The Klyachko conditions from the chemical viewpoint

Carlos L. Benavides-Riveros

Nice, 8th November 2013

[joint work with J. M. Gracia-Bondía (Zaragoza) and M. Springborg (Saarbrücken)]
Pauli principle

- **Pauli exclusion principle (1925):** two identical fermions cannot be in the same quantum state.
Pauli principle

- **Pauli exclusion principle (1925):** two identical fermions cannot be in the same quantum state.

- **Dirac and Heisenberg (1926):** the electronic wave function is antisymmetric with respect to permutations of particles:

\[
\psi_n \in \wedge^n \mathcal{H} \subset \mathcal{H} \otimes^n,
\]

where \(\mathcal{H} \) is the space of one electron.
Pauli principle

- **Pauli exclusion principle (1925):** two identical fermions cannot be in the same quantum state.

- **Dirac and Heisenberg (1926):** the electronic wave function is antisymmetric with respect to permutations of particles:

\[\psi_n \in \wedge^n \mathcal{H} \subseteq \mathcal{H}^\otimes n, \]

where \(\mathcal{H} \) is the space of one electron.

- **Coleman (1963):** The set of admissible one-body RDM is given by:

\[\rho_1 \geq 0, \quad \text{Tr} \rho_1 = n, \]

and the eigenvalues of \(\rho_1 \) (natural occupation numbers) obey \(0 \leq \lambda_i \leq 1 \).

For a pure state \([\rho_1]^i_k = \langle \Psi | a_i^\dagger a_k | \Psi \rangle \).
Additional constraints: Borland and Dennis (1972)

It has long been suspected that there are constraints **NOT** implied by the original Pauli principle on the spectrum of the one-body reduced density matrix \(\{\lambda_1, \lambda_2, \ldots\}\).

The system \(\wedge^3\mathcal{H}_6\) of three electrons and a six-dimensional one-particle Hilbert space exhibits the constraints

\[
\lambda_1 + \lambda_6 = \lambda_2 + \lambda_5 = \lambda_3 + \lambda_4 = 1, \quad \text{and} \\
d^6 := 2 - (\lambda_1 + \lambda_2 + \lambda_4) \geq 0 \quad \rightarrow \quad \lambda_1 + \lambda_2 \leq 1 + \lambda_3:
\]

It defines a polytope of admissible states (recall \(\lambda_1 \geq \lambda_2 \geq \cdots\)):
It has long been suspected that there are constraints NOT implied by the original Pauli principle on the spectrum of the one-body reduced density matrix \(\{\lambda_1, \lambda_2, \ldots\} \).

The system \(\wedge^3 \mathcal{H}_6 \) of three electrons and a six-dimensional one-particle Hilbert space exhibits the constraints

\[
\lambda_1 + \lambda_6 = \lambda_2 + \lambda_5 = \lambda_3 + \lambda_4 = 1, \quad \text{and} \quad d^6 := 2 - (\lambda_1 + \lambda_2 + \lambda_4) \geq 0 \quad \rightarrow \quad \lambda_1 + \lambda_2 \leq 1 + \lambda_3:
\]

It defines a polytope of admissible states (recall \(\lambda_1 \geq \lambda_2 \geq \cdots \)):
Klyachko restrictions (2006)

Klyachko showed an algorithm to compute all such Pauli-like inequalities. For the general situation \(\wedge^n \mathcal{H}_m \), there is a finite set of generalized Pauli constraints:

\[
d^m_k = \kappa_0 + \kappa_1 \lambda_1 + \cdots + \kappa_n \lambda_n \geq 0, \quad \text{with} \quad \kappa_i \in \mathbb{Z}.
\]

For example, for \(\wedge^3 \mathcal{H}_7 \), there are four linear inequalities:

\[
\begin{align*}
d^7_1 &= 2 - (\lambda_1 + \lambda_2 + \lambda_4 + \lambda_7) \geq 0, \\
d^7_2 &= 2 - (\lambda_1 + \lambda_2 + \lambda_5 + \lambda_6) \geq 0, \\
d^7_3 &= 2 - (\lambda_2 + \lambda_3 + \lambda_4 + \lambda_5) \geq 0, \\
d^7_4 &= 2 - (\lambda_1 + \lambda_3 + \lambda_4 + \lambda_6) \geq 0.
\end{align*}
\]
Klyachko restrictions (2006)

Klyachko showed an algorithm to compute all such Pauli-like inequalities. For the general situation $\wedge^n\mathcal{H}_m$, there is a finite set of generalized Pauli constraints:

$$d_k^m = \kappa_0 + \kappa_1 \lambda_1 + \cdots + \kappa_n \lambda_n \geq 0, \quad \text{with} \quad \kappa_i \in \mathbb{Z}.$$

For example, for $\wedge^3\mathcal{H}_7$, there are four linear inequalities:

$$d_1^7 = 2 - (\lambda_1 + \lambda_2 + \lambda_4 + \lambda_7) \geq 0, \quad d_2^7 = 2 - (\lambda_1 + \lambda_2 + \lambda_5 + \lambda_6) \geq 0,$$

$$d_3^7 = 2 - (\lambda_2 + \lambda_3 + \lambda_4 + \lambda_5) \geq 0, \quad d_4^7 = 2 - (\lambda_1 + \lambda_3 + \lambda_4 + \lambda_6) \geq 0.$$

The Klyachko restrictions are consistent, so lower rank ones can be derived from higher ones: putting $\lambda_7 = 0$ we obtain the former restrictions for $\wedge^3\mathcal{H}_6$.

