{l} \hline \quad \mbox{Good choice } (p^g,s^l): \Lambda^l p_c'(s^l) < \infty \\ \hline \quad \mbox{Bad choice } (p^g,p_c): \ \box{$\frac{\partial s^l}{\partial p_c}$} \ \mbox{and } \Lambda^l \ \mbox{vanish at dry regions:} \\ \hline \quad \mbox{equation gives } 0 \approx 0 \end{array}$

PV selection is more tricky in heterogeneous setting

Heterogeneous two-phase flow problem

Multiple switching of the "second" primary variable

Heterogeneous two-phase flow problem

Multiple switching of the "second" primary variable

Tight gas recovery test case: configuration

Test case scenario

- Water injected at 100 10⁶ Pa for one day
- Wells are closed for 3 days
- Production of gas

Continuous pressure model

Tight gas recovery test case: mesh

Hybrid mesh: prismatic, pyramidal and tetrahedral elements using TetGen

Nodal space discretization

Nb _{cells}	Nb _{nodes}	Nb_{FracF}	linear system d.o.f.
232 920	45 193	1 634	46 827

Bentsen-Anli model

$$P_{c,i}(s^l) = \begin{cases} [-\infty, p_{ent,i}], & s^l = 1\\ \\ p_{ent,i} - \frac{b_i}{b_i} \log(s^l), & \text{else} \end{cases}$$

Parameters

- Entry pressure pent
- Shape parameter *b*

No entry pressure: $p_{c,i} = -b_i \log(s^l), \quad b_m = 10^5$

	(p^g, s_m^l)						$(p^g, s^l_f - s^l_m)$				
$\frac{b_m}{b_f}$	\mathbf{N}_{dt}	\mathbf{N}_{Chop}	\mathbf{N}_{Newton}	\mathbf{N}_{GMRes}	CPU(s)	\mathbf{N}_{dt}	\mathbf{N}_{Chop}	\mathbf{N}_{Newton}	\mathbf{N}_{GMRes}	CPU(s)	
10	226	2	4.2	25.9	4 638	226	2	4.3	26.2	5 523	
10^{2}	294	21	10.7	20.1	14 557	246	8	7.5	22.2	9 016	
10^{3}	297	22	11.7	19.7	16 183	225	1	5.5	24.2	6 245	
10^{4}	304	24	12.9	19.8	17 742	225	1	4.8	25.1	5 492	
10^{5}	313	26	12.8	19.6	18 346	235	4	5.4	23.9	6 260	
∞	n/a	n/a	n/a	n/a	n/a	235	4	5.3	23.9	6 448	

K. Brenner (Inria, LJAD)

No entry pressure: $p_{c,i} = -b_i \log(s^l), \quad b_m = 10^5$

	(p^g, s_m^l)						$(p^g,s^l_f-s^l_m)$				
$\frac{b_m}{b_f}$	\mathbf{N}_{dt}	\mathbf{N}_{Chop}	\mathbf{N}_{Newton}	\mathbf{N}_{GMRes}	CPU(s)	\mathbf{N}_{dt}	\mathbf{N}_{Chop}	\mathbf{N}_{Newton}	\mathbf{N}_{GMRes}	CPU(s)	
10	226	2	4.2	25.9	4 638	226	2	4.3	26.2	5 523	
10^{2}	294	21	10.7	20.1	14 557	246	8	7.5	22.2	9 016	
10^{3}	297	22	11.7	19.7	16 183	225	1	5.5	24.2	6 245	
10^{4}	304	24	12.9	19.8	17 742	225	1	4.8	25.1	5 492	
10^{5}	313	26	12.8	19.6	18 346	235	4	5.4	23.9	6 260	
∞	n/a	n/a	n/a	n/a	n/a	235	4	5.3	23.9	6 448	

K. Brenner (Inria, LJAD)

No entry pressure: $p_{c,i} = -b_i \log(s^l), \quad b_m = 10^5$

	(p^g,s_m^l)						$(p^g, s^l_f - s^l_m)$				
$\frac{b_m}{b_f}$	\mathbf{N}_{dt}	\mathbf{N}_{Chop}	\mathbf{N}_{Newton}	\mathbf{N}_{GMRes}	CPU(s)	\mathbf{N}_{dt}	\mathbf{N}_{Chop}	\mathbf{N}_{Newton}	N_{GMRes}	CPU(s)	
10	226	2	4.2	25.9	4 638	226	2	4.3	26.2	5 523	
10^{2}	294	21	10.7	20.1	14 557	246	8	7.5	22.2	9 016	
10^{3}	297	22	11.7	19.7	16 183	225	1	5.5	24.2	6 245	
10^{4}	304	24	12.9	19.8	17 742	225	1	4.8	25.1	5 492	
10^{5}	313	26	12.8	19.6	18 346	235	4	5.4	23.9	6 260	
x	n/a	n/a	n/a	n/a	n/a	235	4	5.3	23.9	6 448	

