Autour de l'équation de Richards et de sa résolution numérique

Konstantin Brenner

Laboratoire J.A. Dieudonné Inria & Univ. Côte d'Azur

Séminaire de Modélisation et Calcul Scientifique

LAGA, Paris 13

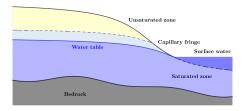
25 juin, 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

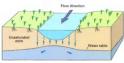
Applications of Richards' equation

Unsaturated/saturated groundwater flow

pores occupied by water + air



DISCONNECTED STREAM



Applications:

- Water resource estimation
- Irrigation
- Contaminant transport
- Interaction with surface water

French Wikipedia: La résolution numérique de l'équation de Richards demeure l'un des problèmes d'analyse numérique les plus difficiles pour les sciences naturelles¹.

English Wikipedia: The numerical solution of the Richards' equation is one of the most challenging problems in earth science¹.

Original article¹: Richards' equation is ... arguably one of the most difficult equations to reliably and accurately solve in all of hydrosciences.

¹Farthing and Ogden, Numerical solution of Richards' Equation: a review of advances and challenges 2017 🚊 🚽 🤈 🔍 🔿

French Wikipedia: La résolution numérique de l'équation de Richards demeure l'un des problèmes d'analyse numérique les plus difficiles pour les sciences naturelles¹.

English Wikipedia: The numerical solution of the Richards' equation is one of the most challenging problems in earth science¹.

Original article¹: Richards' equation is ... arguably one of the most difficult equations to reliably and accurately solve in all of hydrosciences.

Major numerical challenge: Robustness and efficiency of the nonlinear solvers.

 $^{^1}$ Farthing and Ogden, Numerical solution of Richards' Equation: a review of advances and challenges 2017 🚊 🔷 0, ()

Outline

Introduction to Richards' equation

- From saturated to unsaturated flow
- Capillary pressure
- Analysis
- Simulation pause
- Numerical solution

Improving convergence of Newton's method

- Monotone Newton Theorem
- Primary variable switching
- Jacobi-Newton method

Simplified models

Groundwater table movement: Dupuit model

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Infiltration: Green-Ampt model
- Bridging water and infiltration

Outline

Introduction to Richards' equation

- From saturated to unsaturated flow
- Capillary pressure
- Analysis
- Simulation pause
- Numerical solution

Improving convergence of Newton's method

- Monotone Newton Theorem
- Primary variable switching
- Jacobi-Newton method

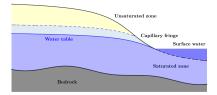
Simplified models

Groundwater table movement: Dupuit model

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Infiltration: Green-Ampt model
- Bridging water and infiltration

Saturated vs. unsaturated incompressible groundwater flow



$$s = \frac{|water|}{|void|}$$
 in a REV

Saturated flow

Continuity equation:

$$\operatorname{div} \boldsymbol{v} = 0$$

Darcy law:

$$oldsymbol{v} = -rac{\mathbb{K}}{\mu}\left(
abla oldsymbol{p} -
ho oldsymbol{g}
ight)$$

Find *p* satisfying

$$-\operatorname{div}\left(\frac{\mathbb{K}}{\mu}\left(\nabla \boldsymbol{p}-\rho \boldsymbol{g}\right)\right)=0$$

Unsaturated flow

Continuity equation:

$$\phi \partial_t \mathbf{s} + \operatorname{div} \mathbf{v} = \mathbf{0}$$

Darcy-Buckingham law:

$$oldsymbol{v} = -rac{\mathbb{K}k(oldsymbol{s})}{\mu}\left(
abla oldsymbol{p} -
ho oldsymbol{g}
ight)$$

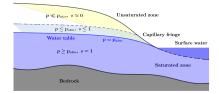
Find p and s satisfying

$$\phi \partial_t \mathbf{s} - \operatorname{div} \left(\frac{\mathbb{K}k(\mathbf{s})}{\mu} \left(\nabla \boldsymbol{p} - \rho \boldsymbol{g} \right) \right) = \mathbf{0}$$

together with s = S(p)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

Saturated vs. unsaturated incompressible groundwater flow



$$s = \frac{|water|}{|void|}$$
 in a REV

Saturated flow

Continuity equation:

$$\operatorname{div} \boldsymbol{v} = 0$$

Darcy law:

$$oldsymbol{v} = -rac{\mathbb{K}}{\mu}\left(
abla oldsymbol{p} -
ho oldsymbol{g}
ight)$$

Find *p* satisfying

$$-\operatorname{div}\left(\frac{\mathbb{K}}{\mu}\left(\nabla \boldsymbol{p}-\rho \boldsymbol{g}\right)\right)=0$$

Unsaturated flow

Continuity equation:

$$\phi \partial_t \mathbf{s} + \operatorname{div} \mathbf{v} = \mathbf{0}$$

Darcy-Buckingham law:

$$oldsymbol{v} = -rac{\mathbb{K}k(oldsymbol{s})}{\mu}\left(
abla oldsymbol{p} -
ho oldsymbol{g}
ight)$$

Find p and s satisfying

$$\phi \partial_t \mathbf{s} - \operatorname{div} \left(\frac{\mathbb{K} \mathbf{k}(\mathbf{s})}{\mu} \left(\nabla \mathbf{p} - \rho \mathbf{g} \right) \right) = \mathbf{0}$$

together with s = S(p)

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで

Hydrodynamical properties

Find p and s satisfying

$$\phi \partial_t \mathbf{s} - \operatorname{div} \left(\frac{\mathbb{K} k(\mathbf{s})}{\mu} \left(\nabla \mathbf{p} - \rho \mathbf{g} \right) \right) = \mathbf{0}$$

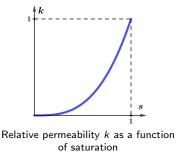
together with s = S(p)

Parameters:

- ▶ Porosity $\phi \approx 0.01 1$
- Permeability $\mathbb{K} \approx 10^{-7} 10^{-20} m^2$, possibly a full tensor

Closure laws:

- Relative permeability
 k(s) ≈ s^m, m ≈ 3
- ► Retention curve S: increasing, S(-∞) = 0 and S(p ≥ p_e) = 1



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hydrodynamical properties

Find p and s satisfying

$$\phi \partial_t \mathbf{s} - \operatorname{div}\left(\frac{\mathbb{K}k(\mathbf{s})}{\mu}\left(\nabla \mathbf{p} - \rho \mathbf{g}\right)\right) = \mathbf{0}$$

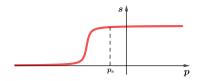
together with s = S(p)

Parameters:

- ▶ Porosity $\phi \approx 0.01 1$
- ▶ Permeability $\mathbb{K} \approx 10^{-7} 10^{-20} m^2$, possibly a full tensor

Closure laws:

