The nerve theorem and Grothendieck’s hypothesis on homotopy types

Clemens Berger

University of Nice

CT2010
Genova, June 20-26, 2010
1. Monadic squares

2. Nerves and theories

3. Higher categories and wreath products

4. Grothendieck’s hypothesis and Θ_n-spaces
A *monadic square* is a commutative diagram of functors

\[
\begin{array}{ccc}
\mathcal{E}_1' & \xrightarrow{G'} & \mathcal{E}_2' \\
U_1 & = & U_2 \\
\mathcal{E}_1 & \xrightarrow{G} & \mathcal{E}_2
\end{array}
\]

such that

(i) \(U_1, U_2 \) are monadic functors with left adjoints \(F_1, F_2 \);

(ii) the induced 2-cell \(\phi = \epsilon_2 G' F_1 \circ F_2 G \eta_1 \) (the “mate”)

\[
\begin{array}{ccc}
\mathcal{E}_1' & \xrightarrow{G'} & \mathcal{E}_2' \\
F_1 & \phi & F_2 \\
\mathcal{E}_1 & \xrightarrow{G} & \mathcal{E}_2
\end{array}
\]

is invertible.
A monadic square is a commutative diagram of functors

\[
\begin{array}{ccc}
\mathcal{E}'_1 & \xrightarrow{G'} & \mathcal{E}'_2 \\
\downarrow U_1 & = & \downarrow U_2 \\
\mathcal{E}_1 & \xrightarrow{G} & \mathcal{E}_2
\end{array}
\]

such that

(i) \(U_1, U_2 \) are monadic functors with left adjoints \(F_1, F_2 \);

(ii) the induced 2-cell \(\phi = \epsilon_2 G' F_1 \circ F_2 G \eta_1 \) (the “mate”)

is invertible.
A monadic square is a commutative diagram of functors

\[
\begin{array}{ccc}
\mathcal{E}_1' & \xrightarrow{G'} & \mathcal{E}_2' \\
\downarrow U_1 & = & \downarrow U_2 \\
\mathcal{E}_1 & \xrightarrow{G} & \mathcal{E}_2
\end{array}
\]

such that

(i) U_1, U_2 are monadic functors with left adjoints F_1, F_2;
(ii) the induced 2-cell $\phi = \epsilon_2 G' F_1 \circ F_2 G \eta_1$ (the “mate”)

is invertible.
Let \((T_1, \mu_1, \eta_1), (T_2, \mu_2, \eta_2)\) be monads on \(E_1, E_2\) respectively.

A (strong) monad morphism \((G, \psi) : (E_1, T_1) \to (E_2, T_2)\) is a functor \(G : E_1 \to E_2\) together with an (invertible) 2-cell \(\psi : T_2 G \Rightarrow G T_1\) such that \(G \eta_1 = \psi \circ \eta_2 G\) and \(\psi \circ \mu_2 G = G \mu_1 \circ G \psi T_1 \circ T_2 \psi G\).

A strong monad morphism \((G, \psi)\) induces a monadic square

\[
\begin{array}{ccc}
\text{Alg}_{T_1} & \xrightarrow{G'} & \text{Alg}_{T_2} \\
U_1 \downarrow & = & \downarrow U_2 \\
E_1 & \xrightarrow{G} & E_2
\end{array}
\]

with \(G'(X, \xi : T_1 X \to X) = (GX, G\xi \circ \psi : T_2 GX \to GX)\).

Conversely, a monadic square induces a strong monad morphism from which it derives up to canonical equivalence.
Let \((T_1, \mu_1, \eta_1), (T_2, \mu_2, \eta_2)\) be monads on \(\mathcal{E}_1, \mathcal{E}_2\) respectively.

A (strong) monad morphism \((G, \psi) : (\mathcal{E}_1, T_1) \to (\mathcal{E}_2, T_2)\) is a functor \(G : \mathcal{E}_1 \rightarrow \mathcal{E}_2\) together with an (invertible) 2-cell \(\psi : T_2 G \Rightarrow GT_1\) such that \(G \eta_1 = \psi \circ \eta_2 G\) and \(\psi \circ \mu_2 G = G \mu_1 \circ G \psi T_1 \circ T_2 \psi G\).

A strong monad morphism \((G, \psi)\) induces a monadic square

\[
\begin{array}{ccc}
\text{Alg}_{T_1} & \xrightarrow{G'} & \text{Alg}_{T_2} \\
U_1 & = & U_2 \\
\mathcal{E}_1 & \xrightarrow{G} & \mathcal{E}_2
\end{array}
\]

with \(G'(X, \xi : T_1 X \rightarrow X) = (GX, G\xi \circ \psi : T_2 GX \rightarrow GX)\)

Conversely, a monadic square induces a strong monad morphism from which it derives up to canonical equivalence.
Let \((T_1, \mu_1, \eta_1), (T_2, \mu_2, \eta_2)\) be monads on \(\mathcal{E}_1, \mathcal{E}_2\) respectively.

A (strong) monad morphism \((G, \psi) : (\mathcal{E}_1, T_1) \rightarrow (\mathcal{E}_2, T_2)\) is a functor \(G : \mathcal{E}_1 \rightarrow \mathcal{E}_2\) together with an (invertible) 2-cell \(\psi : T_2 G \Rightarrow GT_1\) such that \(G \eta_1 = \psi \circ \eta_2 G\) and \(\psi \circ \mu_2 G = G\mu_1 \circ G\psi T_1 \circ T_2 \psi G\).