Carlos L. Benavides-Riveros

The Klyachko conditions from the chemical viewpoint
Recently, an *empirical analysis* of the constraints was published

The tantalizing suggestion of the SCG paper is that the inequalities are *nearly saturated* in the ground state:

\[d_k^m = \kappa_0 + \kappa_1 \lambda_1 + \cdots + \kappa_n \lambda_n \approx 0. \]
Recently, an *empirical analysis* of the constraints was published

The tantalizing suggestion of the SCG paper is that the inequalities are *nearly saturated* in the ground state:

\[d_{k}^{m} = \kappa_{0} + \kappa_{1} \lambda_{1} + \cdots + \kappa_{n} \lambda_{n} \approx 0. \]

This is the “*quasipinning*” phenomenon.
Recently, an *empirical analysis* of the constraints was published

The tantalizing suggestion of the SCG paper is that the inequalities are *nearly saturated* in the ground state:

\[d_k^m = \kappa_0 + \kappa_1 \lambda_1 + \cdots + \kappa_n \lambda_n \approx 0. \]

This is the "quasipinning" phenomenon.

When the inequalities are *completely saturated*

\[d_k^m = \kappa_0 + \kappa_1 \lambda_1 + \cdots + \kappa_n \lambda_n = 0. \]

the number of Slater determinants needed for the description of a quantum mechanical system reduces significantly. This is the "pinning" phenomenon.
Pinning hopes: an example

For (say) a restricted spin configuration $\wedge^3 \mathcal{H}_6$ gives rise to:
Pinning hopes: an example

For (say) a restricted spin configuration $\wedge^3 \mathcal{H}_6$ gives rise to:

- $20 = \binom{6}{3}$ Slater determinants in total.
Pinning hopes: an example

For (say) a restricted spin configuration $\wedge^3 \mathcal{H}_6$ gives rise to:

- $20 = \binom{6}{3}$ Slater determinants in total.
- 9 of them are eigenfunctions of S_z, say \downarrow.
Pinning hopes: an example

For (say) a restricted spin configuration $\wedge^3 \mathcal{H}_6$ gives rise to:

- **20** = $\binom{6}{3}$ Slater determinants in total.
- **9** of them are **eigenfunctions** of S_z, say ↓.
- **8** of them are moreover **eigenfunctions** of S^2 with $j = \frac{1}{2}$.

(So “spin contamination” is avoided.)
Pinning hopes: an example

For (say) a restricted spin configuration $\wedge^3 \mathcal{H}_6$ gives rise to:

- $20 = \binom{6}{3}$ Slater determinants in total.
- 9 of them are eigenfunctions of S_z, say \downarrow.
- 8 of them are moreover eigenfunctions of S^2 with $j = \frac{1}{2}$.
 (So “spin contamination” is avoided.)
- Only 3 remain alive in the natural basis if the Klyachko restriction ($d^m_k = 0$) is completely saturated.
For (say) a restricted spin configuration $\wedge^3 \mathcal{H}_6$ gives rise to:

- 20 = $\binom{6}{3}$ Slater determinants in total.
- 9 of them are eigenfunctions of S_z, say \downarrow.
- 8 of them are moreover eigenfunctions of S^2 with $j = \frac{1}{2}$.
 (So “spin contamination” is avoided.)
- Only 3 remain alive in the natural basis if the Klyachko restriction ($d^m_k = 0$) is completely saturated.
Pinning hopes: another example

For γ_2 vs γ_1 with a restricted spin configuration here are in principle $(\begin{pmatrix} 7 \\ 3 \end{pmatrix}) = 35$ Slater determinants, of which 18 are spin-admissible.

The **pinned** system can be factorized

$$\gamma_2 \rightarrow H_3 \otimes \gamma_1 H_4,$$

not surprising since we are dealing with two electrons with spin \downarrow (say) and one with spin \uparrow.

Assuming that $d_2^7 = 0$ then, the wave function can be reduced to 9 Slater determinants $[ijk]$, and if $d_3^7 = 0$, then to only 4:

$$\psi_{(3,7)} = a[123] + b[145] + c[267] + d[457].$$

With only double or triple excitations of the state [123]!
In the SGC paper the Klyachko conditions are studied by means of a toy model: a one-dimensional system of three spinless “fermions” confined to a harmonic well, interacting among themselves by a Hooke-type force.
In the SGC paper the Klyachko conditions are studied by means of a toy model: a one-dimensional system of three spinless “fermions” confined to a harmonic well, interacting among themselves by a Hooke-type force. The Hamiltonian of the system is

\[
\hat{H} = \sum_{i=1}^{3} \left(\frac{p_i^2}{2} + \frac{k}{2} x_i^2 \right) + \frac{D}{2} \sum_{i<j}^{3} (x_i - x_j)^2, \quad \psi_3 \in \wedge^3 (L^2(\mathbb{R})).
\]

Schilling, Gross, Christandl, PRL 110, 040404 (2013)
In the SGC paper the Klyachko conditions are studied by means of a toy model: a one-dimensional system of three spinless “fermions” confined to a harmonic well, interacting among themselves by a Hooke-type force.