- Relative permeability k(s) ≈ s^m, m ≈ 3
- ► Retention curve S: increasing, S(-∞) = 0 and S(p ≥ p_e) = 1



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Retention curve s = S(p)

Outline

Introduction to Richards' equation

- From saturated to unsaturated flow
- Capillary pressure
- Analysis
- Simulation pause
- Numerical solution

Improving convergence of Newton's method

- Monotone Newton Theorem
- Primary variable switching
- Jacobi-Newton method

Simplified models

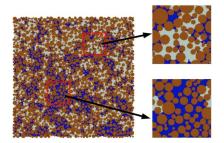
Groundwater table movement: Dupuit model

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Infiltration: Green-Ampt model
- Bridging water and infiltration

Two-phase flow in porous media

Two fluids shares the pore space

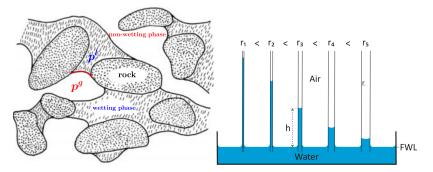


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Assumptions

- Two immiscible phases: sharp interfaces at pore scale
- Wetting (water) and non-wetting (air) phases

Capillary pressure at the pore-scale



At the pore scale: pressure jump across free surface

► Young–Laplace law

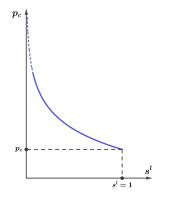
$$\Delta p = \sigma \left(rac{1}{R_1} + rac{1}{R_2}
ight)$$

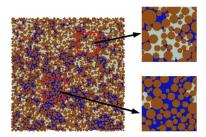
Observations:

- Small pore size ⇒ large pressure jump (if shared by both phases!)
- Wetting phase "prefers" small pores

Capillary pressure at Darcy (macroscopic) scale

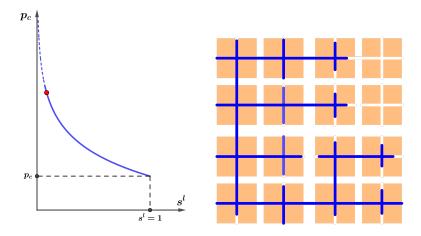
$$p^g - p' = p_c(s')$$





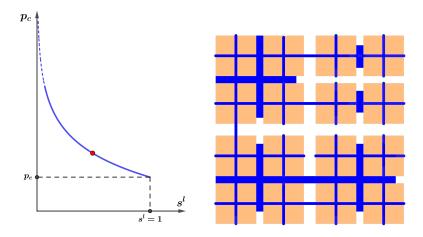
 Capillary pressure law depends on pore-size distribution

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ



Wetting of the rock:

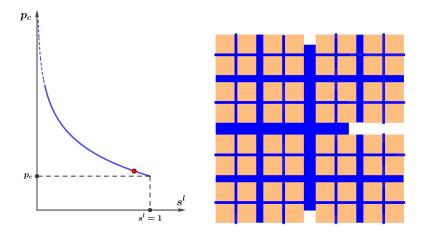
▶ Interface between the phases moves to larger pores \Rightarrow pressure jump decreases



Wetting of the rock:

▶ Interface between the phases moves to larger pores \Rightarrow pressure jump decreases

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

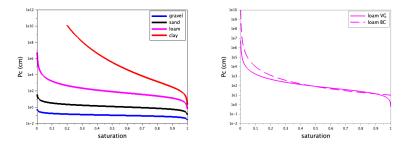


Wetting of the rock:

▶ Interface between the phases moves to larger pores \Rightarrow pressure jump decreases

▲□▶▲□▶▲□▶▲□▶ □ のQの

Capillary pressure curves



Macroscopic capillary pressure law

- depends on pore-size distribution;
- may be neglected/assumed constant for some soils.

Van Genuchten model

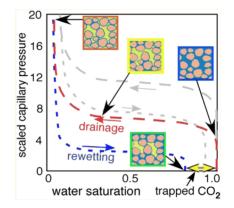
$$p_c(s) = p_lpha \left(s^{-rac{1}{m}} - 1
ight)^{rac{1}{n}}$$

Brooks-Corey model

$$p_c(s) = p_e s^{-\lambda}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Capillary hysteresis (not covered)



Capillary pressure depends on the rate of wetting (or drying):

$$p_c = p_c \left(s^l, \partial_t s^l \right)$$

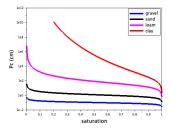
(日)

Retention curve

Set $p_g = p_{atm}$, from capillary pressure law:

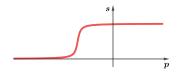
$$p_l = p_{atm} - p_c(s)$$
 for $0 < s < 1$

Let $p_{atm} = 0$, we have



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Functional closure s = S(p)

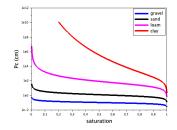


Retention curve

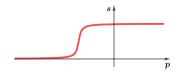
Set $p_g = p_{atm}$, from capillary pressure law:

$$p_l = p_{atm} - p_c(s)$$
 for $0 < s < 1$

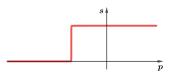
Let $p_{atm} = 0$, we have



Functional closure s = S(p)



Graphical closure $s \in S(p)$



Outline

Introduction to Richards' equation

- From saturated to unsaturated flow
- Capillary pressure
- Analysis
- Simulation pause
- Numerical solution

Improving convergence of Newton's method

- Monotone Newton Theorem
- Primary variable switching
- Jacobi-Newton method

Simplified models

Groundwater table movement: Dupuit model

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Infiltration: Green-Ampt model
- Bridging water and infiltration

Richards' equation

$$\partial_t s - \operatorname{div} k(s) (\nabla p - g) = 0$$

Natural energy estimate

$$\sup_{t\leq T}\int_{\Omega}\Psi(\mathsf{x})\,\mathrm{d}\mathsf{x}+\int_{0}^{T}\int_{\Omega}k(s)|\nabla p|^{2}\,\mathrm{d}\mathsf{x}<+\infty,\qquad\Psi(p)=S(p)p-\int^{p}S(\pi)\,\mathrm{d}\pi$$

does not provide control on $\|\nabla p\|_{L^2}$

Kirchhoff transform

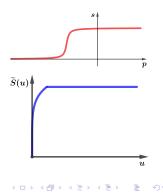
$$U(p) = \int^p k(\pi) \,\mathrm{d}\pi$$

Reformulated equation

$$\partial_t s - \operatorname{div} \left(\nabla u - k(s) g \right) = 0$$

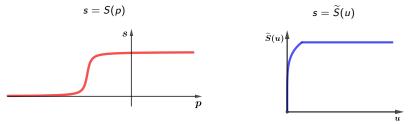
with $s = \widetilde{S}(u) := S(U^{-1}(u))$

Equation is linear w.r.t. "generalized pressure" u.



