$\rm ANR~JC$ project Top-up: High-resolution $\textbf{top}\mbox{ography}$ upscaling for urban flood modeling

CG: Cindy Guichard, Sorbone + Inria

- SB: Sébastien Boyaval, LHSV, Ponts PartisTech
- FV: Frédéric Valentin, LNCC, Brazil
- LA: Ludovic Andres, PAST UCA, Métropole NCA
- FL: Florent Largeron, Métropole NCA

Flow domain: scale L = 1 - 10km

georisques.gouv.fr Zone inondable par débordement de de cours d'eau Small structures:

- Buildings, walls, cars
- l = 0.1 100m

Flow domain: scale L = 1 - 10km

georisques.gouv.fr Zone inondable + etablissements sensibles Small structures:

- Buildings, walls, cars
- $\blacksquare \ l = 0.1 100m$

Flow domain: scale L = 1 - 10km

georisques.gouv.fr Zone inondable + etablissements sensibles Small structures:

- Buildings, walls, cars
- l = 0.1 100m

Flow domain: scale L = 1 - 10km

georisques.gouv.fr Zone inondable + etablissements sensibles Small structures:

- Buildings, walls, cars
- l = 0.1 100m

Google Earth

Google Earth

Google Earth

Google Earth

No solution continuity w.r.t. parameters

In conclusion:

- Small scale structural features has to be accounted for.
- High resolution (infra-metric) topographical data is available.

Top-up's question:

■ How to integrate small scale structures into the large scale simulations?

Challenge:

■ Small cells over large domain = very large system.

Multi-scale numerical methods

- "upscale" relevant local fine-scale information to the coarse grid
- solve global coarse problem
- goal: parametrize the fine scale solution with few dof
- opportunities: parallelism, offline/online workload distribution

Domain Decomposition solve the global fine-scale problem, but preconditioned by

- local fine-scale contributions
- global coarse problem
- goal: weak scalability and coefficient robustness

wall-clock time
$$\leq f\left(\frac{H}{h}\right)$$

opportunities: parallelism

Outline

PDE model

Diffusive Wave equation

DD and Ms for linear problem

Unified approach to DD and Ms methods

DD and Ms for nonlinear problem

Few words on NK-DD, DD-NK and POD-DEIM

Outline

PDE model

Diffusive Wave equation

DD and Ms for linear problem

Unified approach to DD and Ms methods

DD and Ms for nonlinear problem

Few words on NK-DD, DD-NK and POD-DEIM

What is Diffusive Wave equation?

Zero-inertia approximation of Shallow Water equations

$$\partial_t u - \operatorname{div} \left(\kappa \ \frac{(u - z_b)^{\alpha}}{\|\nabla u\|^{1 - \gamma}} \nabla u \right) = 0$$

- $u(\mathbf{x},t)$ the unknown free surface elevation;
- **\blacksquare** $z_b(\mathbf{x})$ the topographical elevation.

Parameters κ, α, γ are related to the empirical bottom friction laws

- $\kappa(\mathbf{x})$ is a "ground roughness" parameter;
- $\alpha > 1$ and $0 < \gamma \leq 1$ depend of the flow regimes and the head loss formula.

What is Diffusive Wave equation?

DWE is a nonhomogeneous doubly nonlinear degenerate parabolic equation

$$\partial_t u - \operatorname{div}\left(\kappa \; \frac{(u-z_b)^{\alpha}}{\|\nabla u\|^{1-\gamma}} \nabla u\right) = 0$$

Degenerate diffusion:

- dry regions;
- wetting fronts propagate at finite speed.

p-Laplacian like term:

- simplifies in an unlikely laminar regime: $\gamma = 1$;
- \blacksquare diffusion coefficient go to ∞ in lake-at-rest state, can be fixed by laminar regime correction.

