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Applications of Richards’ equation
Unsaturated/saturated groundwater flow

I pores occupied by water + air

Applications:

I Water resource estimation

I Irrigation

I Contaminant transport

I Interaction with surface water



Why Richards’ equation?

French Wikipedia: La résolution numérique de l’équation de Richards demeure l’un des
problèmes d’analyse numérique les plus difficiles pour les sciences naturelles1.

English Wikipedia: The numerical solution of the Richards’ equation is one of the
most challenging problems in earth science1.

Original article1: Richards’ equation is . . . arguably one of the most difficult equations
to reliably and accurately solve in all of hydrosciences.

1Farthing and Ogden, Numerical solution of Richards’ Equation: a review of advances and challenges, 2017
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French Wikipedia: La résolution numérique de l’équation de Richards demeure l’un des
problèmes d’analyse numérique les plus difficiles pour les sciences naturelles1.

English Wikipedia: The numerical solution of the Richards’ equation is one of the
most challenging problems in earth science1.

Original article1: Richards’ equation is . . . arguably one of the most difficult equations
to reliably and accurately solve in all of hydrosciences.

Major numerical challenge: Robustness and efficiency of the nonlinear solvers.

1Farthing and Ogden, Numerical solution of Richards’ Equation: a review of advances and challenges, 2017
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Saturated vs. unsaturated incompressible groundwater flow

s = |water|
|void|

in a REV

Saturated flow

Continuity equation:

divv = 0

Darcy law:

v = −
K
µ

(∇p − ρg)

Find p satisfying

−div
(
K
µ

(∇p − ρg)

)
= 0

Unsaturated flow

Continuity equation:

φ∂ts + divv = 0

Darcy-Buckingham law:

v = −
Kk(s)

µ
(∇p − ρg)

Find p and s satisfying

φ∂ts − div

(
Kk(s)

µ
(∇p − ρg)

)
= 0

together with s = S(p)
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Hydrodynamical properties

Find p and s satisfying

φ∂ts − div

(
Kk(s)

µ
(∇p − ρg)

)
= 0

together with s = S(p)

Parameters:

I Porosity φ ≈ 0.01− 1

I Permeability K ≈ 10−7 − 10−20m2,
possibly a full tensor

Closure laws:

I Relative permeability
k(s) ≈ sm,m ≈ 3

I Retention curve S : increasing,

S(−∞) = 0 and S(p ≥ pe) = 1
Relative permeability k as a function

of saturation
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I Relative permeability
k(s) ≈ sm,m ≈ 3

I Retention curve S : increasing,

S(−∞) = 0 and S(p ≥ pe) = 1

Retention curve s = S(p)
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Two-phase flow in porous media

Two fluids shares the pore space

Assumptions

I Two immiscible phases: sharp interfaces at pore scale

I Wetting (water) and non-wetting (air) phases



Capillary pressure at the pore-scale

At the pore scale: pressure jump across free surface

I Young–Laplace law

∆p = σ

(
1

R1
+

1

R2

)
Observations:

I Small pore size ⇒ large pressure jump (if shared by both phases!)

I Wetting phase “prefers” small pores



Macroscopic capillary pressure

Capillary pressure at Darcy (macroscopic) scale

pg − pl = pc (s l )

I Entry pressure pe

I Capillary pressure law depends on
pore-size distribution



Macroscopic capillary pressure

Wetting of the rock:

I Interface between the phases moves to larger pores ⇒ pressure jump decreases
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Macroscopic capillary pressure

Wetting of the rock:

I Interface between the phases moves to larger pores ⇒ pressure jump decreases



Capillary pressure curves

Macroscopic capillary pressure law

I depends on pore-size distribution;

I may be neglected/assumed constant for some soils.

Van Genuchten model

pc (s) = pα
(
s−

1
m − 1

) 1
n

Brooks-Corey model
pc (s) = pes

−λ



Capillary hysteresis (not covered)

Capillary pressure depends on the rate of wetting (or drying):

pc = pc
(
s l , ∂ts

l
)



Retention curve

Set pg = patm, from capillary pressure law:

pl = patm − pc (s) for 0 < s < 1

Let patm = 0, we have (pl + pc (s))(1− s) = 0,

pl + pc (s) ≥ 0, 1− s ≥ 0.