Richards' equation using Kirchhoff transform

$$\partial_t s - \operatorname{div} \left(\nabla u - k(s) g \right) = 0$$



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

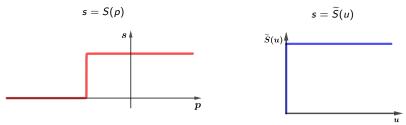
Typically $\tilde{S}(u) \sim u^{1/m}, m > 1$ near u = 0,

• connections to porous media equation: $\partial_t u^{1/m} = \Delta u$

▶ almost hyperbolic behavior near u = 0: $\partial_t s + \operatorname{div} k(s)g = 0$. Set of 1*d* problems!

Richards' equation using Kirchhoff transform

$$\partial_t s - \operatorname{div} \left(\nabla u - k(s) g \right) = 0$$



Typically $\widetilde{S}(u) \sim u^{1/m}, m > 1$ near u = 0,

- connections to porous media equation: $\partial_t u^{1/m} = \Delta u$
- ▶ almost hyperbolic behavior near u = 0: $\partial_t s + \operatorname{div} k(s)g = 0$. Set of 1*d* problems!

Richards' equation using Kirchhoff transform

$$\partial_t s - \operatorname{div} \left(\nabla u - k(s) g \right) = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Coexistence of multiple "regimes"

Existence and uniqueness

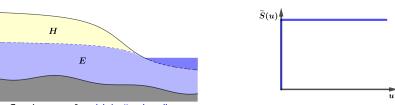
- Parabolic-elliptic: Van Duyn & Peletier '82, Alt & Luckhaus '83
- Hyperbolic-elliptic: Carrillo '94
- Hyperbolic-parabolic-elliptic: Carrillo '99

Richards' equation using Kirchhoff transform

$$\partial_t s - \operatorname{div} \left(\nabla u - k(s) g \right) = 0$$

 $s = \widetilde{S}(u)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



Coexistence of multiple "regimes"

Existence and uniqueness

- Parabolic-elliptic: Van Duyn & Peletier '82, Alt & Luckhaus '83
- Hyperbolic-elliptic (Dam problem): Visintin '80, Carrillo '94
- Hyperbolic-parabolic-elliptic: Carrillo '99

Richards' equation using Kirchhoff transform

$$\partial_t s - \operatorname{div} (\nabla u - k(s)g) = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Pros & cons of f Kirchhoff formulation

Makes mathematicians 😑

- Good for the analysis of PDE and numerical schemes
- Easier to solve the discrete problem

Makes engineers 😕

- ▶ No analytical expression of U(p) for some closure laws
- Harder to incorporate additional physics

Outline

Introduction to Richards' equation

- From saturated to unsaturated flow
- Capillary pressure
- Analysis
- Simulation pause
- Numerical solution

Improving convergence of Newton's method

- Monotone Newton Theorem
- Primary variable switching
- Jacobi-Newton method

Simplified models

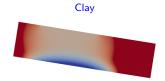
Groundwater table movement: Dupuit model

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Infiltration: Green-Ampt model
- Bridging water and infiltration

Infiltration into the dry soil

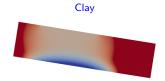
Sand



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Infiltration into the dry soil

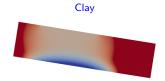
Sand



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Infiltration into the dry soil

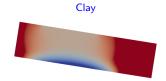
Sand



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Infiltration into the dry soil

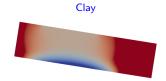
Sand



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Infiltration into the dry soil

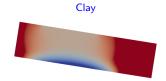
Sand



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Infiltration into the dry soil

Sand



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Outline

Introduction to Richards' equation

- From saturated to unsaturated flow
- Capillary pressure
- Analysis
- Simulation pause
- Numerical solution

Improving convergence of Newton's method

- Monotone Newton Theorem
- Primary variable switching
- Jacobi-Newton method

Simplified models

Groundwater table movement: Dupuit model

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Infiltration: Green-Ampt model
- Bridging water and infiltration

Numerical solution of Richards' equation

Richards' equation

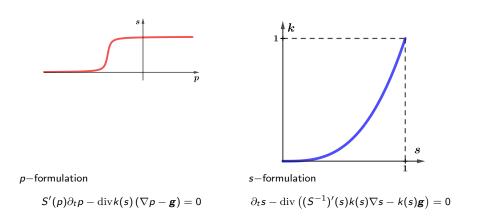
$$\partial_t s - \operatorname{div} k(s) (\nabla p - g) = 0, \qquad s = S(p)$$

Implicit discretization

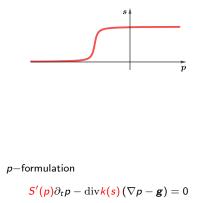
$$\begin{cases} \boldsymbol{F}(\boldsymbol{s},\boldsymbol{p})=0\\ \boldsymbol{s}=S(\boldsymbol{p}) \end{cases}$$

(ロ)、(型)、(E)、(E)、 E) の(()

Closure law elimination gives



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○○○



Pros:

Both sat. and unsat. regimes Cons:

- Dry soil $s \approx 0$: gives $0 \approx 0$
- Does not cover the case $s \in S(p)$

s-formulation $\partial_t s - \operatorname{div}\left((S^{-1})'(s)k(s)\nabla s - k(s)g\right) = 0$

Cons:

 \mathbf{k}

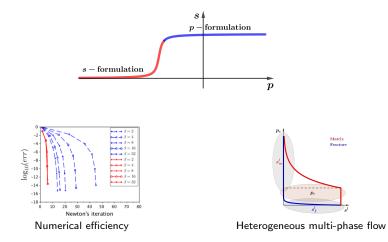
Does not cover the saturated regime Pros:

• Dry soil $s \approx 0$: $k(s)(S^{-1})'(p) < +\infty$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Covers the case s ∈ S(p)

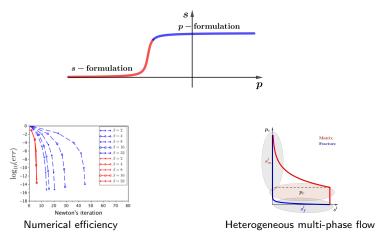
Solution: Variable switching^{1,2,3,4}



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

¹Forsyth, Wu, Pruess, 1995
 ²Diersch, Perrochet, 1999
 ³Brenner, Groza, Jeannin, Masson, Pellerin, 2017

Solution: Variable switching^{1,2,3,4}



Similar ideas applies to $\partial_t s - \operatorname{div} (\nabla u - k(s)g) = 0$