DW equation

$$\partial_t u - \operatorname{div}\left(\kappa \ \frac{(u - z_b)^{\alpha}}{\|\nabla u\|^{1 - \gamma}} \nabla u\right) = 0$$

Case $z_b = 0$: DWE can be transformed into a *p*-Laplace-porous media equation

$$\partial_t u - \operatorname{div}\left(\tilde{\kappa} \frac{\nabla u^m}{\|\nabla u^m\|^{1-\gamma}}\right) = 0, \qquad m = 1 + \frac{\alpha}{\gamma}$$

DW equation

$$\partial_t u - \operatorname{div}\left(\kappa \ \frac{(u-z_b)^{\alpha}}{\|\nabla u\|^{1-\gamma}} \nabla u\right) = 0$$

Case $z_b = 0$: DWE can be transformed into a *p*-Laplace-porous media equation

$$\partial_t u - \operatorname{div}\left(\tilde{\kappa} \frac{\nabla u^m}{\|\nabla u^m\|^{1-\gamma}}\right) = 0, \qquad m = 1 + \frac{\alpha}{\gamma}$$

Case $\gamma = 1$: Using $h = u - z_b$ we obtain a nonlinear convection-diffusion

$$\partial_t h - \operatorname{div}\left(\kappa \ h^{\alpha} \nabla \left(h + z_b\right)\right) = 0.$$

DW equation

$$\partial_t u - \operatorname{div} \left(\kappa \ \frac{(u - z_b)^{\alpha}}{\|\nabla u\|^{1 - \gamma}} \nabla u \right) = 0$$

Case $z_b = 0$: DWE can be transformed into a *p*-Laplace-porous media equation

$$\partial_t u - \operatorname{div}\left(\tilde{\kappa} \frac{\nabla u^m}{\|\nabla u^m\|^{1-\gamma}}\right) = 0, \qquad m = 1 + \frac{\alpha}{\gamma}.$$

Case $\gamma = 1$: Using $h = u - z_b$ we obtain a nonlinear convection-diffusion

$$\partial_t h - \operatorname{div}\left(\kappa \ h^{\alpha} \nabla \left(h + z_b\right)\right) = 0.$$

- Both simplified equations: existence of weak solution is classical.
- DWE: No general existence result.

Volume conservation

$$\partial_t h + \operatorname{div} h \mathbf{v} = 0$$

Momentum balance with bottom friction

$$\underbrace{\partial_t(h\mathbf{v}) + \operatorname{div}(h\mathbf{v} \otimes \mathbf{v})}_{\text{inertia}} + \underbrace{gh\nabla(h + z_b)}_{\text{pressure and gravity forces}} = \underbrace{-C_f |\mathbf{v}| \mathbf{v}}_{\text{bottom friction}}$$

To recover DWE

neglect inertia terms

$$gh\nabla\left(h+z_b\right) = -C_f|\mathbf{v}|\mathbf{v};$$

■ substitute v into the volume conservation equation.

Volume conservation

$$\partial_t h + \operatorname{div} h \mathbf{v} = 0$$

Momentum balance with bottom friction

$$\underbrace{\partial_t(h\mathbf{v}) + \operatorname{div}(h\mathbf{v} \otimes \mathbf{v})}_{\text{inertia}} + \underbrace{gh\nabla(h + z_b)}_{\text{pressure and gravity forces}} = \underbrace{-C_f |\mathbf{v}| \mathbf{v}}_{\text{bottom friction}}$$

To recover DWE

neglect inertia terms

$$gh\nabla\left(h+z_b\right) = -C_f|\mathbf{v}|\mathbf{v};$$

■ substitute v into the volume conservation equation.

Friction law

- **\blacksquare** C_f may depend both on **v** and h
- Qualitative difference between laminar and turbulent regime

Approximate momentum balance

$$gh\nabla\left(h+z_b\right) = -\frac{C_f}{|\mathbf{v}|}\mathbf{v};$$

Laminar flow: Analytical formula for C_f à la Poiseuille

$$C_f = \frac{C_l}{Re} = C_l \frac{\mu}{\rho |\mathbf{v}|h} \qquad \Rightarrow \qquad C_f |\mathbf{v}| \mathbf{v} = C_l \frac{\mu}{\rho} \frac{\mathbf{v}}{h}$$

Approximate momentum balance

$$gh\nabla\left(h+z_b\right) = -C_f|\mathbf{v}|\mathbf{v};$$

Laminar flow: Analytical formula for C_f à la Poiseuille

$$C_f = \frac{C_l}{Re} = C_l \frac{\mu}{\rho |\mathbf{v}|h} \qquad \Rightarrow \qquad C_f |\mathbf{v}| \mathbf{v} = C_l \frac{\mu}{\rho} \frac{\mathbf{v}}{h}$$