The Hamiltonian of the system is

\[
\hat{H} = \sum_{i=1}^{3} \left(\frac{p_i^2}{2} + \frac{k}{2} x_i^2 \right) + \frac{D}{2} \sum_{i<j}^{3} (x_i - x_j)^2, \quad \psi_3 \in \wedge^3 (L^2(\mathbb{R})).
\]

Schilling, Gross, Christandl, PRL 110, 040404 (2013)
The system is completely solvable and then is possible to compute the eigenvalues “exactly”.
The notion of quasipinning

The system is completely solvable and then is possible to compute the eigenvalues “exactly”.

Parametrizing the coupling

$$\delta := \frac{3}{4} \frac{D}{k},$$

the spectrum is

$$1 - \lambda_1 = \frac{40}{729} \delta^6 - \frac{1390}{59049} \delta^8 + O(\delta^{10}),$$
$$1 - \lambda_2 = \frac{2}{9} \delta^4 - \frac{232}{729} \delta^6 + \frac{3926}{10935} \delta^8 + O(\delta^{10}),$$
$$1 - \lambda_3 = \frac{2}{9} \delta^4 - \frac{64}{243} \delta^6 + \frac{81902}{295245} \delta^8 + O(\delta^{10}),$$
$$\lambda_4 = \frac{2}{9} \delta^4 - \frac{64}{243} \delta^6 + \frac{73802}{295245} \delta^8 + O(\delta^{10}),$$
The notion of quasipinning

The system is completely solvable and then is possible to compute the eigenvalues “exactly”.

Parametrizing the coupling

$$\delta := \frac{3D}{4k},$$

the spectrum is

$$1 - \lambda_1 = \frac{40}{729} \delta^6 - \frac{1390}{59049} \delta^8 + O(\delta^{10}),$$

$$1 - \lambda_2 = \frac{2}{9} \delta^4 - \frac{232}{729} \delta^6 + \frac{3926}{10935} \delta^8 + O(\delta^{10}),$$

$$1 - \lambda_3 = \frac{2}{9} \delta^4 - \frac{64}{243} \delta^6 + \frac{81902}{295245} \delta^8 + O(\delta^{10}),$$

$$\lambda_4 = \frac{2}{9} \delta^4 - \frac{64}{243} \delta^6 + \frac{73802}{295245} \delta^8 + O(\delta^{10}),$$

$$0 \leq d^6 := 2 - (\lambda_1 + \lambda_2 + \lambda_4) = O(\delta^8) \quad \text{quasipinned!}$$
By the way...

If a quantum-mechanical system is quasipinned, what is the loss of information when projecting the total wave function onto the subspace of pinned states?
By the way...

If a quantum-mechanical system is quasipinned, what is the loss of information when projecting the total wave function onto the subspace of pinned states?

Let $\psi_3 \in \wedge^3 \mathcal{H}_6$ and P_6 be the projection operator onto the pinned subspace $d^6 = 0$. Then, there are the following upper and lower bounds:

$$1 - \frac{1 + 2\xi}{1 - 4\xi} \cdot d^6 \leq \|P_6 \psi_3\|^2 \leq 1 - \frac{1}{2} d^6,$$

with $\xi := 3 - \lambda_1 - \lambda_2 - \lambda_3 < \frac{1}{4}$.

Schilling, Gross, Christandl, PRL 110, 040404 (2013)

Let $\psi_3 \in \wedge^3 \mathcal{H}_7$ and P_7 be the projection operator onto the pinned subspace $d^7_2 = 0$. Then, there are the following upper and lower bounds

$$1 - \frac{1 + 9\xi}{1 - 11\xi} \cdot d^7_2 \leq \|P_7 \psi_3\|^2 \leq 1 - \frac{1}{2} d^7_2,$$

with $\xi := 3 - \lambda_1 - \lambda_2 - \lambda_3 < \frac{1}{11}$.

CLBR, Gracia-Bondía, Springborg, PRA 88, 022508 (2013)

This is very small!
Aimed to examine the nature of quasipinning in real systems, we started to explore radial configurations of lithium based on the composition of two helium-like functions in a closed-shell and one (in a suitably general sense) hydrogen-like.
Aimed to examine the nature of quasipinning in real systems, we started to explore radial configurations of lithium based on the composition of two helium-like functions in a closed-shell and one (in a suitably general sense) hydrogen-like.