¹Forsyth, Wu, Pruess, 1995

²Diersch, Perrochet, 1999

³Brenner, Groza, Jeannin, Masson, Pellerin, 2017

⁴Brenner, Canceès, 2017

Classical discretizations: Kirchhoff pressure

Implicit finite volume scheme

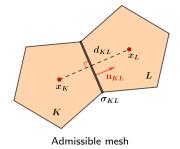
$$\frac{s_{K}^{n}-s_{K}^{n-1}}{\Delta t_{n}}+\sum_{L}q_{KL}^{n}=0$$

Flux discretiaztion

$$\frac{1}{|\sigma_{KL}|} \int_{\sigma_{KL}} \nabla u - k(s) \mathbf{g} d\sigma \approx \frac{u_K - u_L}{d_{KL}} - k(s_{KL}) \mathbf{g} \cdot \mathbf{n}_{KL}$$

with upwinding

$$\mathbf{s}_{\mathbf{KL}} = \begin{cases} \mathbf{s}_{\mathbf{K}}, & -\mathbf{g} \cdot \mathbf{n}_{\mathbf{KL}} \ge \mathbf{0} \\ \mathbf{s}_{\mathbf{L}}, & \text{else} \end{cases}$$



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Classical discretizations: Kirchhoff pressure

Implicit finite volume scheme

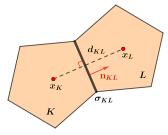
$$\frac{s_K^n - s_K^{n-1}}{\Delta t_n} + \sum_L q_{KL}^n = 0$$

Flux discretiaztion

$$\frac{1}{|\sigma_{KL}|} \int_{\sigma_{KL}} \nabla u - k(s) \mathbf{g} d\sigma \approx \frac{u_{K} - u_{L}}{d_{KL}} - k(s_{KL}) \mathbf{g} \cdot \mathbf{n}_{KL}$$

with upwinding

$$\mathbf{s}_{\mathsf{KL}} = \left\{ \begin{array}{ll} \mathbf{s}_{\mathsf{K}}, & -\mathbf{g} \cdot \mathbf{n}_{\mathsf{KL}} \ge \mathbf{0} \\ \mathbf{s}_{\mathsf{L}}, & \text{else} \end{array} \right.$$



Admissible mesh

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Algebraic system:

$$s + Au + Bk(s) = s^{n-1}, \quad s = \widetilde{S}(u)$$

Structural properties:

- A and Bk'(s) are M-matrices
- \tilde{S} is diagonal and concave

Classical discretizations: Kirchhoff pressure

Implicit finite volume scheme

$$\frac{s_{K}^{n}-s_{K}^{n-1}}{\Delta t_{n}}+\sum_{L}q_{KL}^{n}=0$$

Flux discretiaztion

$$\frac{1}{|\sigma_{KL}|} \int_{\sigma_{KL}} \nabla u - k(s) \mathbf{g} \mathrm{d}\sigma \approx \frac{u_K - u_L}{d_{KL}} - k(s_{KL}) \mathbf{g} \cdot \mathbf{n}_{KL}$$

with upwinding

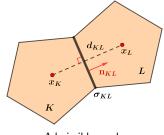
$$\mathbf{s}_{KL} = \begin{cases} \mathbf{s}_{K}, & -\mathbf{g} \cdot \mathbf{n}_{KL} \ge \mathbf{0} \\ \mathbf{s}_{L}, & \text{else} \end{cases}$$

Semi-implicit discretization:

$$s + Au + Bk(s^{n-1}) = s^{n-1}, \quad s = \widetilde{S}(u)$$

Structural properties:

- A and Bk'(s) are M-matrices
- \tilde{S} is diagonal and concave



Admissible mesh

(ロ)、

Classical discretizations: physical pressure

Implicit finite volume scheme

$$\frac{s_K^n - s_K^{n-1}}{\Delta t_n} + \sum_L q_{KL}^n = 0$$

Flux discretiaztion

$$\frac{1}{|\sigma_{KL}|} \int_{\sigma_{KL}} k(s) \left(\nabla p - \boldsymbol{g} \right) \mathrm{d}\sigma \approx k(s_{KL}) \left(\frac{p_K - p_L}{d_{KL}} - \boldsymbol{g} \cdot \mathbf{n}_F \right)$$

with upwinding

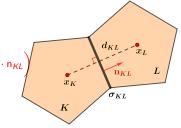
$$\mathbf{s}_{KL} = \begin{cases} \mathbf{s}_{K}, & \frac{\mathbf{p}_{K} - \mathbf{p}_{L}}{\mathbf{d}_{KL}} - \mathbf{g} \cdot \mathbf{n}_{KL} \ge \mathbf{0} \\ \mathbf{s}_{L}, & \text{else} \end{cases}$$

Remarks:

- Upwinding handles degeneracy k(0) = 0
- Semi-implicit schemes

$$q_{KL}^{n} = |\sigma|k(\boldsymbol{s}_{KL}^{n-1}) \left(\frac{\boldsymbol{p}_{K}^{n} - \boldsymbol{p}_{L}^{n}}{d_{KL}} - \boldsymbol{g} \cdot \boldsymbol{n}_{KL}\right)$$

are problematic since $\nabla p \cdot \mathbf{n}_{KL}$ may be very large.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Outline

Introduction to Richards' equation

- From saturated to unsaturated flow
- Capillary pressure
- Analysis
- Simulation pause
- Numerical solution

Improving convergence of Newton's method

- Monotone Newton Theorem
- Primary variable switching
- Jacobi-Newton method

Simplified models

Groundwater table movement: Dupuit model

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Infiltration: Green-Ampt model
- Bridging water and infiltration

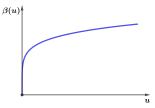
Objectives

Model problem: Find $\boldsymbol{u} \in \mathbb{R}^N$

$$\beta(\mathbf{u}) + A\mathbf{u} = \boldsymbol{b}, \qquad \boldsymbol{b} \ge 0$$

Objective: Newton-like iterative method

- efficient and robust w.r.t. to the shape of β
- with guarantied (semi-)global convergence



▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

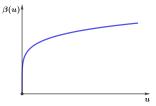
Objectives

Model problem: Find $\boldsymbol{u} \in \mathbb{R}^N$

$$\beta(\mathbf{u}) + A\mathbf{u} = \boldsymbol{b}, \qquad \boldsymbol{b} \ge 0$$

Objective: Newton-like iterative method

- efficient and robust w.r.t. to the shape of β
- with guarantied (semi-)global convergence



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Assumptions:

- $J(\boldsymbol{u}) = \beta'(\boldsymbol{u}) + A$ is M-matrix: $J(\boldsymbol{u})^{-1} \ge 0$ and $(J(\boldsymbol{u}))_{ij} \le 0, i \ne j$
- ▶ $\beta_i : \mathbb{R}^+ \to \mathbb{R}^+$ diagonal, increasing and concave, $\beta'_i(0) \leq +\infty$