A strong monad morphism \((G, \psi)\) induces a monadic square

\[
\begin{array}{ccc}
\text{Alg}_{T_1} & \xrightarrow{G'} & \text{Alg}_{T_2} \\
U_1 \downarrow & = & \downarrow U_2 \\
\mathcal{E}_1 & \xrightarrow{G} & \mathcal{E}_2
\end{array}
\]

with \(G'(X, \xi : T_1 X \rightarrow X) = (GX, G\xi \circ \psi : T_2 GX \rightarrow GX)\).

Conversely, a monadic square induces a strong monad morphism from which it derives up to canonical equivalence.
Let \((T_1, \mu_1, \eta_1), (T_2, \mu_2, \eta_2)\) be monads on \(E_1, E_2\) respectively.

A \textit{(strong) monad morphism} \((G, \psi) : (E_1, T_1) \to (E_2, T_2)\) is a functor \(G : E_1 \to E_2\) together with an (invertible) 2-cell \(\psi : T_2G \Rightarrow GT_1\) such that \(G\eta_1 = \psi \circ \eta_2G\) and \(\psi \circ \mu_2G = G\mu_1 \circ G\psi T_1 \circ T_2\psi G\).

A strong monad morphism \((G, \psi)\) induces a monadic square

\[
\begin{array}{ccc}
\text{Alg}_{T_1} & \xrightarrow{G'} & \text{Alg}_{T_2} \\
U_1 \downarrow & = & \downarrow U_2 \\
E_1 & \xrightarrow{G} & E_2
\end{array}
\]

with \(G'(X, \xi : T_1X \to X) = (GX, G\xi \circ \psi : T_2GX \to GX)\).

Conversely, a monadic square induces a strong monad morphism from which it derives up to canonical equivalence.
The nerve theorem and Grothendieck’s hypothesis on homotopy types
Monadic squares

Proposition

In any monadic square like above, if G is faithful (resp. fully faithful resp. an equivalence) then so is G'.

Proposition

For a fully faithful functor G, the essential image factorisation of G decomposes the monadic square into two monadic squares

$$
\begin{array}{ccc}
\mathcal{E}_1' & \xrightarrow{\sim} & \text{Im}(G) \times_{\mathcal{E}_2} \mathcal{E}_2' \\
U_1 \downarrow & & \downarrow \\
\mathcal{E}_1 & \xrightarrow{\sim} & \text{Im}(G) \leftarrow \mathcal{E}_2
\end{array}
$$

In particular, the essential image of G' is given by restriction of the monadic functor U_2 to the essential image of G.
Proposition

In any monadic square like above, if G is faithful (resp. fully faithful resp. an equivalence) then so is G'.

Proposition

For a fully faithful functor G, the essential image factorisation of G decomposes the monadic square into two monadic squares

\[
\begin{array}{ccc}
\mathcal{E}_1' & \sim & \text{Im}(G) \times \mathcal{E}_2' \\
\downarrow U_1 & & \downarrow \text{ff} \\
\mathcal{E}_1 & \sim & \text{Im}(G) \\
\end{array}
\]

In particular, the essential image of G' is given by restriction of the monadic functor U_2 to the essential image of G.
A category with arities \((\mathcal{E}, \Theta_0)\) is a category \(\mathcal{E}\) equipped with a small dense subcategory \(i_0 : \Theta_0 \hookrightarrow \mathcal{E}\), i.e. the induced nerve functor \(\nu_0 : \mathcal{E} \to \widehat{\Theta}_0 : X \mapsto \mathcal{E}(i_0(-), X)\) is fully faithful.

For each object \(X\) of \(\mathcal{E}\) the functor \(\xi_X : i_0/X \to \Theta_0 \hookrightarrow \mathcal{E}\) induces a colimit cocone \(\text{colim}_{i_0/X} \xi_X \xrightarrow{\approx} X\).

A monad with arities on \((\mathcal{E}, \Theta_0)\) is a monad \(T\) such that the composite functor \(\nu_0 \circ T\) preserves the \(\Theta_0\)-colimit cones.

The theory \(\Theta_T\) induced by a monad with arities \(T\) is obtained by factoring \(\Theta_0 \xrightarrow{i_0} \mathcal{E} \xrightarrow{F_T} \text{Alg}_T\) into a bijective-on-objects functor \(j : \Theta_0 \to \Theta_T\) followed by a fully faithful functor \(\Theta_T \to \text{Alg}_T\).

\(\Theta_T\) is called homogeneous if \(\Theta_T\) admits a generic/free factorisation system \(\Theta_T = (\Theta_{T,\text{gen}}, \Theta_0)\).
A **category with arities** \((\mathcal{E}, \Theta_0)\) is a category \(\mathcal{E}\) equipped with a small dense subcategory \(i_0 : \Theta_0 \hookrightarrow \mathcal{E}\), i.e. the induced **nerve functor** \(\nu_0 : \mathcal{E} \to \hat{\Theta}_0 : X \mapsto \mathcal{E}(i_0(-), X)\) is fully faithful.

For each object \(X\) of \(\mathcal{E}\) the functor \(\xi_X : i_0/X \to \Theta_0 \hookrightarrow \mathcal{E}\) induces a colimit cocone \(\text{colim}_{i_0/X} \xi_X \xrightarrow{\mathbb{1}} X\).