No entry pressure: $p_{c,i} = -b_i \log(s^l), \quad b_m = 10^5$

	(p^g, s_m^l)						$(p^g, s_f^l - s_m^l)$				
$\frac{b_m}{b_f}$	\mathbf{N}_{dt}	\mathbf{N}_{Chop}	\mathbf{N}_{Newton}	\mathbf{N}_{GMRes}	CPU(s)	\mathbf{N}_{dt}	\mathbf{N}_{Chop}	\mathbf{N}_{Newton}	\mathbf{N}_{GMRes}	CPU(s)	
10	226	2	4.2	25.9	4 638	226	2	4.3	26.2	5 523	
10^{2}	294	21	10.7	20.1	14 557	246	8	7.5	22.2	9 016	
10^{3}	297	22	11.7	19.7	16 183	225	1	5.5	24.2	6 245	
10^{4}	304	24	12.9	19.8	17 742	225	1	4.8	25.1	5 492	
10^{5}	313	26	12.8	19.6	18 346	235	4	5.4	23.9	6 260	
∞	n/a	n/a	n/a	n/a	n/a	235	4	5.3	23.9	6 448	

K. Brenner (Inria, LJAD)

For $\frac{b_m}{b_f} = 1000$: Cumulated number of Newton iterations and CFL numbers

Performance: (p^g,s_f^l) vs. $(p^g,s_f^l-p_c-s_m^l)$

			(p^g, s_f^l)			$(p^g,s^l_f-p_c-s^l_m)$				
$\frac{b_m}{b_f}$	\mathbf{N}_{dt}	\mathbf{N}_{Chop}	\mathbf{N}_{Newton}	\mathbf{N}_{GMRes}	CPU(s)	\mathbf{N}_{dt}	\mathbf{N}_{Chop}	\mathbf{N}_{Newton}	\mathbf{N}_{GMRes}	CPU(s)
2	221	0	3	29.2	3 937	221	0	3.1	28.9	4 479
10	398	52	9.9	20.2	23 400	262	13	6.8	22.7	10 378
10^{2}	n/c	n/c	n/c	n/c	n/c	269	14	9.9	20.8	14 185
10^{3}	n/c	n/c	n/c	n/c	n/c	285	18	8.9	20.1	13 740
10^{4}	n/c	n/c	n/c	n/c	n/c	242	6	6.9	22.8	9 067
10^{5}	n/c	n/c	n/c	n/c	n/c	276	16	7.5	21.3	11 516
x	n/a	n/a	n/a	n/a	n/a	299	22	8.1	19.1	10 770

Outline

Single-phase DFM

- Drains and barriers
- Numerical modeling

Two-phase DFM

- Two-phase flow in homogeneous and heterogeneous media
- Drains are barriers?!

Acceleration of Newton's method

- Variable switching
- Nonlinear Jacobi preconditioning

Model problem

$$\partial_t S(p) - \Delta p = 0$$

Discretized algebraic problem at each time step

$$S(\mathbf{p}) + L\mathbf{p} = \mathbf{b}, \qquad \mathbf{b} \ge 0$$

Assumptions:

- $S: \mathbb{R}^+ \to \mathbb{R}^+$ increasing and concave, $S'(0) \leqslant +\infty$
- $S'(\mathbf{p}) + L$ is M-matrix

Let

$$F(\mathbf{p}) = S(\mathbf{p}) + L\mathbf{p} - \mathbf{b}$$

Newton's method:

$$\mathbf{p}_{k+1} = \mathbf{p}_k - F'(\mathbf{p}_k)^{-1}F(\mathbf{p}_k), \qquad k \ge 0$$

Theorem (Monotone Newton Theorem (Baluev '52; Ortega & Rheinboldt '70))

Let \mathbf{p}_0 satisfy $F(\mathbf{p}_0) \leq 0$, then

- **\square** \mathbf{p}_k converges to the unique solution \mathbf{p}_{\star}
- $\mathbf{p}_k \leq \mathbf{p}_{k+1} \leq \mathbf{p}_\star$ for all $k \geq 0$

Illustration (N = 1)

The method is semi-globally convergent, but is very slow!

Example: 1D porous media equation

Porous media equation on $(0,1) \times (0,T)$

$$\partial_t S(p) - \partial_{xx}^2 p = 0, \qquad S(p) = p^{1/m}, \quad m > 1$$

with Neumann boundary conditions

- Inflow at x = 0: $-\partial_x p(0, t) = q \ge 0$
- $\blacksquare \text{ No-flow at } x = 1$
- Almost "dry" initial condition: $S(p(x,0)) = 10^{-10}$

Recap on different formulations

- p-formulation is the worst!
- \blacksquare v- and $\tau-$ formulations provide better performance, but no convergence theorem
- Is it possible to have both?