For the helium-like functions, let us use the orthonormal basis in the classic by Shull and Löwdin:

\[
\delta_n(\alpha, r) := D_n \sqrt{\frac{\alpha^3}{\pi}} L_{n-1}^\zeta (2\alpha r) e^{-\alpha r}; \quad n = 1, 2, \ldots
\]

where \(D_n\) is a normalization constant, \(L_n^\zeta\) are the associated Laguerre polynomials and \(\langle \delta_m | \delta_n \rangle = \delta_n^m\). For the hydrogen-like we choose:

\[
\phi(\gamma, r) = \frac{1}{4} \sqrt{\frac{\gamma^5}{6\pi}} r e^{-\gamma r/2}.
\]

Shull, Löwdin, JChP 30, 617 (1959)
Lithium isoelectronic series: rank six

The lithium exact energy is -7.478 au. The H–F energy is -7.432 au; the variational energy of $[\delta_1 \downarrow \delta_1 \uparrow \phi \uparrow]$ is -7.417 au.

We consider two different approaches for obtaining six-rank approximations for lithium-like ions:
The occupation numbers of these systems are the following:

<table>
<thead>
<tr>
<th>Rank</th>
<th>λ_1</th>
<th>λ_2</th>
<th>λ_3</th>
<th>$\lambda_4(10^3)$</th>
<th>$\lambda_5(10^3)$</th>
<th>$\lambda_6(10^4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>0.998</td>
<td>0.998</td>
<td>1.297</td>
<td>1.297</td>
<td>–</td>
</tr>
<tr>
<td>6a</td>
<td>0.999</td>
<td>0.998</td>
<td>0.998</td>
<td>1.344</td>
<td>1.322</td>
<td>0.218</td>
</tr>
<tr>
<td>6b</td>
<td>0.999</td>
<td>0.998</td>
<td>0.998</td>
<td>1.284</td>
<td>1.284</td>
<td>0.220</td>
</tr>
</tbody>
</table>
The occupation numbers of these systems are the following:

<table>
<thead>
<tr>
<th>Rank</th>
<th>λ_1</th>
<th>λ_2</th>
<th>λ_3</th>
<th>$\lambda_4(10^3)$</th>
<th>$\lambda_5(10^3)$</th>
<th>$\lambda_6(10^4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>0.998</td>
<td>0.998</td>
<td>1.297</td>
<td>1.297</td>
<td>–</td>
</tr>
<tr>
<td>6^a</td>
<td>0.999</td>
<td>0.998</td>
<td>0.998</td>
<td>1.344</td>
<td>1.322</td>
<td>0.218</td>
</tr>
<tr>
<td>6^b</td>
<td>0.999</td>
<td>0.998</td>
<td>0.998</td>
<td>1.284</td>
<td>1.284</td>
<td>0.220</td>
</tr>
</tbody>
</table>

For the constraints within our calculation 6^b, we find

$$0 \leq d^{6^b} = \lambda_5 + \lambda_6 - \lambda_4 = 2.146 \times 10^{-5} \quad \text{and} \quad \frac{d^{6^b}}{\lambda_6} \approx 0.97$$

For the restricted spin orbital case 6^a one finds $d^{6^a} = 0$.

Pinning!!
Lithium isoelectronic series: rank six, continued

The occupation numbers of these systems are the following:

<table>
<thead>
<tr>
<th>Rank</th>
<th>λ_1</th>
<th>λ_2</th>
<th>λ_3</th>
<th>$\lambda_4(10^3)$</th>
<th>$\lambda_5(10^3)$</th>
<th>$\lambda_6(10^4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>0.998</td>
<td>0.998</td>
<td>1.297</td>
<td>1.297</td>
<td>-</td>
</tr>
<tr>
<td>6^a</td>
<td>0.999</td>
<td>0.998</td>
<td>0.998</td>
<td>1.344</td>
<td>1.322</td>
<td>0.218</td>
</tr>
<tr>
<td>6^b</td>
<td>0.999</td>
<td>0.998</td>
<td>0.998</td>
<td>1.284</td>
<td>1.284</td>
<td>0.220</td>
</tr>
</tbody>
</table>

For the constraints within our calculation 6^b, we find

$$0 \leq d^{6^b} = \lambda_5 + \lambda_6 - \lambda_4 = 2.146 \times 10^{-5}$$ \text{ and } \frac{d^{6^b}}{\lambda_6} \approx 0.97$$

For the restricted spin orbital case 6^a one finds $d^{6^a} = 0$.

\textit{Pinning!!}

Nothing qualitatively changes for $\text{Be}^+, \text{B}^{++}, \text{C}^{+++} \ldots$
Lithium isoelectronic series: rank seven and eight

For the rank seven the Klyachko constraints read

\[0 \leq d_1^7 = 2 - (\lambda_1 + \lambda_2 + \lambda_4 + \lambda_7) = 0, \]
\[0 \leq d_2^7 = 2 - (\lambda_1 + \lambda_2 + \lambda_5 + \lambda_6) = 1.304 \times 10^{-5}, \]
\[0 \leq d_3^7 = 2 - (\lambda_2 + \lambda_3 + \lambda_4 + \lambda_5) = 7.741 \times 10^{-5}, \]
\[0 \leq d_4^7 = 2 - (\lambda_1 + \lambda_3 + \lambda_4 + \lambda_6) = 8.002 \times 10^{-5}. \]
Lithium isoelectronic series: rank seven and eight