A **monad with arities** on \((\mathcal{E}, \Theta_0)\) is a monad \(T\) such that the composite functor \(\nu_0 \circ T\) preserves the \(\Theta_0\)-colimit cones.

The **theory** \(\Theta_T\) induced by a monad with arities \(T\) is obtained by factoring \(\Theta_0 \xrightarrow{i_0} \mathcal{E} \xrightarrow{F_T} \text{Alg}_T\) into a bijective-on-objects functor \(j : \Theta_0 \to \Theta_T\) followed by a fully faithful functor \(\Theta_T \to \text{Alg}_T\).

\(\Theta_T\) is called **homogeneous** if \(\Theta_T\) admits a **generic/free factorisation system** \(\Theta_T = (\Theta_T, \text{gen}, \Theta_0)\).
A category with arities \((\mathcal{E}, \Theta_0)\) is a category \(\mathcal{E}\) equipped with a small dense subcategory \(i_0 : \Theta_0 \hookrightarrow \mathcal{E}\), i.e. the induced nerve functor \(\nu_0 : \mathcal{E} \to \hat{\Theta}_0 : X \mapsto \mathcal{E}(i_0(-), X)\) is fully faithful.

For each object \(X\) of \(\mathcal{E}\) the functor \(\xi_X : i_0/X \to \Theta_0 \hookrightarrow \mathcal{E}\) induces a colimit cocone \(\text{colim}_{i_0/X} \xi_X \xrightarrow{\cong} X\).

A monad with arities on \((\mathcal{E}, \Theta_0)\) is a monad \(T\) such that the composite functor \(\nu_0 \circ T\) preserves the \(\Theta_0\)-colimit cones.

The theory \(\Theta_T\) induced by a monad with arities \(T\) is obtained by factoring \(\Theta_0 \xrightarrow{i_0} \mathcal{E} \xrightarrow{FT} \text{Alg}_T\) into a bijective-on-objects functor \(j : \Theta_0 \to \Theta_T\) followed by a fully faithful functor \(\Theta_T \to \text{Alg}_T\).

\(\Theta_T\) is called homogeneous if \(\Theta_T\) admits a generic/free factorisation system \(\Theta_T = (\Theta_{T,\text{gen}}, \Theta_0)\).
A category with arities \((\mathcal{E}, \Theta_0)\) is a category \(\mathcal{E}\) equipped with a small dense subcategory \(i_0 : \Theta_0 \hookrightarrow \mathcal{E}\), i.e. the induced nerve functor \(\nu_0 : \mathcal{E} \to \hat{\Theta}_0 : X \mapsto \mathcal{E}(i_0(-), X)\) is fully faithful.

For each object \(X\) of \(\mathcal{E}\) the functor \(\xi_X : i_0/X \to \Theta_0 \hookrightarrow \mathcal{E}\) induces a colimit cocone \(\text{colim}_{i_0/X} \xi_X \to X\).

A monad with arities on \((\mathcal{E}, \Theta_0)\) is a monad \(T\) such that the composite functor \(\nu_0 \circ T\) preserves the \(\Theta_0\)-colimit cones.

The theory \(\Theta_T\) induced by a monad with arities \(T\) is obtained by factoring \(\Theta_0 \xrightarrow{i_0} \mathcal{E} \xrightarrow{F_T} \text{Alg}_T\) into a bijective-on-objects functor \(j : \Theta_0 \to \Theta_T\) followed by a fully faithful functor \(\Theta_T \to \text{Alg}_T\).

\(\Theta_T\) is called homogeneous if \(\Theta_T\) admits a generic/free factorisation system \(\Theta_T = (\Theta_T, \text{gen}, \Theta_0)\).
A category with arities \((\mathcal{E}, \Theta_0)\) is a category \(\mathcal{E}\) equipped with a small dense subcategory \(i_0 : \Theta_0 \hookrightarrow \mathcal{E}\), i.e. the induced nerve functor \(\nu_0 : \mathcal{E} \to \hat{\Theta}_0 : X \mapsto \mathcal{E}(i_0(-), X)\) is fully faithful.

For each object \(X\) of \(\mathcal{E}\) the functor \(\xi_X : i_0/X \to \Theta_0 \hookrightarrow \mathcal{E}\) induces a colimit cocone \(\mathrm{colim}_{i_0/X} \xi_X \overset{\sim}{\to} X\).

A monad with arities on \((\mathcal{E}, \Theta_0)\) is a monad \(T\) such that the composite functor \(\nu_0 \circ T\) preserves the \(\Theta_0\)-colimit cones.

The theory \(\Theta_T\) induced by a monad with arities \(T\) is obtained by factoring \(\Theta_0 \overset{i_0}{\to} \mathcal{E} \overset{F_T}{\to} \mathrm{Alg}_T\) into a bijective-on-objects functor \(j : \Theta_0 \to \Theta_T\) followed by a fully faithful functor \(\Theta_T \to \mathrm{Alg}_T\).

\(\Theta_T\) is called homogeneous if \(\Theta_T\) admits a generic/free factorisation system \(\Theta_T = (\Theta_T, \text{gen}, \Theta_0)\).
Example (algebraic theories and symmetric operads)

Consider sets with arities \mathcal{I}_0 the subcategory of finite sets.