Darcy-like relation

$$h\nabla(h+z_b) = -\frac{1}{K}\frac{\mathbf{v}}{h}, \qquad K = \frac{1}{C_l}\frac{\rho g}{\mu}$$

giving

$$\partial_t h - \operatorname{div}\left(Kh^3\nabla\left(h+z_b\right)\right) = 0.$$

Turbulent flow:

 \blacksquare Chézy's law: C_f independent of h and $\mathbf v$

Friction law: turbulent regime

Turbulent flow:

- Chézy's law: C_f independent of h and \mathbf{v}
- Aldsul's formula:

$$C_f = 0.11 \left(\frac{\varepsilon}{h} + \frac{68}{Re}\right)^{1/4} = \frac{1}{h^{1/4}} \left(a + \frac{b}{|\mathbf{v}|}\right)^{1/4}$$

with ε being the ground roughness.

Friction law: turbulent regime

Turbulent flow:

- Chézy's law: C_f independent of h and \mathbf{v}
- Aldsul's formula:

$$C_f = 0.11 \left(\frac{\varepsilon}{h} + \frac{68}{Re}\right)^{1/4} = \frac{1}{h^{1/4}} \left(a + \frac{b}{|\mathbf{v}|}\right)^{1/4}$$

with ε being the ground roughness.

Colebrook's equation

$$\frac{1}{\sqrt{C_f}} = -2\log_{10}\left(\frac{\varepsilon/h}{3.7} + \frac{2.51}{Re\sqrt{C_f}}\right)$$

Friction law: Moody chart

Approximate momentum balance

$$gh\nabla\left(h+z_{b}\right)=-C_{f}|\mathbf{v}|\mathbf{v};$$

Assuming C_f independent of h and \mathbf{v}

$$\mathbf{v} = -\kappa h^{1/2} \frac{\nabla (h + z_b)}{\|\nabla (h + z_b)\|^{1/2}} \qquad \kappa = \sqrt{\frac{g}{C_f}}$$

giving

$$\partial_t h - \operatorname{div}\left(\kappa \, h^{3/2} \frac{\nabla \left(h + z_b\right)}{\|\nabla \left(h + z_b\right)\|^{1/2}}\right) = 0.$$

Approximate momentum balance

$$gh\nabla\left(h+z_{b}\right)=-C_{f}|\mathbf{v}|\mathbf{v};$$

Assuming C_f independent of h and \mathbf{v}

$$\mathbf{v} = -\kappa h^{1/2} \frac{\nabla (h + z_b)}{\|\nabla (h + z_b)\|^{1/2}} \qquad \kappa = \sqrt{\frac{g}{C_f}}$$

giving

$$\partial_t h - \operatorname{div}\left(\kappa \, h^{3/2} \frac{\nabla \left(h + z_b\right)}{\|\nabla \left(h + z_b\right)\|^{1/2}}\right) = 0.$$

Remarks:

- Exponents may be slightly different.
- Singularity in "diffusion coefficient" is not physical, and should be regularized.

Applicability

 Considered to be accurate for "smooth enough flows" (no tsunami, no dam breaking, no hydraulic jumps...).

Justification

- Formal justification is beyond my knowledge.
- Many applied publications in favor of DW.
- Used in engineering software: SWMM (drainage channels), HEC-RAS (flood modeling).

Why DWE in Top-up?

DD and Ms friendly (parabolic).

We can go even further and simplify SWE

$$\underbrace{\partial_t(h\mathbf{v}) + \operatorname{div}(h\mathbf{v} \otimes \mathbf{v})}_{\text{inertia}} + \underbrace{gh\nabla(h + z_b)}_{\text{pressure and gravity forces}} = -\underbrace{C_f|\mathbf{v}|\mathbf{v}}_{\text{bottom friction}}$$

as

$$gh\nabla z_b = -C_f |\mathbf{v}| \mathbf{v}$$

which gives a scalar hyperbolic volume conservation equation

$$\partial_t h + \operatorname{div}\left(h^{3/2}\boldsymbol{\xi}_b\right) = 0, \qquad \boldsymbol{\xi}_b = -\kappa \frac{\nabla z_b}{\|\nabla z_b\|^{1/2}}.$$

Kinematic Wave approximation (side note)

KW equation

$$\partial_t h + \operatorname{div}\left(h^{3/2} \boldsymbol{\xi}_b\right) = 0, \qquad \boldsymbol{\xi}_b = -\kappa \frac{\nabla z_b}{\|\nabla z_b\|^{1/2}}$$

can model quasi-uniform channel flows.