Outline

Introduction to Richards' equation

- From saturated to unsaturated flow
- Capillary pressure
- Analysis
- Simulation pause
- Numerical solution

Improving convergence of Newton's method

- Monotone Newton Theorem
- Primary variable switching
- Jacobi-Newton method

Simplified models

Groundwater table movement: Dupuit model

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Infiltration: Green-Ampt model
- Bridging water and infiltration

Notations

$$F(\boldsymbol{u}) = \beta(\boldsymbol{u}) + A\boldsymbol{u} - \boldsymbol{b}$$

Newton's method

$$F'(\boldsymbol{u}_k)(\boldsymbol{u}_{k+1}-\boldsymbol{u}_k)+F(\boldsymbol{u}_k)=0$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Monotone Newton Theorem (Baluev '52; Ortega & Rheinboldt '70) Let u_0 satisfy $F(u_0) \leq 0$, then

- \boldsymbol{u}_k converges to the unique solution \boldsymbol{u}_{\star}
- $\boldsymbol{u}_k \leq \boldsymbol{u}_{k+1} \leq \boldsymbol{u}_{\star}$ for all $k \geq 0$

Notations

$$F(\boldsymbol{u}) = \beta(\boldsymbol{u}) + A\boldsymbol{u} - \boldsymbol{b}$$

Newton's method

$$F'(\boldsymbol{u}_k)(\boldsymbol{u}_{k+1}-\boldsymbol{u}_k)+F(\boldsymbol{u}_k)=0$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Monotone Newton Theorem (Baluev '52; Ortega & Rheinboldt '70) Let u_0 satisfy $F(u_0) \le 0$, then

u_k converges to the unique solution *u*^{*}

•
$$\boldsymbol{u}_k \leq \boldsymbol{u}_{k+1} \leq \boldsymbol{u}_{\star}$$
 for all $k \geq 0$

Main ingredients:

- F is concave (or convex)
- ► F'(u) is an M-matrix

Illustration (N = 1)

Notations

$$F(\boldsymbol{u}) = \beta(\boldsymbol{u}) + A\boldsymbol{u} - \boldsymbol{b}$$

Newton's method

$$F'(\boldsymbol{u}_k)(\boldsymbol{u}_{k+1}-\boldsymbol{u}_k)+F(\boldsymbol{u}_k)=0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Monotone Newton Theorem (Baluev '52; Ortega & Rheinboldt '70) Let u_0 satisfy $F(u_0) \le 0$, then

- \blacktriangleright u_k converges to the unique solution u_*
- $\boldsymbol{u}_k \leq \boldsymbol{u}_{k+1} \leq \boldsymbol{u}_{\star}$ for all $k \geq 0$

Main ingredients:

- F is concave (or convex)
- ► F'(u) is an M-matrix

Illustration (N = 1)

The method is semi-globally convergent. Is it efficient?

Notations

$$F(\boldsymbol{u}) = \beta(\boldsymbol{u}) + A\boldsymbol{u} - \boldsymbol{b}$$

Newton's method

$$F'(\boldsymbol{u}_k)(\boldsymbol{u}_{k+1}-\boldsymbol{u}_k)+F(\boldsymbol{u}_k)=0$$

Removing concavity (convexity) assumption for problems with diagonal nonlinearities:

Accelerated monotone iterations:¹ compute the sequence of lower/upper solutions

$$\left(\max_{\underline{\boldsymbol{u}}_k \leq \boldsymbol{\xi} \leq \overline{\boldsymbol{u}}_k} F'(\boldsymbol{\xi})\right) (\boldsymbol{v}_{k+1} - \boldsymbol{v}_k) + F(\boldsymbol{v}_k) = 0, \qquad \boldsymbol{v}_k = \underline{\boldsymbol{u}}_k, \overline{\boldsymbol{u}}_k$$

• Nested Newton's method²: $F(u) = F_1(u) - F_2(u)$

Outer iteration loop:

$$F_1'(\boldsymbol{u}_k)(\boldsymbol{u}_{k+1}-\boldsymbol{u}_k)+F_1(\boldsymbol{u}_k)-F_2(\boldsymbol{u}_{k+1})=0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

¹Ortega & Rheinboldt '70, Pao '98, '03

²Brugnano & Casulli '09, Casulli & Zanolli '12

1D numerical experiment

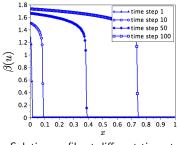
Porous media equation on $(0, 1) \times (0, T)$

$$\partial_t \beta(u) - \partial_{xx}^2 u = 0, \qquad \beta(u) = u^{1/m}$$

with Neumann boundary conditions

- lnflow at x = 0: $-\partial_x u(0, t) = q > 0$
- No-flow at x = 1

Almost "dry" initial condition: $\beta(u(x, 0)) = 10^{-10}$



Solution profile at different time steps

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

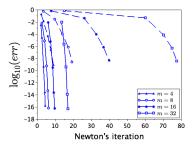
Performance assessment: u and v-formulations

Original *u*-formulation:

Alternative v-formulation:

$$\beta(\boldsymbol{u}) + A\boldsymbol{u} - \boldsymbol{b} = 0 \qquad \boldsymbol{v} + A\beta^{-1}(\boldsymbol{v}) - \boldsymbol{b} = 0$$

Different values of m > 1 in $\beta(u) = u^{1/m}$



- **Dashed**: Original formulation is inefficient, manly because $\beta'(0) = +\infty$.
- Solid: Alternative formulation is more efficient, but concavity is lost: note that (A)_{ii}(A)_{ij} ≤ 0, i ≠ j

Performance assessment: u and v-formulations

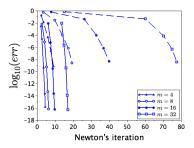
Original *u*-formulation:

Alternative v-formulation:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$\beta(\boldsymbol{u}) + A\boldsymbol{u} - \boldsymbol{b} = 0 \qquad \boldsymbol{v} + A\beta^{-1}(\boldsymbol{v}) - \boldsymbol{b} = 0$$

Different values of m > 1 in $\beta(u) = u^{1/m}$



- Performance of both formulations depends on m
- Can we find an even more efficient primary variable?

Outline

Introduction to Richards' equation

- From saturated to unsaturated flow
- Capillary pressure
- Analysis
- Simulation pause
- Numerical solution

Improving convergence of Newton's method

- Monotone Newton Theorem
- Primary variable switching
- Jacobi-Newton method

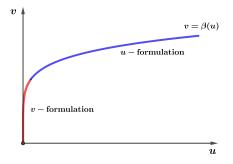
Simplified models

Groundwater table movement: Dupuit model

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Infiltration: Green-Ampt model
- Bridging water and infiltration

Adaptive choice of the variable

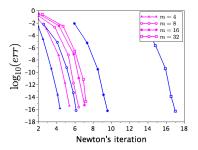


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- Switching between v and u may be a good idea
- Well known for Richards' equation

Efficiency of variable switching

- v-formulation: $\partial_t v \Delta \beta^{-1}(v) = 0$
- variable switching: PDE?