For the rank seven the Klyachko constraints read

\[0 \leq d_1^7 = 2 - (\lambda_1 + \lambda_2 + \lambda_4 + \lambda_7) = 0, \]
\[0 \leq d_2^7 = 2 - (\lambda_1 + \lambda_2 + \lambda_5 + \lambda_6) = 1.304 \times 10^{-5}, \]
\[0 \leq d_3^7 = 2 - (\lambda_2 + \lambda_3 + \lambda_4 + \lambda_5) = 7.741 \times 10^{-5}, \]
\[0 \leq d_4^7 = 2 - (\lambda_1 + \lambda_3 + \lambda_4 + \lambda_6) = 8.002 \times 10^{-5}. \]

TWO scales of quasipinning.
Lithium isoelectronic series: rank seven and eight

For the rank seven the Klyachko constraints read

\[0 \leq d_1^7 = 2 - (\lambda_1 + \lambda_2 + \lambda_4 + \lambda_7) = 0, \]
\[0 \leq d_2^7 = 2 - (\lambda_1 + \lambda_2 + \lambda_5 + \lambda_6) = 1.304 \times 10^{-5}, \]
\[0 \leq d_3^7 = 2 - (\lambda_2 + \lambda_3 + \lambda_4 + \lambda_5) = 7.741 \times 10^{-5}, \]
\[0 \leq d_4^7 = 2 - (\lambda_1 + \lambda_3 + \lambda_4 + \lambda_6) = 8.002 \times 10^{-5}. \]

TWO scales of quasipinning.

For \(^3\mathcal{H}_8 \), there are 31 inequalities. Some of them are given by:

\[0 \leq d_i^8 = d_i^7 \quad i = 1, \ldots, 4 \]
\[0 \leq d_5^8 = 1 - (\lambda_1 + \lambda_2 - \lambda_3) \]
\[0 \leq d_6^8 = 1 - (\lambda_2 + \lambda_5 - \lambda_7) \]
\[0 \leq d_7^8 = 1 - (\lambda_1 + \lambda_6 - \lambda_7) \]
\[0 \leq d_8^8 = 1 - (\lambda_2 + \lambda_4 - \lambda_6) \]
\[0 \leq d_9^8 = 1 - (\lambda_1 + \lambda_4 - \lambda_5) \quad \text{and so on...} \]
The saturation of the polytope for the case of $\wedge^3 \mathcal{H}_8$ is given by:

THREE scales!
The saturation of the polytope for the case of $\wedge^3 \mathcal{H}_8$ is given by:

THREE scales! In fact, four?
We have next studied the three-electron molecule He_2^+

Consider the **bonding** and **anti-bonding** wave functions:

$$\phi_g^s(r) = \frac{\phi^s_A(r) + \phi^s_B(r)}{\sqrt{2 + 2S}}$$

and

$$\phi_u^s(r) = \frac{\phi^s_A(r) - \phi^s_B(r)}{\sqrt{2 - 2S}}$$
where \(S = \langle \phi^s_A | \phi^s_B \rangle \), and the standard STO-3G basis set is given by the expression:

\[
\phi^s_X(r) = \sum_{i=1}^{3} c_i G^s_X(r, \alpha_i)
\]

with \(G^s_X(r, \alpha) = \alpha^{3/4} \pi^{-3/4} e^{-\frac{1}{2} \alpha |r-R_X|^2} \).

In this case, using the configuration

\[
[\phi^s_g \uparrow, \phi^s_g \downarrow, \phi^s_u \uparrow], \quad |R_A - R_B| = 2.06 \text{ a.u.}
\]

with the Slater orbital exponent \(\zeta \) equal to 1.833, we obtain for the ground state energy: \(-4.8459\) a.u. (pretty good).
Molecules III

Let us add two more spatial orbitals

\[
\chi_s^g(r) = \frac{\chi_s^A(r) + \chi_s^B(r)}{\sqrt{2 + 2S'}}; \\
\chi_s^u(r) = \frac{\chi_s^A(r) - \chi_s^A(r)}{\sqrt{2 - 2S'}}.
\]

Here

\[
\chi_X^s(r) = \sum_{i=1}^{3} c_i G_X^s(r, \beta_i).
\]
The occupation numbers of He_2^+ are the following:

<table>
<thead>
<tr>
<th>Rank</th>
<th>λ_1</th>
<th>λ_2</th>
<th>λ_3</th>
<th>$\lambda_4(10^3)$</th>
<th>$\lambda_5(10^3)$</th>
<th>$\lambda_6(10^4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>0.997</td>
<td>0.997</td>
<td>2.125</td>
<td>2.125</td>
<td>-</td>
</tr>
<tr>
<td>6^a</td>
<td>0.999</td>
<td>0.994</td>
<td>0.993</td>
<td>6.574</td>
<td>5.982</td>
<td>5.916</td>
</tr>
<tr>
<td>6^b</td>
<td>0.999</td>
<td>0.993</td>
<td>0.993</td>
<td>6.664</td>
<td>6.664</td>
<td>0.001</td>
</tr>
</tbody>
</table>
The occupation numbers of He$^+_2$ are the following:

<table>
<thead>
<tr>
<th>Rank</th>
<th>λ_1</th>
<th>λ_2</th>
<th>λ_3</th>
<th>$\lambda_4(10^3)$</th>
<th>$\lambda_5(10^3)$</th>
<th>$\lambda_6(10^4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>0.997</td>
<td>0.997</td>
<td>2.125</td>
<td>2.125</td>
<td>–</td>
</tr>
<tr>
<td>6^a</td>
<td>0.999</td>
<td>0.994</td>
<td>0.993</td>
<td>6.574</td>
<td>5.982</td>
<td>5.916</td>
</tr>
<tr>
<td>6^b</td>
<td>0.999</td>
<td>0.993</td>
<td>0.993</td>
<td>6.664</td>
<td>6.664</td>
<td>0.001</td>
</tr>
</tbody>
</table>

For the constraints within our calculation 6^b, we find

$$0 \leq d^{6^b} = \lambda_5 + \lambda_6 - \lambda_4 = 9.8 \times 10^{-8} \quad \text{and} \quad \frac{d^{6^b}}{\lambda_6} \approx 0.99$$

For the restricted determinant case 6^a one has $d^{6^a} = 0$ in this molecule example.

Again, pinning
Remarks on the coupled-cluster approximation

Size-consistency: the energy of system composed of a finite number of non-interacting subsystems must be equal to the energies of such subsystems calculated separately:

\[E(AB) = E(A) + E(B). \]

Size-extensivity: the energy of a non-interacting system must scale correctly with the size of the system:

\[E(nA) = nE(A). \]

The configuration interaction (CI) wave function

\[|\psi_{CI}\rangle = \left(1 + \sum_{r,\mu} c_{\mu r} a_{r}^\dagger a_{\mu} + \sum_{r<s,\mu<v} c_{\mu r,\nu s} a_{r}^\dagger a_{s}^\dagger a_{\mu} a_{\nu} + \cdots \right) |\psi_0\rangle \]

is exact in the full CI limit, but lacks size-extensivity with any truncation of the configuration space.
Remarks on the coupled-cluster approximation

The basic idea in coupled cluster theory with double excitations (CCD) consists in considering the ansatz

$$|\psi_{\text{CCD}}\rangle = e^{\hat{T}_2} |\psi_0\rangle,$$

where

$$\hat{T}_2 = \sum_{r<s, \mu<\nu} c_{\mu\nu} a_r^+ a_s^+ a_{\mu} a_{\nu},$$

is the operator for double excitations.
Remarks on the coupled-cluster approximation

The natural occupation numbers of the double excited wave function in $\wedge^3 \mathcal{H}_7$

$$\psi_{\text{CCD}} = a[123] + b[245] + c[267] + d[367]$$

$$+ e([246] - [146]) + f([347] - [356]) + g([146] - [247])$$

with $\hat{S}_z \psi_{\text{CCD}} = -\frac{1}{2} \psi_{\text{CCD}}$ and $\hat{S}^2 \psi_{\text{CCD}} = \frac{3}{4} \psi_{\text{CCD}}$

satisfy the relations

$$d_1^7 = 2 - \lambda_1 - \lambda_2 - \lambda_4 - \lambda_7 = 0 \quad \text{and}$$

$$d_2^7 = 2 - \lambda_1 - \lambda_2 - \lambda_5 - \lambda_7 = 2|e|^2.$$

When $e = 0$, the system is pinned.
Remarks on the coupled-cluster approximation

The natural occupation numbers of the double excited wave function in $\Lambda^3 \mathcal{H}_7$

$$\psi_{\text{CCD}} = a[123] + b[245] + c[267] + d[367]$$
$$+ e([246] - [146]) + f([347] - [356]) + g([146] - [247])$$

with $\hat{S}_z \psi_{\text{CCD}} = -\frac{1}{2} \psi_{\text{CCD}}$ and $\hat{S}^2 \psi_{\text{CCD}} = \frac{3}{4} \psi_{\text{CCD}}$

satisfy the relations

$$d_1^7 = 2 - \lambda_1 - \lambda_2 - \lambda_4 - \lambda_7 = 0 \quad \text{and}$$
$$d_2^7 = 2 - \lambda_1 - \lambda_2 - \lambda_5 - \lambda_7 = 2|e|^2.$$

When $e = 0$, the system is pinned.

Our conjecture is that pinned wave functions belongs to the set of double excited wave functions.
Remarks on the coupled-cluster approximation

“A pinned system is essentially a new physical entity with its own dynamics and kinematics“.

- **Single** excitations do not mix *directly* with the HF ground state: $\langle S|H|\psi_0 \rangle = 0$.
- They can be expected to have a very small effect on the ground state energy.
- **Double** excitations mix *directly* with the HF ground state.
- It is to be expected that they play an important role in determining the correlation energy.
In general the nonrelativistic QM of an electronic system is driven by the Hamiltonian

\[H = T + V_{\text{ext}} + V_{\text{ee}} = \sum_{i=1}^{n} \frac{1}{2} \Delta \vec{q}_i + \sum_{i=1}^{n} V(\vec{q}) + \sum_{i<j}^{n} \frac{1}{|\vec{q}_i - \vec{q}_j|}. \]

Pure states \(\gamma_n := |\psi \rangle \langle \psi| \) have skewsymmetric \(\psi(x_1, \ldots, x_n) \), with \(x_i = (\vec{q}_i, \varsigma_i) \), spatial and spin variables.