Drawbacks:

- Does not move mass if $\nabla z_b = 0$.
- Direct application to 2D is problematic: "depressive topographies", discontinuous converging slopes.

Geometry

- $\blacksquare \ \Omega$ whole flood zone;
- $\Omega_s \subset \overline{\Omega}$ domain occupied by structures.

DWE in a perforated domain

PDE model

Diffusive Wave equation

DD and Ms for linear problem

Unified approach to DD and Ms methods

DD and Ms for nonlinear problem

Few words on NK-DD, DD-NK and POD-DEIM

Model problem

Linear elliptic equation in a perforated domain

$$bu - \operatorname{div}(k\nabla u) = f$$
 in $\Omega \setminus \Omega_s$

with b, k > 0.

Oversimplified and semi-discretized in time version of DWE

$$\partial_t u - \operatorname{div}\left(\kappa \; \frac{(u-z_b)^{\alpha}}{\|\nabla u\|^{1-\gamma}} \nabla u\right) = 0$$

with $\gamma = 1$, $\alpha = 0$ and $z_b = 0$.

Model problem

Linear elliptic equation in a perforated domain

$$bu - \operatorname{div}(k\nabla u) = f$$
 in $\Omega \setminus \Omega_s$

with b, k > 0.

Oversimplified and semi-discretized in time version of DWE

$$\partial_t u - \operatorname{div}\left(\kappa \; \frac{(u-z_b)^{\alpha}}{\|\nabla u\|^{1-\gamma}} \nabla u\right) = 0$$

with $\gamma = 1$, $\alpha = 0$ and $z_b = 0$.

 \blacksquare Model equation can be approximated in the full domain Ω

$$b_{\varepsilon}u - \operatorname{div}(k_{\varepsilon}\nabla u) = f$$
 in Ω

with $k_{\varepsilon}|_{\Omega_s}, b_{\varepsilon}|_{\Omega_s}$ being very small.

Primal Schur method

Coarse discretization

- Rectangular grid $\mathcal{T}_H = (\Omega_i)_{i=1,...,N}$ not fitted to Ω_s .
- We denote $\Gamma_i = \partial \Omega_i \backslash \Omega_s$ and $\Gamma = \bigcup_{i=1,...,N} \Gamma_i$.

Coarse discretization

- **Rectangular grid** $\mathcal{T}_{H} = (\Omega_{i})_{i=1,...,N}$ not fitted to Ω_{s} .
- $\blacksquare \ \text{We denote} \ \Gamma_i = \partial \Omega_i \backslash \Omega_s \ \text{and} \ \Gamma = \bigcup_{i=1,...,N} \Gamma_i.$

Fine discretization

- Fine grid \mathcal{T}_h fitted to Ω_s and \mathcal{T}_H .
- We denote by $V_h(\Omega \setminus \Omega_s)$ the associated \mathbb{P}_1 finite element space and for $\Upsilon \subset \Omega \setminus \Omega_s$ we set

$$V_h(\Upsilon) = \{ v | \Upsilon, v \in V_h(\Omega \backslash \Omega_s) \}.$$

The vector of unknowns \mathbf{u} can be expressed as $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_N, \mathbf{u}_{\Gamma})$

- **u**_i: interior dof of Ω_i ;
- \mathbf{u}_{Γ} : dof located on Γ .