- Variable switching: is more efficient and is robust w.r.t. m
- Drawback: implementation using if/else conditions

Graph parametrization

Parametrization of the graph $v = \beta(u)$: Let $\overline{u}, \overline{v} : \mathbb{R}^+ \to \mathbb{R}^+$ such that

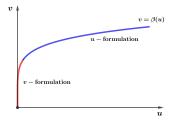
 $\overline{\mathbf{v}}(\tau) = \beta(\overline{\mathbf{u}}(\tau)) \qquad \forall \tau \in \mathbb{R}^+$

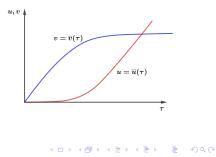
PDE in terms of the new variable τ

 $\partial_t \overline{v}(\tau) - \Delta \overline{u}(\tau) = 0$

Variable switching:

$$\max(\overline{v}'(\tau), \overline{u}'(\tau)) = 1$$





Graph parametrization

Parametrization of the graph $v = \beta(u)$:

Let $\overline{u},\overline{v}:\mathbb{R}^+\to\mathbb{R}^+$ such that

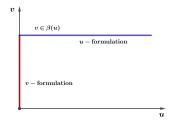
 $\overline{\mathbf{v}}(\tau) = \beta(\overline{u}(\tau)) \qquad \forall \tau \in \mathbb{R}^+$

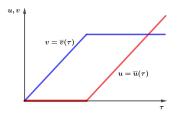
PDE in terms of the new variable τ

 $\partial_t \overline{v}(\tau) - \Delta \overline{u}(\tau) = 0$

Variable switching:

$$\max(\overline{v}'(\tau),\overline{u}'(\tau))=1$$



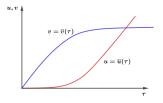


◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々で

Estimates (B. & Cancès '17)

Define $F_{\tau}(\tau) = \overline{v}(\tau) + A\overline{u}(\tau) - b$ Estimates on $F'_{\tau}(\tau)$ $\|F'_{\tau}(\tau)\|, \|F'_{\tau}(\tau)\|^{-1} < C$

uniformly w.r.t. τ and the shape of β .



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Estimates (B. & Cancès '17)

Define
$$F_{ au}(au) = \overline{v}(au) + A\overline{u}(au) - b$$

Estimates on $F'_{ au}(au)$

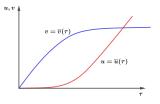
 $\|F_{\tau}'(\tau)\|, \|F_{\tau}'(\tau)\|^{-1} < C$

uniformly w.r.t. $\boldsymbol{\tau}$ and the shape of β .

Corollaries:

- Control of $\operatorname{cond}(F'_{\tau})$
- Justified stopping criterion:

$$\|F_{\tau}(\tau)\| < \epsilon \Rightarrow \|\tau - \tau_{\star}\| < C\epsilon \Rightarrow \begin{cases} \|\overline{v}(\tau) - v_{\star}\| < C\epsilon, \\ \|\overline{u}(\tau) - u_{\star}\| < C\epsilon \end{cases}$$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

Introduction to Richards' equation

- From saturated to unsaturated flow
- Capillary pressure
- Analysis
- Simulation pause
- Numerical solution

Improving convergence of Newton's method

- Monotone Newton Theorem
- Primary variable switching
- Jacobi-Newton method

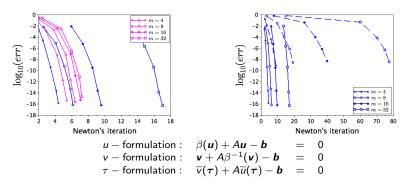
Simplified models

Groundwater table movement: Dupuit model

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

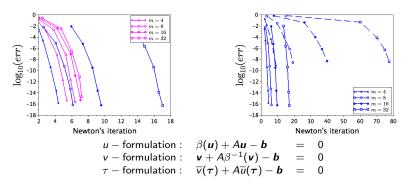
- Infiltration: Green-Ampt model
- Bridging water and infiltration

Recap on various formulations



u-formulations: catastrophic performance, but convergence theorem
 τ-formulations: excellent performance, but no convergence theorem

Recap on various formulations



u-formulations: catastrophic performance, but convergence theorem
 τ-formulations: excellent performance, but no convergence theorem

Can we have both performance and convergence result?

Nonlinear Jacobi method:

Separate diagonal and off-diagonal terms

$$\underbrace{\beta(\boldsymbol{u}) + \operatorname{diag}(\boldsymbol{A})\boldsymbol{u}}_{f(\boldsymbol{u})} + \underbrace{(\boldsymbol{A} - \operatorname{diag}(\boldsymbol{A}))\boldsymbol{u}}_{B\boldsymbol{u}} = \boldsymbol{b}$$

Use fixed-point iterations

$$\boldsymbol{u}_{k+1} = g(\boldsymbol{b} - B\boldsymbol{u}_k), \qquad g = f^{-1}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

(the method is linearly convergent)

Nonlinear Jacobi method:

Separate diagonal and off-diagonal terms

$$\underbrace{\beta(\boldsymbol{u}) + \operatorname{diag}(\boldsymbol{A})\boldsymbol{u}}_{f(\boldsymbol{u})} + \underbrace{(\boldsymbol{A} - \operatorname{diag}(\boldsymbol{A}))\boldsymbol{u}}_{B\boldsymbol{u}} = \boldsymbol{b}$$

Use fixed-point iterations

$$\boldsymbol{u}_{k+1} = g(\boldsymbol{b} - B\boldsymbol{u}_k), \qquad g = f^{-1}$$

(the method is linearly convergent)

Idea: Use Jacobi method as preconditioner not as a solver

Left preconditioned method: apply Newton to

$$\boldsymbol{u}-\boldsymbol{g}(\boldsymbol{b}-\boldsymbol{B}\boldsymbol{u})=0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Nonlinear Jacobi method:

Separate diagonal and off-diagonal terms

$$\underbrace{\beta(\boldsymbol{u}) + \operatorname{diag}(\boldsymbol{A})\boldsymbol{u}}_{f(\boldsymbol{u})} + \underbrace{(\boldsymbol{A} - \operatorname{diag}(\boldsymbol{A}))\boldsymbol{u}}_{B\boldsymbol{u}} = \boldsymbol{b}$$

Use fixed-point iterations

$$\boldsymbol{u}_{k+1} = g(\boldsymbol{b} - B\boldsymbol{u}_k), \qquad g = f^{-1}$$

(the method is linearly convergent)