Functional closure s = S(p)



Retention curve

Set pg = patm, from capillary pressure law:

pl = patm − pc (s) for 0 < s < 1

Let patm = 0, we have (pl + pc (s))(1− s) = 0,

pl + pc (s) ≥ 0, 1− s ≥ 0.

Functional closure s = S(p) Graphical closure s ∈ S(p)
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Formulation using Kirchhoff transform

Richards’ equation
∂ts − divk(s) (∇p − g) = 0

Natural energy estimate

sup
t≤T

∫
Ω

Ψ(x)dx +

∫ T

0

∫
Ω
k(s)|∇p|2 dx < +∞, Ψ(p) = S(p)p −

∫ p

S(π)dπ

does not provide control on ‖∇p‖L2

Kirchhoff transform

U(p) =

∫ p

k(π) dπ

Reformulated equation

∂ts − div (∇u − k(s)g) = 0

with s = S̃(u) := S(U−1(u))

Equation is linear w.r.t. “generalized pressure” u.



Formulation using Kirchhoff transform

Richards’ equation using Kirchhoff transform

∂ts − div (∇u − k(s)g) = 0

s = S(p) s = S̃(u)

Typically S̃(u) ∼ u1/m,m > 1 near u = 0,

I connections to porous media equation: ∂tu
1/m = ∆u

I almost hyperbolic behavior near u = 0: ∂ts + divk(s)g = 0.
Set of 1d problems!
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Formulation using Kirchhoff transform

Richards’ equation using Kirchhoff transform

∂ts − div (∇u − k(s)g) = 0

s = S̃(u)

Coexistence of multiple “regimes”

Existence and uniqueness

I Parabolic-elliptic: Van Duyn & Peletier ’82, Alt & Luckhaus ’83

I Hyperbolic-elliptic: Carrillo ’94

I Hyperbolic-parabolic-elliptic: Carrillo ’99



Formulation using Kirchhoff transform

Richards’ equation using Kirchhoff transform

∂ts − div (∇u − k(s)g) = 0

s = S̃(u)

Coexistence of multiple “regimes”

Existence and uniqueness

I Parabolic-elliptic: Van Duyn & Peletier ’82, Alt & Luckhaus ’83

I Hyperbolic-elliptic (Dam problem): Visintin ’80, Carrillo ’94

I Hyperbolic-parabolic-elliptic: Carrillo ’99



Formulation using Kirchhoff transform

Richards’ equation using Kirchhoff transform

∂ts − div (∇u − k(s)g) = 0

Pros & cons of f Kirchhoff formulation

Makes mathematicians

I Good for the analysis of PDE and numerical schemes

I Easier to solve the discrete problem

Makes engineers

I No analytical expression of U(p) for some closure laws

I Harder to incorporate additional physics
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Simulation pause

Infiltration into the dry soil

Sand Clay

Infiltration during a flood event
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Numerical solution of Richards’ equation

Richards’ equation

∂ts − divk(s) (∇p − g) = 0, s = S(p)

Implicit discretization {
F (s, p) = 0
s = S(p)

Closure law elimination gives

I either F (S(p), p) = 0

I either F (s, S−1(s)) = 0



Primary variable selection

p−formulation

S ′(p)∂tp − divk(s) (∇p − g) = 0

s−formulation

∂ts − div
(
(S−1)′(s)k(s)∇s − k(s)g

)
= 0



Primary variable selection

p−formulation

S ′(p)∂tp − divk(s) (∇p − g) = 0

s−formulation

∂ts − div
(
(S−1)′(s)k(s)∇s − k(s)g

)
= 0

Pros:

I Both sat. and unsat. regimes

Cons:

I Dry soil s ≈ 0: gives 0 ≈ 0

I Does not cover the case s ∈ S(p)

Cons:

I Does not cover the saturated regime

Pros:

I Dry soil s ≈ 0: k(s)(S−1)′(p) < +∞
I Covers the case s ∈ S(p)