Primal Schur method

The discrete system can be written as

$$\begin{pmatrix} A_{11} & 0 & \dots & 0 & A_{1\Gamma} \\ 0 & A_{22} & \vdots & A_{2\Gamma} \\ \vdots & 0 & \ddots & 0 & \vdots \\ 0 & 0 & \dots & A_{NN} & A_{N\Gamma} \\ A_{\Gamma1} & A_{\Gamma2} & \dots & A_{\Gamma N} & A_{\Gamma\Gamma} \end{pmatrix} \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \vdots \\ \mathbf{u}_N \\ \mathbf{u}_\Gamma \end{pmatrix} = \begin{pmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \\ \vdots \\ \mathbf{f}_N \\ \mathbf{f}_\Gamma \end{pmatrix}.$$

Primal Schur method

The discrete system can be written as

$$\begin{pmatrix} A_{11} & 0 & \dots & 0 & A_{1\Gamma} \\ 0 & A_{22} & \vdots & A_{2\Gamma} \\ \vdots & 0 & \ddots & 0 & \vdots \\ 0 & 0 & \dots & A_{NN} & A_{N\Gamma} \\ A_{\Gamma1} & A_{\Gamma2} & \dots & A_{\Gamma N} & A_{\Gamma\Gamma} \end{pmatrix} \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \vdots \\ \mathbf{u}_N \\ \mathbf{u}_\Gamma \end{pmatrix} = \begin{pmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \\ \vdots \\ \mathbf{f}_N \\ \mathbf{f}_\Gamma \end{pmatrix}$$

Remarks: The condition number of the matrix scales like $\frac{1}{h^2}$

We can eliminate interior unknowns \mathbf{u}_i in terms of local values of \mathbf{u}_Γ as

$$\mathbf{u}_i = A_{ii}^{-1} (\mathbf{f}_i - R_{\Gamma_i} \mathbf{u}_{\Gamma})$$

■ R_{Γ_i} is the restriction operator from $V_h(\Gamma)$ to $V_h(\Gamma_i)$.

This leads to the Schur complement system

 $\mathbb{S}_{\Gamma}\mathbf{u}_{\Gamma}=\mathbb{f}_{\Gamma}$

that can be expressed in terms of local components S_i and \mathbf{f}_{Γ_i} as

$$\left(\sum_{i=1}^{N} R_{\Gamma_{i}}^{T} S_{i} R_{\Gamma_{i}}\right) \mathbf{u}_{\Gamma} = \sum_{i=1}^{N} R_{\Gamma_{i}}^{T} \mathbf{f}_{\Gamma_{i}}$$

This leads to the Schur complement system

$$S_{\Gamma} \mathbf{u}_{\Gamma} = \mathbf{f}_{\Gamma}$$

that can be expressed in terms of local components S_i and \mathbf{f}_{Γ_i} as

$$\left(\sum_{i=1}^{N} R_{\Gamma_{i}}^{T} S_{i} R_{\Gamma_{i}}\right) \mathbf{u}_{\Gamma} = \sum_{i=1}^{N} R_{\Gamma_{i}}^{T} \mathbf{f}_{\Gamma_{i}}$$

Remark: The new system has a better conditioning which scales as $\frac{1}{hH}.$

Let DtN_i be an operator which maps

$$H^{1/2}(\Gamma_i) \times L^2(\Omega_i) \ni (u_{\mathrm{bc}},f) \ \text{ to } \ -k \nabla u \cdot \mathbf{n}_{\Gamma_i} \in H^{-1/2}(\Gamma_i)$$

with

Now

$$\mathrm{DtN}_{i}^{h}(\mathbf{u}_{\mathrm{bc}},\mathbf{f}) = S_{i}\mathbf{u}_{\mathrm{bc}} - \mathbf{f}_{\Gamma_{i}}.$$

is a discrete version of DtN_i .

We introduce the preconditioned system

$$M^{-1}\mathbb{S}_{\Gamma} = M^{-1}\mathbb{f}_{\Gamma}$$

with an additive two-level preconditioner

$$M^{-1} = M_H^{-1} + \sum_i M_i^{-1}$$

combining

local components

$$M_i^{-1} = \widetilde{R_{\Gamma_i}}^T S_i^{-1} \widetilde{R_{\Gamma_i}},$$

where $\widetilde{R_{\Gamma_i}}$ is R_{Γ_i} weighted by a partition of unity;

 \blacksquare the coarse component M_{H}^{-1} build upon the coarse problem.

Coarse problem

Coarse space

- Let $V_H(\Gamma) \subset V_h(\Gamma)$ be some coarse skeleton space, e.g. edge wise linear (MsFEM).
- Let W_H be the corresponding linear map $W_H : V_H(\Gamma) \to V_h(\Gamma)$.