Idea: Use Jacobi method as preconditioner not as a solver

Left preconditioned method: apply Newton to

$$\boldsymbol{u}-\boldsymbol{g}(\boldsymbol{b}-\boldsymbol{B}\boldsymbol{u})=0$$

Right preconditioned method: apply Newton to

$$\boldsymbol{\xi} + B\boldsymbol{g}(\boldsymbol{\xi}) - \boldsymbol{b} = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

with $\boldsymbol{\xi} = f(\boldsymbol{u})$

Nonlinear Jacobi method:

Separate diagonal and off-diagonal terms

$$\underbrace{\beta(\boldsymbol{u}) + \operatorname{diag}(\boldsymbol{A})\boldsymbol{u}}_{f(\boldsymbol{u})} + \underbrace{(\boldsymbol{A} - \operatorname{diag}(\boldsymbol{A}))\boldsymbol{u}}_{B\boldsymbol{u}} = \boldsymbol{b}$$

Use fixed-point iterations

$$\boldsymbol{u}_{k+1} = g(\boldsymbol{b} - B\boldsymbol{u}_k), \qquad g = f^{-1}$$

(the method is linearly convergent)

Idea: Use Jacobi method as preconditioner not as a solver

Left preconditioned method: apply Newton to

$$\boldsymbol{u}-\boldsymbol{g}(\boldsymbol{b}-\boldsymbol{B}\boldsymbol{u})=0$$

Right preconditioned method: apply Newton to

$$\boldsymbol{\xi} + B\boldsymbol{g}(\boldsymbol{\xi}) - \boldsymbol{b} = 0$$

with $\boldsymbol{\xi} = f(\boldsymbol{u})$

Preconditioned methods satisfy MNT: note that $B \leq 0$.

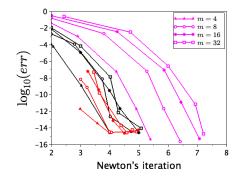
Efficiency of the preconditioned methods

Left-preconditioned:

Right-preconditioned:

$$m{u} - m{g}(m{b} - Am{u}) = 0$$

$$\boldsymbol{\xi} + Ag(\boldsymbol{\xi}) - \boldsymbol{b} = 0$$



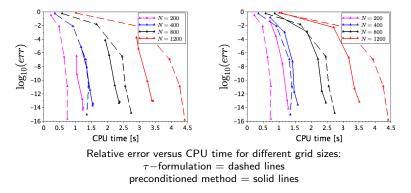
Left and **right** preconditioned methods beat τ - formulation!

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

CPU time efficiency

Preconditioned methods have to evaluate $g = f^{-1}$:

At each Newton's iteration one solves N uncoupled equations How expensive is that?



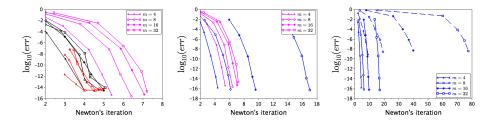
• Efficient for all except very small problems ($N \gtrsim 400$) because less linear solves

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusion

Nonlinear Jacobi preconditioning

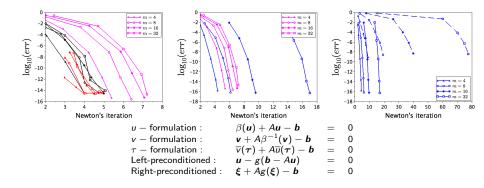
- accelerates convergence of Newton's method,
- while preserving monotone convergence.
- Approximate evaluation of g is Ok.



Conclusion

Nonlinear Jacobi preconditioning

- accelerates convergence of Newton's method,
- while preserving monotone convergence.
- Approximate evaluation of g is Ok.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Extensions and perspectives

Industrial problems:

Non diagonal nonlinearities and non monotone discretizations Richards' equation, two-phase flow, heterogeneous media, etc, ...

- Works extremely well with parametrization
- Ongoing work on Jacobi-Newton
 - **b** Difficulty: $\partial_{ij} \boldsymbol{F}_k \neq 0$

Toy problems:

Non-convex diagonal nonlinearities: Jacobi-Newton + Pao's or Casulli's method

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Analysis of (Block-Jacobi, Gauss-Seidel, DD)-Newton method

Extensions and perspectives

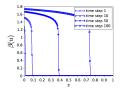
Industrial problems:

Non diagonal nonlinearities and non monotone discretizations Richards' equation, two-phase flow, heterogeneous media, etc, ...

- Works extremely well with parametrization
- Ongoing work on Jacobi-Newton
 - **b** Difficulty: $\partial_{ij} \boldsymbol{F}_k \neq 0$

Toy problems:

- Non-convex diagonal nonlinearities: Jacobi-Newton + Pao's or Casulli's method
- Analysis of (Block-Jacobi, Gauss-Seidel, DD)-Newton method



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Outline

Introduction to Richards' equation

- From saturated to unsaturated flow
- Capillary pressure
- Analysis
- Simulation pause
- Numerical solution

Improving convergence of Newton's method

- Monotone Newton Theorem
- Primary variable switching
- Jacobi-Newton method

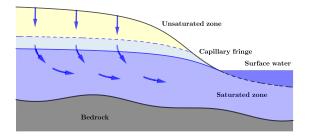
Simplified models

Groundwater table evolution: Dupuit model

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Infiltration: Green-Ampt model
- Bridging water and infiltration

Simplified models

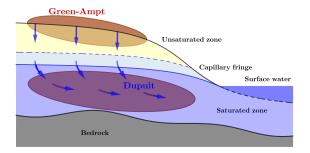


(ロ)、(型)、(E)、(E)、 E) の(()

General considerations:

- Below water table: flow is mostly horizontal
- In the unsaturated zone: flow is mostly vertical

Simplified models

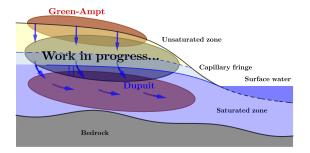


▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Available models:

- Dupuit for groundwater table evolution: 2D
- Green-Ampt for infiltration: $0D \times N_x \times N_y$

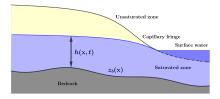
Simplified models



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Available models:

- Dupuit for groundwater table evolution: 2D
- Green-Ampt for infiltration: $0D \times N_x \times N_y$



Large scale aquifer model Dupuit-(Forchheimer, Boussinesq)¹:

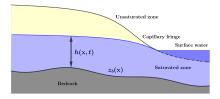
$$\eta \partial_t h - \operatorname{div}_{\mathsf{x}} \left(h \nabla (h + z_b) \right) = r$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Depth averaged

Shallow flow assumptions

 $^{^1\}mathrm{Dupuit}$ 1863, Forchheimer 1901, Boussinesq 1903, 1904 $^2\mathrm{Blendinger}$ 1999



Large scale aquifer model Dupuit-(Forchheimer, Boussinesq)¹:

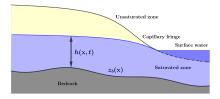
$$\eta \partial_t h - \operatorname{div}_{\mathsf{x}} \left(h \nabla (h + z_b) \right) = r$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Empirical parameters

- Specific storage η
- Recharge r

 $^{^1\}mathrm{Dupuit}$ 1863, Forchheimer 1901, Boussinesq 1903, 1904 $^2\mathrm{Blendinger}$ 1999



Large scale aquifer model Dupuit-(Forchheimer, Boussinesq)¹:

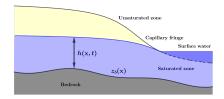
$$\eta \partial_t h - \operatorname{div}_{\mathsf{x}} (h \nabla (h + z_b)) = r$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Limitations

- Unsaturated zone is not modeled
- No flow trough the capillary fringe²

¹Dupuit 1863, Forchheimer 1901, Boussinesq 1903, 1904 ²Blendinger 1999



Large scale aquifer model Dupuit-(Forchheimer, Boussinesq)¹:

$$\eta \partial_t h - \operatorname{div}_{\mathsf{x}} (h \nabla (h + z_b)) = r$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Limitations

- Unsaturated zone is not modeled
- No flow trough the capillary fringe²

Questions

- Connection to Richards'?
- Meaning of η and r?

 $^{^1\}mathrm{Dupuit}$ 1863, Forchheimer 1901, Boussinesq 1903, 1904 $^2\mathrm{Blendinger}$ 1999

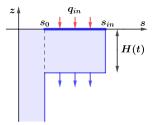
Green-Ampt

1D Richards' equation

$$\partial_t s + \partial_z k(s) g = 0$$

Assumptions:

- Semi-infinite domain
- Constant initial saturation s₀
- No capillarity*



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Infiltration saturation: $k(s_{in})g = q_{in}$

Infiltration velocity

$$(s_{in}-s_0)\frac{\mathrm{d}H}{\mathrm{d}t}=(k(s_{in})-k(s_0))g$$

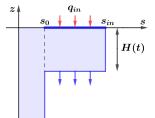
Green-Ampt

1D Richards' equation

$$\partial_t s + \partial_z k(s) \mathbf{g} = 0$$

Assumptions:

- Semi-infinite domain
- Constant initial saturation s₀
- No capillarity*



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

What if $q_{in} > k(1)g$?

- Surface runoff
- Pressurized font

$$(1-s_0)\frac{\mathrm{d}H}{\mathrm{d}t} = (k(1)-k(s_0))g + k(1)\frac{H_p - 0}{H}$$

 H_p - pounding water depth.

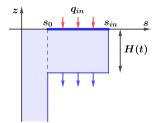
Green-Ampt

1D Richards' equation

$$\partial_t s + \partial_z k(s) g = 0$$

Assumptions:

- Semi-infinite domain
- Constant initial saturation s₀
- No capillarity*



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

What if $q_{in} > k(1)g$?

Surface runoff

Pressurized font

$$(1-s_0)\frac{\mathrm{d}H}{\mathrm{d}t} = (k(1)-k(s_0))g + k(1)\frac{H_p - 0}{H}$$

 H_p - pounding water depth.

Remarks

- Simple 0D model that can be coupled with surface flow
- No memory
- What if reach the groundwater table?

Dupuit 2D + Richards' 1D model

Assumptions:

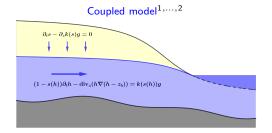
- No capillarity
- No pressurized flow above groundwater-table*
- Shallow flow

Decomposition

 Above water table: set of 1D Richards' equations

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Below water table: Dupuit



Dupuit 2D + Richards' 1D model

Assumptions:

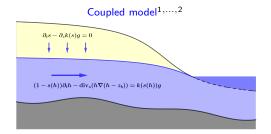
- No capillarity
- No pressurized flow above groundwater-table*
- Shallow flow

Decomposition

 Above water table: set of 1D Richards' equations

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Below water table: Dupuit



Observations:

- Richards' on moving domain
- Can be extend to pressurized infiltration fronts

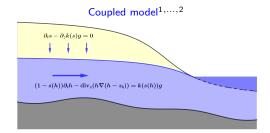
Dupuit 2D + Richards' 1D model

Assumptions:

- No capillarity
- No pressurized flow above groundwater-table*
- Shallow flow

Decomposition

- Above water table: set of 1D Richards' equations
- Below water table: Dupuit



Open questions

Well-posedness

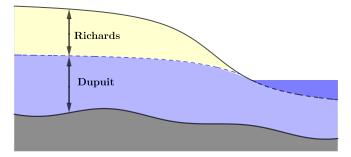
- No time regularity for h(x, t).
- Front collisions?

Efficient numerical scheme

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

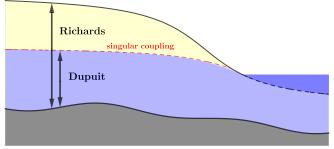
- Moving domain
- Front collision

Fixed domain Dupuit 2D + Richards' 1D model



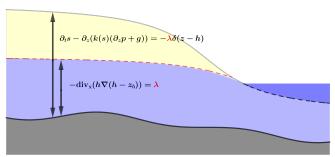
◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Fixed domain Dupuit 2D + Richards' 1D model



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Fixed domain Dupuit 2D + Richards' 1D model



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Fixed domain model

Pros:

- Fixed mesh for Richards'
- Pressurized fronts

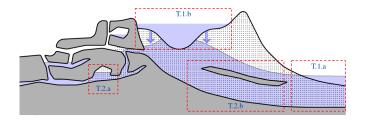
Cons:

Singular coupling term

GeoFun ANR project

Collaborations with M. Parisot & M. Carreau as well as

N. Aguillon, E. Audusse, R. Masson



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Reach nonlinear model and exiting research subject

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Many open questions

Practically relevant challenges

Porosity

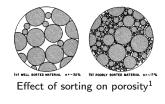
Table 2.5.1

Typical Porosity Values of Natural Sedimentary Materials^a

Sedimentary Material	Porosity Value (percent)	Sedimentary Material	Porosity Value (percent)
Peat soil	60-80	Fine-to-medium mixed sand	30-35
Soils	50-60	Gravel	30-40
Clay	45-55	Gravel and sand	30-35
Silt	40-50	Sandstone	10-20
Medium-to-coarse mixed sand	35-40	Shale	1-10
Uniform sand	30-40	Limestone	1-10

^a After Todd 1959.

Typical porosity values¹



▲□▶ ▲□▶ ▲国▶ ▲国▶ ▲国 ● のへで

Go back

¹Jacob Bear, Dynamics of Fluids in Porous Media, 1972

Newton's method for scalar concave problem

Newton's method for

$$f(u) = 0, \qquad u \in \mathbb{R}$$

f concave and increasing