Primary variable selection

Solution: Variable switching1,2,3,4

Numerical efficiency Heterogeneous multi-phase flow

1Forsyth, Wu, Pruess, 1995
2Diersch, Perrochet, 1999
3Brenner, Groza, Jeannin, Masson, Pellerin, 2017
4Brenner, Canceès, 2017



Primary variable selection

Solution: Variable switching1,2,3,4

Numerical efficiency Heterogeneous multi-phase flow

Similar ideas applies to ∂ts − div (∇u − k(s)g) = 0

1Forsyth, Wu, Pruess, 1995
2Diersch, Perrochet, 1999
3Brenner, Groza, Jeannin, Masson, Pellerin, 2017
4Brenner, Canceès, 2017



Classical discretizations: Kirchhoff pressure

Implicit finite volume scheme

snK − sn−1
K

∆tn
+
∑
L

qnKL = 0

Flux discretiaztion

1

|σKL|

∫
σKL

∇u−k(s)gdσ ≈
uK − uL

dKL
−k(sKL) g · nKL

with upwinding

sKL =

{
sK , −g · nKL ≥ 0
sL, else

Admissible mesh
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−k(sKL) g · nKL

with upwinding
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sL, else

Admissible mesh

Algebraic system:
s + Au + Bk(s) = sn−1, s = S̃(u)

Structural properties:

I A and Bk ′(s) are M-matrices

I S̃ is diagonal and concave



Classical discretizations: Kirchhoff pressure

Implicit finite volume scheme

snK − sn−1
K

∆tn
+
∑
L

qnKL = 0

Flux discretiaztion

1

|σKL|

∫
σKL

∇u−k(s)gdσ ≈
uK − uL

dKL
−k(sKL) g · nKL

with upwinding

sKL =

{
sK , −g · nKL ≥ 0
sL, else

Admissible mesh

Semi-implicit discretization:

s + Au + Bk(sn−1) = sn−1, s = S̃(u)

Structural properties:

I A and Bk ′(s) are M-matrices

I S̃ is diagonal and concave



Classical discretizations: physical pressure

Implicit finite volume scheme

snK − sn−1
K

∆tn
+
∑
L

qnKL = 0

Flux discretiaztion

1

|σKL|

∫
σKL

k(s) (∇p − g)dσ ≈ k(sKL)

(
pK − pL

dKL
− g · nKL

)
with upwinding

sKL =

 sK ,
pK − pL

dKL
− g · nKL ≥ 0

sL, else

Remarks:

I Upwinding handles degeneracy k(0) = 0

I Semi-implicit schemes

qnKL = |σ|k(sn−1
KL )

(
pnK − pnL

dKL
− g · nKL

)
are problematic since ∇p · nKL may be very large.



Outline

Introduction to Richards’ equation
I From saturated to unsaturated flow

I Capillary pressure

I Analysis

I Simulation pause

I Numerical solution

Improving convergence of Newton’s method
I Monotone Newton Theorem

I Primary variable switching

I Jacobi-Newton method

Simplified models
I Groundwater table movement: Dupuit model

I Infiltration: Green-Ampt model

I Bridging water and infiltration



Objectives

Model problem: Find u ∈ RN

β(u) + Au = b, b ≥ 0

Objective: Newton-like iterative method

I efficient and robust w.r.t. to the shape of β

I with guarantied (semi-)global convergence



Objectives

Model problem: Find u ∈ RN

β(u) + Au = b, b ≥ 0

Objective: Newton-like iterative method

I efficient and robust w.r.t. to the shape of β

I with guarantied (semi-)global convergence

Assumptions:

I J(u) = β′(u) + A is M-matrix:

J(u)−1 ≥ 0 and (J(u))ij ≤ 0, i 6= j

I βi : R+ → R+ diagonal, increasing and concave, β′i (0) ≤ +∞
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Monotone Newton’s method

Notations
F (u) = β(u) + Au − b

Newton’s method
F ′(uk ) (uk+1 − uk ) + F (uk ) = 0

Monotone Newton Theorem (Baluev ’52; Ortega & Rheinboldt ’70)
Let u0 satisfy F (u0) ≤ 0, then

I uk converges to the unique solution u?
I uk ≤ uk+1 ≤ u? for all k ≥ 0
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Main ingredients:

I F is concave (or convex)
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Illustration (N = 1)



Monotone Newton’s method

Notations
F (u) = β(u) + Au − b

Newton’s method
F ′(uk ) (uk+1 − uk ) + F (uk ) = 0

Monotone Newton Theorem (Baluev ’52; Ortega & Rheinboldt ’70)
Let u0 satisfy F (u0) ≤ 0, then

I uk converges to the unique solution u?
I uk ≤ uk+1 ≤ u? for all k ≥ 0

Main ingredients:

I F is concave (or convex)

I F ′(u) is an M-matrix

Illustration (N = 1)

The method is semi-globally convergent. Is it efficient?



Monotone Newton’s method

Notations
F (u) = β(u) + Au − b

Newton’s method
F ′(uk ) (uk+1 − uk ) + F (uk ) = 0

Removing concavity (convexity) assumption for problems with diagonal nonlinearities:

I Accelerated monotone iterations:1 compute the sequence of lower/upper solutions(
max

uk≤ξ≤uk

F ′(ξ)

)
(vk+1 − vk ) + F (vk ) = 0, vk = uk , uk

I Nested Newton’s method2: F (u) = F1(u)− F2(u)

Outer iteration loop:

F ′1(uk )(uk+1 − uk ) + F1(uk )− F2(uk+1) = 0

1Ortega & Rheinboldt ’70, Pao ’98, ’03
2Brugnano & Casulli ’09, Casulli & Zanolli ’12



1D numerical experiment

Porous media equation on (0, 1)× (0,T )

∂tβ(u)− ∂2
xxu = 0, β(u) = u1/m

with Neumann boundary conditions

I Inflow at x = 0: −∂xu(0, t) = q > 0

I No-flow at x = 1

I Almost ”dry” initial condition: β(u(x , 0)) = 10−10

Solution profile at different time steps



Performance assessment: u− and v−formulations

Original u-formulation:

β(u) + Au − b = 0

Alternative v -formulation:

v + Aβ−1(v)− b = 0

Different values of m > 1 in β(u) = u1/m

I Dashed: Original formulation is inefficient, manly because β′(0) = +∞.

I Solid: Alternative formulation is more efficient, but concavity is lost:

note that (A)ii (A)ij ≤ 0, i 6= j



Performance assessment: u− and v−formulations

Original u-formulation:

β(u) + Au − b = 0

Alternative v -formulation:

v + Aβ−1(v)− b = 0

Different values of m > 1 in β(u) = u1/m

I Performance of both formulations depends on m

I Can we find an even more efficient primary variable?
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Adaptive choice of the variable

I Switching between v and u may be a good idea

I Well known for Richards’ equation



Efficiency of variable switching

I v -formulation: ∂tv −4β−1(v) = 0

I variable switching: PDE?

I Variable switching: is more efficient and is robust w.r.t. m

I Drawback: implementation using if/else conditions



Graph parametrization

Parametrization of the graph v = β(u):

Let u, v : R+ → R+ such that

v(τ) = β(u(τ)) ∀τ ∈ R+

PDE in terms of the new variable τ

∂tv(τ)−∆u(τ) = 0

Variable switching:

max(v ′(τ), u′(τ)) = 1
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Parametrization of the graph v = β(u):

Let u, v : R+ → R+ such that

v(τ) = β(u(τ)) ∀τ ∈ R+

PDE in terms of the new variable τ

∂tv(τ)−∆u(τ) = 0

Variable switching:
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Estimates (B. & Cancès ’17)

Define Fτ (τ ) = v(τ ) + Au(τ )− b

Estimates on F ′τ (τ )

‖F ′τ (τ )‖, ‖F ′τ (τ )‖−1 < C

uniformly w.r.t. τ and the shape of β.