Galerkin method gives the following coarse problem: Find $\mathbf{u}_{H,\Gamma} \in V_H(\Gamma)$ s.t.

$$\underbrace{W_H^T \mathbb{S}_{\Gamma} W_H}_{S_H} \mathbf{u}_{H,\Gamma} = W_H^T \mathbb{f}_{\Gamma}.$$

The coarse component of the preconditioner is defined by

$$M_{H}^{-1} = W_{H}S_{H}^{-1}W_{H}^{T}.$$

We have

$$\operatorname{cond}\left(M^{-1}\mathbb{S}_{\Gamma}\right) \leqslant C(1 + \log(H/h))^2$$

- **Scaling with** H and h is good;
- C can be very bad, need a coarse space adapted to Ω_s .

Standard Ms methods (MsFEM, MsFVM, ...) work in two steps

 \blacksquare Compute "areal" multi-scale basis functions $\phi_{H,k}$ (for dof k) by solving the fine scale problem

Compute the coarse solution $u_H \in \text{span}\left(\left(\phi_{H,k}\right)_k\right)$ by Galerkin method

$$\int_{\Omega} b u_H \phi_{H,k} + k \nabla u_H \cdot \phi_{H,k} \mathrm{d}x = \int_{\Omega} f \phi_{H,k} \mathrm{d}x + \mathsf{BC} \qquad \text{for all} \quad k$$

Standard Ms methods (MsFEM, MsFVM, ...) work in two steps

 \blacksquare Compute "areal" multi-scale basis functions $\phi_{H,k}$ (for dof k) by solving the fine scale problem

Compute the coarse solution $u_H \in \text{span}\left(\left(\phi_{H,k}\right)_k\right)$ by Galerkin method

$$\int_{\Omega} b u_H \phi_{H,k} + k \nabla u_H \cdot \phi_{H,k} dx = \int_{\Omega} f \phi_{H,k} dx + \mathsf{BC} \qquad \text{for all} \quad k$$

Remarks:

- Key component is a choice of $\phi_{H,k,i}$.
- Multi-scale basis functions can be computed *offline* and in parallel.

For symmetric problems the standard Ms methods are equivalent to:

- Chose a coarse skeleton space $V_H(\Gamma)$ to approximate $V_h(\Gamma)$;
- Solve Schur problem in $V_H(\Gamma)$ using Galerkin projection

$$W_H^T \mathbb{S}_{\Gamma} W_H \mathbf{u}_{\Gamma, H} = W_H^T \mathbb{f}_{\Gamma},$$

Offline/online work load separation

- Costly fine-scale computations can be performed offline
- Important for time dependent problems

Stiffness matrix

$$W_{H}^{T} \mathbb{S}_{\Gamma} W_{H} = W_{H}^{T} \left(\sum_{i=1}^{N} R_{\Gamma_{i}}^{T} S_{i} R_{\Gamma_{i}} \right) W_{H} = \sum_{i=1}^{N} \left(R_{\Gamma_{i}} W_{H} \right)^{T} S_{i} \left(R_{\Gamma_{i}} W_{H} \right)$$

can be assembled offline and in parallel.

For symmetric problems the standard Ms methods are equivalent to:

- Chose a coarse skeleton space $V_H(\Gamma)$ to approximate $V_h(\Gamma)$;
- Solve Schur problem in $V_H(\Gamma)$ using Galerkin projection

$$W_H^T \mathbb{S}_{\Gamma} W_H \mathbf{u}_{\Gamma, H} = W_H^T \mathbb{f}_{\Gamma},$$

Offline/online work load separation

- Costly fine-scale computations can be performed offline
- Important for time dependent problems

Stiffness matrix

$$W_{H}^{T} \mathbb{S}_{\Gamma} W_{H} = W_{H}^{T} \left(\sum_{i=1}^{N} R_{\Gamma_{i}}^{T} S_{i} R_{\Gamma_{i}} \right) W_{H} = \sum_{i=1}^{N} \left(R_{\Gamma_{i}} W_{H} \right)^{T} S_{i} \left(R_{\Gamma_{i}} W_{H} \right)$$

can be assembled offline and in parallel.