- A monad \mathcal{T} has arities \mathcal{I}_0 iff \mathcal{T} preserves filtered colimits;
- $\Theta_{\mathcal{T}}$ is (the dual of) Lawvere’s algebraic theory for \mathcal{T}-algebras;
- $\Theta_{\mathcal{T}}$ is homogeneous iff \mathcal{T} is induced by a symmetric operad.

Theorem (B. ’02, Leinster ’04, Weber ’07, Mellies ’10)

For a monad with arities \mathcal{T} on (\mathcal{E}, Θ_0), the theory $\Theta_{\mathcal{T}}$ is dense in $\text{Alg}_{\mathcal{T}}$. The essential image of $\nu_{\mathcal{T}} : \text{Alg}_{\mathcal{T}} \to \hat{\Theta}_{\mathcal{T}}$ is spanned by those $X : \Theta_{\mathcal{T}}^{\text{op}} \to \text{Sets}$ whose restriction j^*X belongs to $\text{Im}(\nu_0)$.

Remark

If $\mathcal{E} = \hat{\mathcal{C}}$ and Θ_0 contains the representables, the essential image of $\nu_0 : \hat{\mathcal{C}} \to \hat{\Theta}_0$ is spanned by sheaves on Θ_0. The essential image of $\nu_{\mathcal{T}} : \text{Alg}_{\mathcal{T}} \to \hat{\Theta}_{\mathcal{T}}$ is then given by a restricted sheaf condition.
Example (algebraic theories and symmetric operads)

Consider sets with arities \mathcal{I}_0 the subcategory of finite sets.
- A monad T has arities \mathcal{I}_0 iff T preserves filtered colimits;
- Θ_T is (the dual of) Lawvere’s algebraic theory for T-algebras;
- Θ_T is homogeneous iff T is induced by a symmetric operad.

Theorem (B. ’02, Leinster ’04, Weber ’07, Mellies ’10)

For a monad with arities T on (\mathcal{E}, Θ_0), the theory Θ_T is dense in Alg_T. The essential image of $\nu_T : \text{Alg}_T \to \hat{\Theta}_T$ is spanned by those $X : \Theta_T^{\text{op}} \to \text{Sets}$ whose restriction $j^* X$ belongs to $\text{Im}(\nu_0)$.

Remark

If $\mathcal{E} = \hat{\mathcal{C}}$ and Θ_0 contains the representables, the essential image of $\nu_0 : \hat{\mathcal{C}} \to \hat{\Theta}_0$ is spanned by sheaves on Θ_0. The essential image of $\nu_T : \text{Alg}_T \to \hat{\Theta}_T$ is then given by a restricted sheaf condition.
Example (algebraic theories and symmetric operads)

Consider sets with arities \mathcal{T}_0 the subcategory of finite sets.
- A monad T has arities \mathcal{T}_0 iff T preserves filtered colimits;
- Θ_T is (the dual of) Lawvere’s algebraic theory for T-algebras;
- Θ_T is homogeneous iff T is induced by a symmetric operad.

Theorem (B. ’02, Leinster ’04, Weber ’07, Mellies ’10)

For a monad with arities T on (\mathcal{E}, Θ_0), the theory Θ_T is dense in Alg_T. The essential image of $\nu_T : \text{Alg}_T \to \hat{\Theta}_T$ is spanned by those $X : \Theta_T^{\text{op}} \to \text{Sets}$ whose restriction j^*X belongs to $\text{Im}(\nu_0)$.

Remark

If $\mathcal{E} = \hat{\mathcal{C}}$ and Θ_0 contains the representables, the essential image of $\nu_0 : \hat{\mathcal{C}} \to \hat{\Theta}_0$ is spanned by sheaves on Θ_0. The essential image of $\nu_T : \text{Alg}_T \to \hat{\Theta}_T$ is then given by a *restricted* sheaf condition.
Example (algebraic theories and symmetric operads)

Consider sets with arities T_0 the subcategory of finite sets.
- A monad T has arities T_0 iff T preserves filtered colimits;
- Θ_T is (the dual of) Lawvere’s algebraic theory for T-algebras;
- Θ_T is homogeneous iff T is induced by a symmetric operad.

Theorem (B. ’02, Leinster ’04, Weber ’07, Mellies ’10)

For a monad with arities T on (\mathcal{E}, Θ_0), the theory Θ_T is dense in Alg_T. The essential image of $\nu_T : \text{Alg}_T \to \hat{\Theta}_T$ is spanned by those $X : \Theta^{\text{op}}_T \to \text{Sets}$ whose restriction j^*X belongs to $\text{Im}(\nu_0)$.

Remark

If $\mathcal{E} = \hat{\mathcal{C}}$ and Θ_0 contains the representables, the essential image of $\nu_0 : \hat{\mathcal{C}} \to \hat{\Theta}_0$ is spanned by sheaves on Θ_0. The essential image of $\nu_T : \text{Alg}_T \to \hat{\Theta}_T$ is then given by a restricted sheaf condition.
Example (algebraic theories and symmetric operads)

Consider sets with arities \mathcal{I}_0 the subcategory of finite sets.

- A monad T has arities \mathcal{I}_0 iff T preserves filtered colimits;
- Θ_T is (the dual of) Lawvere’s algebraic theory for T-algebras;
- Θ_T is homogeneous iff T is induced by a symmetric operad.