Corollaries:

I Control of cond(F ′τ )

I Justified stopping criterion:

‖Fτ (τ )‖ < ε⇒ ‖τ − τ?‖ < Cε⇒
{
‖v(τ )− v?‖ < Cε,
‖u(τ )− u?‖ < Cε
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Recap on various formulations

u − formulation : β(u) + Au − b = 0
v − formulation : v + Aβ−1(v)− b = 0
τ − formulation : v(τ ) + Au(τ )− b = 0

I u−formulations: catastrophic performance, but convergence theorem

I τ−formulations: excellent performance, but no convergence theorem

Can we have both performance and convergence result?
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Jacobi-Newton method

Nonlinear Jacobi method:

I Separate diagonal and off-diagonal terms

β(u) + diag(A)u︸ ︷︷ ︸
f (u)

+ (A− diag(A))u︸ ︷︷ ︸
Bu

= b

I Use fixed-point iterations

uk+1 = g(b − Buk ), g = f −1

(the method is linearly convergent)

Idea: Use Jacobi method as preconditioner not as a solver

I Left preconditioned method: apply Newton to

u − g(b − Bu) = 0

I Right preconditioned method: apply Newton to

ξ + Bg(ξ)− b = 0

with ξ = f (u)

Preconditioned methods satisfy MNT: note that B ≤ 0.
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Idea: Use Jacobi method as preconditioner not as a solver

I Left preconditioned method: apply Newton to

u − g(b − Bu) = 0

I Right preconditioned method: apply Newton to

ξ + Bg(ξ)− b = 0

with ξ = f (u)

Preconditioned methods satisfy MNT: note that B ≤ 0.



Efficiency of the preconditioned methods

Left-preconditioned:

u − g(b − Au) = 0

Right-preconditioned:

ξ + Ag(ξ)− b = 0

I Left and right preconditioned methods beat τ− formulation!



CPU time efficiency

Preconditioned methods have to evaluate g = f −1:

I At each Newton’s iteration one solves N uncoupled equations

How expensive is that?

Relative error versus CPU time for different grid sizes:
τ−formulation = dashed lines

preconditioned method = solid lines

I Efficient for all except very small problems (N & 400) because less linear solves



Conclusion

Nonlinear Jacobi preconditioning

I accelerates convergence of Newton’s method,

I while preserving monotone convergence.

I Approximate evaluation of g is Ok.

u − formulation : β(u) + Au − b = 0
v − formulation : v + Aβ−1(v)− b = 0
τ − formulation : v(τ ) + Au(τ )− b = 0
Left-preconditioned : u − g(b − Au) = 0
Right-preconditioned : ξ + Ag(ξ)− b = 0
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I while preserving monotone convergence.
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u − formulation : β(u) + Au − b = 0
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Extensions and perspectives

Industrial problems:

Non diagonal nonlinearities and non monotone discretizations
Richards’ equation, two-phase flow, heterogeneous media, etc, ...

I Works extremely well with parametrization
I Ongoing work on Jacobi-Newton

I Difficulty: ∂ijF k 6= 0

Toy problems:

I Non-convex diagonal nonlinearities: Jacobi-Newton + Pao’s or Casulli’s method

I Analysis of (Block-Jacobi, Gauss-Seidel, DD)-Newton method
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Outline

Introduction to Richards’ equation
I From saturated to unsaturated flow

I Capillary pressure

I Analysis

I Simulation pause

I Numerical solution

Improving convergence of Newton’s method
I Monotone Newton Theorem

I Primary variable switching

I Jacobi-Newton method

Simplified models
I Groundwater table evolution: Dupuit model

I Infiltration: Green-Ampt model

I Bridging water and infiltration



Simplified models

General considerations:

I Below water table: flow is mostly horizontal

I In the unsaturated zone: flow is mostly vertical



Simplified models

Available models:

I Dupuit for groundwater table evolution: 2D

I Green-Ampt for infiltration: 0D × Nx × Ny
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Available models:

I Dupuit for groundwater table evolution: 2D

I Green-Ampt for infiltration: 0D × Nx × Ny



Dupuit model

Large scale aquifer model Dupuit-(Forchheimer, Boussinesq)1:

η∂th − divx (h∇(h + zb)) = r

I Depth averaged

I Shallow flow assumptions

1Dupuit 1863, Forchheimer 1901, Boussinesq 1903, 1904
2Blendinger 1999



Dupuit model

Large scale aquifer model Dupuit-(Forchheimer, Boussinesq)1:

η∂th − divx (h∇(h + zb)) = r

Empirical parameters

I Specific storage η

I Recharge r

1Dupuit 1863, Forchheimer 1901, Boussinesq 1903, 1904
2Blendinger 1999



Dupuit model

Large scale aquifer model Dupuit-(Forchheimer, Boussinesq)1:

η∂th − divx (h∇(h + zb)) = r

Limitations

I Unsaturated zone is not modeled

I No flow trough the capillary fringe2

1Dupuit 1863, Forchheimer 1901, Boussinesq 1903, 1904
2Blendinger 1999



Dupuit model

Large scale aquifer model Dupuit-(Forchheimer, Boussinesq)1:

η∂th − divx (h∇(h + zb)) = r

Limitations

I Unsaturated zone is not modeled

I No flow trough the capillary fringe2

Questions

I Connection to Richards’?

I Meaning of η and r?

1Dupuit 1863, Forchheimer 1901, Boussinesq 1903, 1904
2Blendinger 1999



Green-Ampt

1D Richards’ equation

∂ts + ∂zk(s)g = 0

Assumptions:

I Semi-infinite domain

I Constant initial saturation s0

I No capillarity?

Infiltration saturation: k(sin)g = qin

Infiltration velocity

(sin − s0)
dH

dt
= (k(sin)− k(s0))g



Green-Ampt

1D Richards’ equation

∂ts + ∂zk(s)g = 0

Assumptions:

I Semi-infinite domain

I Constant initial saturation s0

I No capillarity?

What if qin > k(1)g?

I Surface runoff

I Pressurized font

(1− s0)
dH

dt
= (k(1)− k(s0))g + k(1)

Hp − 0

H

Hp - pounding water depth.



Green-Ampt

1D Richards’ equation

∂ts + ∂zk(s)g = 0

Assumptions:

I Semi-infinite domain

I Constant initial saturation s0

I No capillarity?

What if qin > k(1)g?

I Surface runoff

I Pressurized font

(1− s0)
dH

dt
= (k(1)− k(s0))g + k(1)

Hp − 0

H

Hp - pounding water depth.

Remarks

I Simple 0D model that can be coupled with surface flow

I No memory

I What if reach the groundwater table?



Dupuit 2D + Richards’ 1D model

Assumptions:

I No capillarity

I No pressurized flow above
groundwater-table?

I Shallow flow

Decomposition

I Above water table: set of 1D
Richards’ equations

I Below water table: Dupuit

Coupled model1,...,2



Dupuit 2D + Richards’ 1D model

Assumptions:

I No capillarity

I No pressurized flow above
groundwater-table?

I Shallow flow

Decomposition

I Above water table: set of 1D
Richards’ equations

I Below water table: Dupuit

Coupled model1,...,2

Observations:

I Richards’ on moving domain

I Can be extend to pressurized infiltration fronts



Dupuit 2D + Richards’ 1D model

Assumptions:

I No capillarity

I No pressurized flow above
groundwater-table?

I Shallow flow

Decomposition

I Above water table: set of 1D
Richards’ equations

I Below water table: Dupuit

Coupled model1,...,2

Open questions

Well-posedness

I No time regularity for h(x, t).

I Front collisions?

Efficient numerical scheme

I Moving domain

I Front collision



Fixed domain Dupuit 2D + Richards’ 1D model

Moving domain model



Fixed domain Dupuit 2D + Richards’ 1D model

Fixed domain model



Fixed domain Dupuit 2D + Richards’ 1D model

Fixed domain model

Pros:

I Fixed mesh for Richards’

I Pressurized fronts

Cons:

I Singular coupling term



GeoFun ANR project

Collaborations with M. Parisot & M. Carreau as well as

I N. Aguillon, E. Audusse, R. Masson



Conclusions on Richards’ equation

Reach nonlinear model and exiting research subject

Many open questions

Practically relevant challenges



Porosity

Typical porosity values1

Effect of sorting on porosity1

Go back
1Jacob Bear, Dynamics of Fluids in Porous Media, 1972



Newton’s method for scalar concave problem

Newton’s method for
f (u) = 0, u ∈ R

I f concave and increasing

Go back