Nonlinear Jacobi preconditioner

Nonlinear Jacobi method:

Separate diagonal and off-diagonal terms

$$\underbrace{S(\mathbf{p}) + \operatorname{diag}(L)\mathbf{p}}_{f(\mathbf{p})} + \underbrace{(L - \operatorname{diag}(L))\mathbf{p}}_{A\mathbf{p}} = \mathbf{b}$$

Use fixed-point iterations

$$\mathbf{p}_{k+1} = g(\mathbf{b} - A\mathbf{p}_k), \qquad g = f^{-1}$$

Idea: use Jacobi method as preconditioner not a solver

■ Left preconditioned method: apply Newton to

$$\mathbf{p} - g(\mathbf{b} - A\mathbf{p}) = 0$$

Right preconditioned method: apply Newton to

$$\mathbf{p} + Ag(\mathbf{p}) - \mathbf{b} = 0$$

Preconditioned methods satisfy MNT.

Efficiency of the preconditioned methods

Left-preconditioned:

Right-preconditioned:

$$\mathbf{p} - g(\mathbf{b} - A\mathbf{p}) = 0$$

$$\mathbf{p} + Ag(\mathbf{p}) - \mathbf{b} = 0$$

Left and **right** preconditioned methods beat τ - formulation!

Jacobi preconditioning: conclusion

Nonlinear Jacobi preconditioning

- accelerates convergence of Newton's method,
- while preserving monotone convergence

Conclusion

Single-phase DFM

- Two kinds of models
- Large spectrum of numerical methods

Two-phase DFM

- Capillary effects are crustal
- Validity of models is less clear
- Numerical analysis is sparser

Acceleration of Newton's method

- Variable switching is extended to heterogeneous problems
- Nonlinear Jacobi preconditioning is under investigation

Bibliography

Single-phase DFM

- Alboin, C., Jaffré, J., Roberts, J., Serres, C.: Modeling fractures as interfaces for flow and transport in porous media. Fluid flow and transport in porous media, 2002.
- Jaffré, J., Martin, V., Roberts, J. E. Modeling fractures and barriers as interfaces for flow in porous media, SIAM J. Sci. Comput., 2005.
- Berre, I., Doster, F., Keilegavlen, E. Flow in Fractured Porous Media: A Review of Conceptual Models and Discretization Approaches. *Transp .Porous. Med.*, (2019)

Two-phase DFM

- K. Brenner, M. Groza, L. Jeannin, R. Masson, J. Pellerin. Immiscible two-phase Darcy flow model accounting for vanishing and discontinuous capillary pressures : application to the flow in fractured porous media. *Comput. Geosci.*, 2017.
- J. Aghili, K. Brenner, J. Hennicker, R. Masson, L. Trenty. Two-phase Discrete Fracture Matrix models with linear and nonlinear transmission conditions, *International Journal on Geomathematics*, 2019

Acceleration of Newton's method

- A.N. Baluev, On the abstract theory of Chaplygin's method, (Russian). Dokl. Akad. Nauk. SSSR, 1952
- J. M. Ortega and W. C. Rheinboldt, Iterative Solutions of Nonlinear Equations in Several Variables, Academic Press, 1970
- K. Brenner and C. Cancès. Improving Newton's method performance by parametrization: the case of Richards' equation, SIAM J. Numer. Anal., 2017
- K. Brenner, Acceleration of Newton's method using nonlinear Jacobi preconditioning, preprint, hal-02428366

Definition

We say that A is an M-matrix if

- A is invertible and $A^{-1} \ge 0$;
- Off-diagonal elements of *A* are nonpositives.

Go back

Appendix II: 1d Newton's method for a concave problem

Newton's method for

$$f(p) = 0, \qquad p \in \mathbb{R}$$

■ *f* concave and increasing

CPU time efficiency

Preconditioned methods have to evaluate $g = f^{-1}$.

At each Newton's iteration one solves a system of N uncoupled equations How expensive is that?

Preconditioned methods are more efficient for large problems ($N \gtrsim 400$) because they require less linear solves

Conclusion

Single-phase DFM

- Two kinds of models
- Large spectrum of numerical methods

Two-phase DFM

- Capillary effects are crustal
- Validity of models is less clear
- Numerical analysis is sparser

Acceleration of Newton's method

- Variable switching is extended to heterogeneous problems
- Nonlinear Jacobi preconditioning is under investigation