Theorem (B. ’02, Leinster ’04, Weber ’07, Mellies ’10)

For a monad with arities T on (\mathcal{E}, Θ_0), the theory Θ_T is dense in Alg_T. The essential image of $\nu_T : \text{Alg}_T \to \hat{\Theta}_T$ is spanned by those $X : \Theta_T^{\text{op}} \to \text{Sets}$ whose restriction j^*X belongs to $\text{Im}(\nu_0)$.

Remark

If $\mathcal{E} = \hat{\mathcal{C}}$ and Θ_0 contains the representables, the essential image of $\nu_0 : \hat{\mathcal{C}} \to \hat{\Theta}_0$ is spanned by sheaves on Θ_0. The essential image of $\nu_T : \text{Alg}_T \to \hat{\Theta}_T$ is then given by a restricted sheaf condition.
Example (algebraic theories and symmetric operads)

Consider sets with arities \mathcal{I}_0 the subcategory of finite sets.
- A monad T has arities \mathcal{I}_0 iff T preserves filtered colimits;
- Θ_T is (the dual of) Lawvere’s algebraic theory for T-algebras;
- Θ_T is homogeneous iff T is induced by a symmetric operad.

Theorem (B. ’02, Leinster ’04, Weber ’07, Mellies ’10)

For a monad with arities T on (\mathcal{E}, Θ_0), the theory Θ_T is dense in Alg_T. The essential image of $\nu_T : \text{Alg}_T \to \hat{\Theta}_T$ is spanned by those $X : \Theta_T^{\text{op}} \to \text{Sets}$ whose restriction j^*X belongs to $\text{Im}(\nu_0)$.

Remark

If $\mathcal{E} = \hat{\mathcal{C}}$ and Θ_0 contains the representables, the essential image of $\nu_0 : \hat{\mathcal{C}} \to \hat{\Theta}_0$ is spanned by sheaves on Θ_0. The essential image of $\nu_T : \text{Alg}_T \to \hat{\Theta}_T$ is then given by a restricted sheaf condition.
Proof of the nerve theorem.

Since T is a monad with arities on (\mathcal{E}, Θ_0) the square

$$
\begin{array}{ccc}
\text{Alg}_T & \overset{\nu_T}{\longrightarrow} & \hat{\Theta}_T \\
U_T & \downarrow & \downarrow j^* \\
\mathcal{E} & \overset{\nu_0}{\longrightarrow} & \hat{\Theta}_0
\end{array}
$$

is pseudo-monadic and ν_0 is fully faithful.

A theory on (\mathcal{E}, Θ_0) is a bijective-on-objects faithful functor $j : \Theta_0 \to \Theta_T$ such that $j^*j_!$ preserves the essential image of ν_0.

Theorem (B. ’02, Mellies ’10)

There is a canonical one-to-one correspondence between monads with arities on (\mathcal{E}, Θ_0) and theories on (\mathcal{E}, Θ_0).
Proof of the nerve theorem.

Since T is a monad with arities on (\mathcal{E}, Θ_0) the square

\[
\begin{array}{ccc}
\text{Alg}_T & \xrightarrow{\nu_T} & \hat{\Theta}_T \\
U_T & \downarrow & \downarrow j^* \\
\mathcal{E} & \xrightarrow{\nu_0} & \hat{\Theta}_0
\end{array}
\]

is pseudomonadic and ν_0 is fully faithful.

A theory on (\mathcal{E}, Θ_0) is a bijective-on-objects faithful functor $j : \Theta_0 \to \Theta_T$ such that $j^* j_!$ preserves the essential image of ν_0.

Theorem (B. ’02, Mellies ’10)

There is a canonical one-to-one correspondence between monads with arities on (\mathcal{E}, Θ_0) and theories on (\mathcal{E}, Θ_0).
Proof of the nerve theorem.

Since T is a monad with arities on (\mathcal{E}, Θ_0) the square

\[
\begin{array}{ccc}
\text{Alg}_T & \xrightarrow{\nu_T} & \hat{\Theta}_T \\
U_T & \downarrow \text{diag} & \downarrow j^* \\
\mathcal{E} & \xrightarrow{\nu_0} & \hat{\Theta}_0
\end{array}
\]

is pseudomonadic and ν_0 is fully faithful.

A theory on (\mathcal{E}, Θ_0) is a bijective-on-objects faithful functor $j : \Theta_0 \to \Theta_T$ such that $j^* j_!$ preserves the essential image of ν_0.

Theorem (B. ’02, Mellies ’10)

There is a canonical one-to-one correspondence between monads with arities on (\mathcal{E}, Θ_0) and theories on (\mathcal{E}, Θ_0).
Each *finite level tree* S defines a globular set S_* with $\text{ht}(S) = \dim(S_*)$ (Batanin’s star-construction ’98).

The category of arities Θ_0 is the full subcategory of \hat{G} spanned by the S_* where S runs through the set of finite level trees.

The Grothendieck topology on Θ_0 induced by the nerve $\nu_0 : \hat{G} \to \hat{\Theta}_0$ has the characteristic property that a presheaf X on Θ_0 is a sheaf if and only if X transforms the canonical colimit cones

$$\text{colim}_{\sigma \in \text{el}(S_*)} \sigma \xrightarrow{\cong} S_*$$

into limit cones.