Integrating out \(x_3, \ldots, x_n \) gives the 2-body Reduced Density Matrix \(\gamma_2(x_1, x_2; x_1', x_2') \)

\[\binom{n}{2} \int \gamma_n(x_1, x_2, x_3, \ldots, x_n; x_1', x_2', x_3, \ldots, x_n) \, dx_3 \ldots dx_n. \]

We have the general sum rule: \(\gamma_1 = \frac{2}{n-1} \int \gamma_2 \, dx_2. \)
We are interested in the ground state energy of the system. There is the helium-like energy functional:

\[\mathcal{E}(\gamma_2) = \text{Tr} \left\{ \left[-\frac{2}{N-1} \left(\frac{\Delta \vec{q}_1}{2} + \frac{Z}{|\vec{q}_1|} \right) + \left(\frac{1}{|\vec{q}_1 - \vec{q}_2|} \right) \right] \gamma_2 \right\}. \]

The ground-state energy minimizes \(\mathcal{E}(\gamma_2) \):

\[E_{gs} = \min \{ \mathcal{E}(\gamma_2) \mid \gamma_2 \in B_n^2 \}. \]
We are interested in the ground state energy of the system. There is the helium-like energy functional:

$$\mathcal{E}(\gamma_2) = \text{Tr} \left\{ -\frac{2N}{2(N-1)} \left(\frac{\Delta \tilde{q}_1}{2} + \frac{Z}{|\tilde{q}_1|} \right) + \left(\frac{1}{|\tilde{q}_1 - \tilde{q}_2|} \right) \right\} \gamma_2. $$

The ground-state energy minimizes $\mathcal{E}(\gamma_2)$:

$$E_{gs} = \min \{ \mathcal{E}(\gamma_2) | \gamma_2 \in \mathcal{B}_n^2 \}. $$

Here,

$$\gamma_2 \in \mathcal{B}_n^2 \iff \exists \gamma_n \in \text{DM}_n : \gamma_2 = \binom{n}{2} \int \gamma_n \, dx_3 \ldots dx_n,$$

where DM_n is the set of the n-particle density matrices. In general, the N-representability problem consists in finding necessary and sufficient conditions for the set of admissible γ_2, namely: \mathcal{B}_n^2.

Something is already known

Consider a quantum system composed of n fermions. A two-body RDM is a fermionic density matrix if it is

- Hermitian,
- normalized (fixed trace),
- antisymmetric under the exchange of particles, and
- positive semidefinite \iff its eigenvalues are non-negative.

The set \mathcal{B}_n^2 is convex.
Consider a quantum system composed of n fermions. A two-body RDM is a fermionic density matrix if it is

- Hermitian,
- normalized (fixed trace),
- antisymmetric under the exchange of particles, and
- positive semidefinite \Rightarrow its eigenvalues are non-negative.

The set \mathcal{B}_n^2 is convex.

In the coordinate-space representation

$$\gamma_2(x_1, x_2; x_1', x_2') = \sum_{ijkl} \Gamma_{kl}^{ij} f_i^*(x_1') f_j^*(x_2') f_k(x_1) f_l(x_2),$$

where

$$\Gamma_{kl}^{ij} = \langle \psi | a_i^+ a_j^+ a_l a_k | \psi \rangle.$$
Consider a quantum system composed of \(n \) fermions. A two-body RDM is a fermionic density matrix if it is

- Hermitian, \(\Gamma = \Gamma^* \)
- normalized (fixed trace), \(\sum_{ik} \Gamma^{ik}_{ik} = \binom{n}{2} \)
- antisymmetric \(\Gamma^{ij}_{kl} = -\Gamma^{ij}_{lk} = -\Gamma^{ji}_{kl} \)
- positive semidefinite \(\iff \) its eigenvalues are non-negative. \(\Gamma \geq 0 \)

The set \(\mathcal{B}_n^2 \) is convex.

In the coordinate-space representation

\[
\gamma_2(x_1, x_2; x_1', x_2') = \sum_{ijkl} \Gamma^{ij}_{kl} f_i^*(x_1') f_j^*(x_2') f_k(x_1) f_l(x_2),
\]

where

\[
\Gamma^{ij}_{kl} = \langle \psi | a_i^\dagger a_j^\dagger a_l a_k | \psi \rangle.
\]
By 2012, the known N-representability necessary conditions were

$$\Gamma \succeq 0 \quad G \succeq 0 \quad Q \succeq 0 \quad T_1 \succeq 0 \quad T_2 \succeq 0$$
By 2012, the known N-representability necessary conditions were

$$\Gamma \succeq 0 \quad G \succeq 0 \quad Q \succeq 0 \quad T_1 \succeq 0 \quad T_2 \succeq 0$$

Garrod and Percus (1964): The G and Q conditions establish that the following two matrices

$$G^{ij}_{kl} = \langle \psi | a_i^\dagger a_j^\dagger a_k a_l | \psi \rangle \quad \text{and} \quad Q^{ij}_{kl} = \langle \psi | a_i a_j a_l^\dagger a_k^\dagger | \psi \rangle,$$

must be positive semidefinite if γ_2 is N-representable.
G, Q, T1 and T2 conditions

By 2012, the known N-representability necessary conditions were

\[\Gamma \geq 0 \quad G \geq 0 \quad Q \geq 0 \quad T_1 \geq 0 \quad T_2 \geq 0 \]

Garrod and Percus (1964): The G and Q conditions establish that the following two matrices

\[G_{kl}^{ij} = \langle \psi | a_i^\dagger a_j a_l a_k | \psi \rangle \quad \text{and} \quad Q_{kl}^{ij} = \langle \psi | a_i a_j a_l^\dagger a_k^\dagger | \psi \rangle, \]

must be positive semidefinite if \(\gamma_2 \) is N-representable.