RHS: Same goes for the RHS is f belong to some space of small dimension.

Coarse space

Ad-hoc solution for structure aware coarse space: edge wise polynomials

- Risk: to many dofs.
- Solution: remove some edges, *oversampling*.

Coarse space

Ad-hoc solution for structure aware coarse space: edge wise polynomials

- Risk: to many dofs.
- Solution: remove some edges, *oversampling*.

More generic option: methods like GenEO based on the spectrum of the local DtN_i^h operator.

Meshing and computational geometry (todo list)

- Coarse grid intersection with structures (Γ_i) : Polygon clipping
- Global triangular mesh
 - fitted to the structures;
 - If fitted to Γ_i .

Meshing and computational geometry (todo list)

- Coarse grid intersection with structures (Γ_i): Polygon clipping
- Global triangular mesh
 - fitted to the structures;
 - If fitted to Γ_i .

May be to hard, so the fallback solution will be

• Local meshes on $\Omega_i \setminus \Omega_s \Rightarrow$ non-conforming fine mesh \Rightarrow mortar-like strategy.

Meshing and computational geometry (todo list)

- Coarse grid intersection with structures (Γ_i): Polygon clipping
- Global triangular mesh
 - fitted to the structures;
 - fitted to Γ_i.

May be to hard, so the fallback solution will be

- Local meshes on $\Omega_i \setminus \Omega_s \Rightarrow$ non-conforming fine mesh \Rightarrow mortar-like strategy.
- Dealing with specific GIS data formats: more or less done by Léo Carriba-Demange during last summer.

PDE model

Diffusive Wave equation

DD and Ms for linear problem

Unified approach to DD and Ms methods

DD and Ms for nonlinear problem

Few words on NK-DD, DD-NK and POD-DEIM

Semi-discretized DW equation

$$\frac{u-u^{n-1}}{\Delta t} - \operatorname{div}\left(\kappa \ \frac{(u-z_b)^{\alpha}}{\|\nabla u\|^{1-\gamma}} \nabla u\right) = 0$$

We can still write the discrete problem in the form

$$F(u_{\Gamma}) := \sum_{i=1}^{N} R_{\Gamma_{i}}^{T} \mathrm{DtN}_{i}^{h} \left(R_{\Gamma_{i}} \mathbf{u}_{\Gamma}, R_{\Omega_{i}} \mathbf{f} \right) = 0$$

• Now DtN_i^h is a nonlinear map.

The coarse system reads

$$W_H^T F(W_H \mathbf{u}_{\Gamma_H}) = 0.$$

In principle this system can be solved by Newton's method.

Problems:

- a) We can not precompute the action of F on $V_{H}(\Gamma),$ need to recompute local Dirichlet problems.
- b) Even if we knew F, we need to compute the product W_H^T

 $\underbrace{W_{H}^{T}}_{N \times \mathrm{card}(V_{h}(\Gamma))} \times \underbrace{F}_{\mathrm{card}(V_{h}(\Gamma)) \times 1}$

Possible solutions: Positive thinking:

- a) can be performed in parallel;
- b) can be performed mostly in parallel.

The coarse system reads

$$W_H^T F(W_H \mathbf{u}_{\Gamma_H}) = 0.$$

In principle this system can be solved by Newton's method.

Problems:

- a) We can not precompute the action of F on $V_{H}(\Gamma),$ need to recompute local Dirichlet problems.
- b) Even if we knew F, we need to compute the product $\underbrace{W_H^T}_{N \times \operatorname{card}(V_h(\Gamma))} \times \underbrace{F}_{\operatorname{card}(V_h(\Gamma)) \times 1}$

Possible solutions: Positive thinking:

- a) can be performed in parallel;
- b) can be performed mostly in parallel.

ROM-DEIM:

- a) (local) model reduction, involving e.g. POD;
- b) Discrete Empirical Interpolation Method.

Newton-Krylov-DD (NK-DD):

- Linearize first, then apply DD to precondition the problem.
- More standard approach.
- Idea: GenEO to enrich the *ad-hoc* coarse space.

DD-Newton-Krylov (DD-NK):

- First DD, then linearize.
- More recent approach.
- Deals with steep nonlinearities locally .

Thank you for your attention!