A theory Θ_A on (\hat{G}, Θ_0) is called *globular*. The presheaves X such that j^*X is a sheaf are called Θ_A-*models*. According to the nerve theorem they correspond to A-algebras for a monad A on \hat{G}.
Each *finite level tree* S defines a globular set S_* with $\text{ht}(S) = \dim(S_*)$ (Batanin’s star-construction ’98).

The category of arities Θ_0 is the full subcategory of \hat{G} spanned by the S_* where S runs through the set of finite level trees.

The Grothendieck topology on Θ_0 induced by the nerve $\nu_0: \hat{G} \to \hat{\Theta}_0$ has the characteristic property that a presheaf X on Θ_0 is a sheaf if and only if X transforms the canonical colimit cones

$$\text{colim}_{\sigma \in \text{el}(S_*)} \sigma \xrightarrow{\simeq} S_*$$

into limit cones.

A theory Θ_A on (\hat{G}, Θ_0) is called *globular*. The presheaves X such that j^*X is a sheaf are called Θ_A-*models*. According to the nerve theorem they correspond to A-algebras for a monad A on \hat{G}.
Each finite level tree S defines a globular set S_* with $\text{ht}(S) = \dim(S_*)$ (Batanin’s star-construction ’98).

The category of arities Θ_0 is the full subcategory of \widehat{G} spanned by the S_* where S runs through the set of finite level trees.

The Grothendieck topology on Θ_0 induced by the nerve $\nu_0 : \widehat{G} \to \widehat{\Theta}_0$ has the characteristic property that a presheaf X on Θ_0 is a sheaf if and only if X transforms the canonical colimit cones

$$\text{colim}_{\sigma \in \text{el}(S_*)} \sigma \longrightarrow S_*$$

into limit cones.

A theory Θ_A on (\widehat{G}, Θ_0) is called globular. The presheaves X such that j^*X is a sheaf are called Θ_A-models. According to the nerve theorem they correspond to A-algebras for a monad A on \widehat{G}.
Each *finite level tree* S defines a globular set S_* with $\text{ht}(S) = \dim(S_*)$ (Batanin’s star-construction ’98).

The category of arities Θ_0 is the full subcategory of $\hat{\mathcal{G}}$ spanned by the S_* where S runs through the set of finite level trees.

The Grothendieck topology on Θ_0 induced by the nerve $\nu_0 : \hat{\mathcal{G}} \to \hat{\Theta}_0$ has the caracteristic property that a presheaf X on Θ_0 is a sheaf if and only if X transforms the canonical colimit cones

$$\text{colim}_{\sigma \in \text{el}(S_*)} \sigma \xrightarrow{\sim} S_*$$

into limit cones.

A theory Θ_A on $(\hat{\mathcal{G}}, \Theta_0)$ is called *globular*. The presheaves X such that j^*X is a sheaf are called Θ_A-*models*. According to the nerve theorem they correspond to A-algebras for a monad A on $\hat{\mathcal{G}}$.
A globular theory Θ_A is called \textit{homogeneous} if there is a factorisation system $\Theta_A = (\Theta_{A, \text{gen}}, \Theta_0)$ such that each \textit{generic} operator $\phi : S \to T$ satisfies $\text{ht}(S) \geq \text{ht}(T)$.

\textbf{Theorem (Makkai-Zawadowski '01, B. '02)}

- There is a canonical one-to-one correspondence between homogeneous globular theories and globular operads;
- The terminal such theory is the theory of strict ω-categories; it is the dual of Joyal’s category of finite combinatorial disks.
A globular theory Θ_A is called *homogeneous* if there is a factorisation system $\Theta_A = (\Theta_{A, gen}, \Theta_0)$ such that each *generic* operator $\phi : S \to T$ satisfies $\text{ht}(S) \geq \text{ht}(T)$.

Theorem (Makkai-Zawadowski ’01, B. ’02)

- There is a canonical one-to-one correspondence between homogeneous globular theories and globular operads;
- The terminal such theory is the theory of strict ω-categories; it is the dual of Joyal’s category of finite combinatorial disks.
A globular theory Θ_A is called \textit{homogeneous} if there is a factorisation system $\Theta_A = (\Theta_{A,\text{gen}}, \Theta_0)$ such that each \textit{generic} operator $\phi : S \to T$ satisfies $\text{ht}(S) \geq \text{ht}(T)$.

Theorem (Makkai-Zawadowski '01, B. '02)

- There is a canonical one-to-one correspondence between homogeneous globular theories and globular operads;
- The terminal such theory is the theory of strict ω-categories; it is the dual of Joyal’s category of finite combinatorial disks.
A globular theory Θ_A is called *homogeneous* if there is a factorisation system $\Theta_A = (\Theta_A,\text{gen},\Theta_0)$ such that each generic operator $\phi : S \to T$ satisfies $\text{ht}(S) \geq \text{ht}(T)$.

Theorem (Makkai-Zawadowski '01, B. '02)

- There is a canonical one-to-one correspondence between homogeneous globular theories and globular operads;
- The terminal such theory is the theory of strict ω-categories; it is the dual of Joyal's category of finite combinatorial disks.
A globular theory Θ_A is called \textit{homogeneous} if there is a factorisation system $\Theta_A = (\Theta_{A,\text{gen}}, \Theta_0)$ such that each \textit{generic} operator $\phi : S \to T$ satisfies $\text{ht}(S) \geq \text{ht}(T)$.