Erdhal (1978): The other known N-representability conditions are the \(T_1 \) and \(T_2 \) conditions:

\[T_{1lmn}^{ijk} := \langle \psi | a_i^\dagger a_j^\dagger a_k a_n a_m a_l + a_n a_m a_l a_i^\dagger a_j^\dagger a_k^\dagger | \psi \rangle \geq 0 \]

\[T_{2lmn}^{ijk} = \langle \psi | a_i^\dagger a_j^\dagger a_k a_n a_m a_l + a_n^\dagger a_m a_l a_i^\dagger a_j^\dagger a_k | \psi \rangle \geq 0 \]
By 2012, the known N-representability necessary conditions were

\[\Gamma \geq 0 \quad G \geq 0 \quad Q \geq 0 \quad T_1 \geq 0 \quad T_2 \geq 0 \]

Garrod and Percus (1964): The G and Q conditions establish that the following two matrices

\[G_{kl}^{ij} = \langle \psi | a_i \dagger a_j \dagger a_k a_l | \psi \rangle \quad \text{and} \quad Q_{kl}^{ij} = \langle \psi | a_i a_j a_k \dagger a_l \dagger | \psi \rangle, \]

must be positive semidefinite if \(\gamma_2 \) is N-representable.

Erdhal (1978): The other known N-representability conditions are the \(T_1 \) and \(T_2 \) conditions:

\[T_{1lmn}^{ijk} := \langle \psi | a_i \dagger a_j \dagger a_k a_n a_m a_l + a_l a_m a_n a_i \dagger a_j \dagger a_k | \psi \rangle \geq 0 \]

\[T_{2lmn}^{ijk} = \langle \psi | a_i \dagger a_j \dagger a_k a_n a_m a_l + a_i \dagger a_j \dagger a_l a_m a_n a_k | \psi \rangle \geq 0 \]

Mazziotti (2012): A constructive solution of the N-representability problem based in a hierarchy of constraints. In addition to the above conditions there is a bigger set of conditions: \(\hat{T}_2, \tilde{T}_2, \ldots \)
G, Q, T1 and T2 conditions

If a matrix O is positive semidefinite, its diagonal elements are non-negative.
G, Q, T1 and T2 conditions

If a matrix O is positive semidefinite, its diagonal elements are non-negative.

Then, in particular,

$$\Gamma_{ij} \geq 0, \quad G_{ij} \geq 0, \quad Q_{ij} \geq 0, \quad T_{1ijk} \geq 0, \quad T_{2ijk} \geq 0, \quad \tilde{T}_{2ijk} \geq 0, \quad \tilde{T}_{2ijk} \geq 0$$
G, Q, T1 and T2 conditions

If a matrix O is positive semidefinite, its diagonal elements are non-negative.

Then, in particular,

$$\Gamma_{ij} \geq 0, \quad G_{ij} \geq 0, \quad Q_{ij} \geq 0, \quad T_{1ijk} \geq 0, \quad T_{2ijk} \geq 0, \quad \tilde{T}_{2ijk} \geq 0, \quad \tilde{T}_{2ijk} \geq 0$$

which implies, among other relations,

$$\lambda_i \geq \Gamma_{ij}$$

$$1 - \lambda_i - \lambda_j \geq -\Gamma_{ij}$$

$$1 - \lambda_i - \lambda_j - \lambda_k \geq -\Gamma_{ij} - \Gamma_{ik} - \Gamma_{jk}$$

$$\lambda_i + \Gamma_{jk} \geq \Gamma_{ij} + \Gamma_{ik}$$

In particular, $1 - \lambda_1 - \lambda_2 + \lambda_3 \geq \lambda_3 - \Gamma_{12} \geq 0$.
"A pinned system is essentially a new physical entity with its own dynamics and kinematics".

For pinned states in $\wedge^3 \mathcal{H}_7$ such that: $1 - \lambda_1 - \lambda_2 + \lambda_3 = 0$ the spectra of the T_1 and T_2 matrices are trivial:

$$\text{Spec}(T_1) = \{1, 1, 0, 0, 0, 0, 0, 0\}$$

$$\text{Spec}(T_2) = \{1, 1, 1, 1, 1, 1, 0, 0, 0, \ldots\}$$

work in progress...
Summary

- We have checked Klyachko constraints in a simple atomic model.
- We have checked Klyachko constraints in a simple molecular model.
- We have examined the Klyachko relations in the light of CCD theory.
- An investigation is currently in progress aimed to establish the connections between Klyachko and Mazziotti paradigms.