\textbf{Theorem (Makkai-Zawadowski '01, B. '02)}

- There is a canonical one-to-one correspondence between homogeneous globular theories and globular operads;
- The terminal such theory is the theory of strict ∞-categories; it is the dual of Joyal’s category of finite combinatorial disks.
There is a canonical one-to-one correspondence between homogeneous \(n \)-globular theories and globular \(n \)-operads; the terminal such theory is the theory of strict \(n \)-categories; it is the dual of Joyal’s category of finite combinatorial \(n \)-disks.

Example (\(n=1 \), Segal condition)

The terminal graphical theory is the simplex category \(\Delta \).

\[
\begin{array}{ccc}
\text{Cat} & \sim & \text{Mod}_\Delta \\
\Downarrow U & & \Downarrow j^* \\
\hat{\mathcal{G}}_1 & \sim & \text{Sh}(\Delta_0) \\
& & \Downarrow \\
& & \hat{\Delta}_0
\end{array}
\]

\(\Delta_0 = \{ \text{distance-preserving operators} \} \),
\(\Delta_{gen} = \{ \text{endpoint-preserving operators} \} \).
Corollary

- There is a canonical one-to-one correspondence between homogeneous n-globular theories and globular n-operads;
- The terminal such theory is the theory of strict n-categories; it is the dual of Joyal’s category of finite combinatorial n-disks.

Example (n=1, Segal condition)

The terminal graphical theory is the simplex category Δ.

\[
\begin{array}{ccc}
\text{Cat} & \sim & \text{Mod}_\Delta \\
\downarrow \U & & \downarrow j^* \\
\hat{G}_1 & \sim & \text{Sh}(\Delta_0)
\end{array}
\]

$\Delta_0 = \{\text{distance-preserving operators}\}$,

$\Delta_{\text{gen}} = \{\text{endpoint-preserving operators}\}$.
Corollary

- There is a canonical one-to-one correspondence between homogeneous n-globular theories and globular n-operads;
- The terminal such theory is the theory of strict n-categories; it is the dual of Joyal’s category of finite combinatorial n-disks.

Example ($n=1$, Segal condition)

The terminal graphical theory is the simplex category Δ.

\[
\begin{array}{ccc}
\text{Cat} & \overset{\sim}{\longrightarrow} & \text{Mod}_\Delta \\
U \downarrow & & \downarrow j^* \\
\hat{G}_1 & \overset{\sim}{\longrightarrow} & \text{Sh}(\Delta_0) \\
& & \downarrow \\
& & \hat{\Delta}_0
\end{array}
\]

$\Delta_0 = \{\text{distance-preserving operators}\}$,
$\Delta_{\text{gen}} = \{\text{endpoint-preserving operators}\}$.

Corollary

- There is a canonical one-to-one correspondence between homogeneous n-globular theories and globular n-operads;
- The terminal such theory is the theory of strict n-categories; it is the dual of Joyal’s category of finite combinatorial n-disks.

Example ($n=1$, Segal condition)

The terminal graphical theory is the simplex category Δ.

\[\begin{align*}
\text{Cat} & \xrightarrow{\sim} \text{Mod}_\Delta & \subseteq & \widehat{\Delta} \\
U & \downarrow & \downarrow & j^* \\
\widehat{G}_1 & \xrightarrow{\sim} \text{Sh}(\Delta_0) & \subseteq & \widehat{\Delta}_0
\end{align*} \]

$\Delta_0 = \{\text{distance-preserving operators}\}$,
$\Delta_{\text{gen}} = \{\text{endpoint-preserving operators}\}$.
The terminal n-globular theory Θ_n is dense in $n\text{Cat}$ for each $n \geq 1$.

\[\Theta_n \to n\text{Cat} \]
\[\Theta_{n+1} \to (n+1)\text{Cat} \]

The \textit{wreath product} $\Delta \wr A$ is the category

- with objects $([m], a_1, \ldots, a_m) \in \Delta \times A^m$, $m \geq 0$;
- with morphisms

\[(\phi; \phi_1, \ldots, \phi_m) : ([m], a_1, \ldots, a_m) \to ([n], b_1, \ldots, b_n) \]

\[\phi : [m] \to [n] \text{ in } \Delta \]
\[\phi_i : A[a_i] \to A[b_{\phi(i)+1}] \times \cdots \times A[b_{\phi(i+1)}] \text{ in } \hat{A}. \]
The terminal n-globular theory Θ_n is dense in $n\text{Cat}$ for each $n \geq 1$.

\[\Theta_n \hookrightarrow n\text{Cat}\]

\[\Theta_{n+1} \hookrightarrow (n+1)\text{Cat}\]

The \textit{wreath product} $\Delta \wr A$ is the category

- with objects $([m], a_1, \ldots, a_m) \in \Delta \times A^m$, $m \geq 0$;
- with morphisms

\[(\phi; \phi_1, \ldots, \phi_m) : ([m], a_1, \ldots, a_m) \to ([n], b_1, \ldots, b_n)\]

$\phi : [m] \to [n]$ in Δ

$\phi_i : A[a_i] \to A[b_{\phi(i)+1}] \times \cdots \times A[b_{\phi(i+1)}]$ in \hat{A}.
The terminal n-globular theory Θ_n is dense in $n\text{Cat}$ for each $n \geq 1$.

\[\Theta_n \hookrightarrow n\text{Cat} \]
\[\downarrow \quad \downarrow \]
\[\Theta_{n+1} \hookrightarrow n+1\text{Cat} \]

The \textit{wreath product} $\Delta \wr A$ is the category
- with objects $([m], a_1, \ldots, a_m) \in \Delta \times A^m, m \geq 0$;
- with morphisms

\[(\phi; \phi_1, \ldots, \phi_m) : ([m], a_1, \ldots, a_m) \to ([n], b_1, \ldots, b_n) \]

$\phi : [m] \to [n]$ in Δ
$\phi_i : A[a_i] \to A[b_{\phi(i)+1}] \times \cdots \times A[b_{\phi(i+1)}]$ in \hat{A}.
The terminal n-globular theory Θ_n is dense in $n\text{Cat}$ for each $n \geq 1$.

\[
\begin{array}{ccc}
\Theta_n & \hookrightarrow & n\text{Cat} \\
\downarrow & & \downarrow \\
\Theta_{n+1} & \hookrightarrow & n+1\text{Cat}
\end{array}
\]

The \textit{wreath product} $\Delta \wr A$ is the category
- with objects $([m], a_1, \ldots, a_m) \in \Delta \times A^m$, $m \geq 0$;
- with morphisms

\[
(\phi; \phi_1, \ldots, \phi_m) : ([m], a_1, \ldots, a_m) \to ([n], b_1, \ldots, b_n)
\]

$\phi : [m] \to [n]$ in Δ

$\phi_i : A[a_i] \to A[b_{\phi(i)+1}] \times \cdots \times A[b_{\phi(i+1)}]$ in \hat{A}.
The terminal n-globular theory Θ_n is dense in $n\text{Cat}$ for each $n \geq 1$.

$$
\begin{array}{c}
\Theta_n \hookrightarrow n\text{Cat} \\
\downarrow \quad \quad \downarrow \\
\Theta_{n+1} \hookrightarrow (n+1)\text{Cat}
\end{array}
$$

The **wreath product** $\Delta \wr A$ is the category

- with objects $([m], a_1, \ldots, a_m) \in \Delta \times A^m, m \geq 0$;
- with morphisms

$$(\phi; \phi_1, \ldots, \phi_m): ([m], a_1, \ldots, a_m) \rightarrow ([n], b_1, \ldots, b_n)$$

$\phi: [m] \rightarrow [n]$ in Δ

$\phi_i: A[a_i] \rightarrow A[b_{\phi(i)+1}] \times \cdots \times A[b_{\phi(i+1)}]$ in \widehat{A}.
Proposition (B. '07, Steiner '07, Oury '10)

\[\Theta_{n+1} = \Delta \wr \Theta_n \quad (n \geq 1) \]

This identification is compatible with the theory structures.

Remark (Batanin's category of quasi-bijections '10)

- If \(A \) is augmented over Segal's category \(\Gamma \) then so is \(\Delta \wr A \).
- There is thus a canonical functor \(\gamma_n : \Theta_n \rightarrow \Gamma \) for each \(n \geq 1 \).
- Batanin's category \(Q_n \) of quasi-bijections is (dual to) the subcategory of \(\Theta_n \) spanned by pruned \(n \)-level trees and containing those operators of \(\Theta_n \) whose image under \(\gamma_n \) is invertible.
Proposition (B. ’07, Steiner ’07, Oury ’10)

\[\Theta_{n+1} = \Delta \wr \Theta_n \quad (n \geq 1) \]

This identification is compatible with the theory structures.

Remark (Batanin’s category of quasi-bijections ’10)

- If \(\mathcal{A} \) is augmented over Segal’s category \(\Gamma \) then so is \(\Delta \wr \mathcal{A} \).
- There is thus a canonical functor \(\gamma_n : \Theta_n \to \Gamma \) for each \(n \geq 1 \).
- Batanin’s category \(Q_n \) of quasi-bijections is (dual to) the subcategory of \(\Theta_n \) spanned by pruned \(n \)-level trees and containing those operators of \(\Theta_n \) whose image under \(\gamma_n \) is invertible.
Proposition (B. '07, Steiner '07, Oury '10)

\[\Theta_{n+1} = \Delta \wr \Theta_n \quad (n \geq 1) \]

This identification is compatible with the theory structures.

Remark (Batanin’s category of quasi-bijections ’10)

- If \(\mathcal{A} \) is augmented over Segal’s category \(\Gamma \) then so is \(\Delta \wr \mathcal{A} \).
- There is thus a canonical functor \(\gamma_n : \Theta_n \to \Gamma \) for each \(n \geq 1 \).
- Batanin’s category \(Q_n \) of quasi-bijections is (dual to) the subcategory of \(\Theta_n \) spanned by pruned \(n \)-level trees and containing those operators of \(\Theta_n \) whose image under \(\gamma_n \) is invertible.
The nerve theorem and Grothendieck’s hypothesis on homotopy types
Higher categories and wreath products

Proposition (B. ’07, Steiner ’07, Oury ’10)

\[\Theta_{n+1} = \Delta \wr \Theta_n \quad (n \geq 1) \]

This identification is compatible with the theory structures.

Remark (Batanin’s category of quasi-bijections ’10)

- If \(A \) is augmented over Segal’s category \(\Gamma \) then so is \(\Delta \wr A \).
- There is thus a canonical functor \(\gamma_n : \Theta_n \to \Gamma \) for each \(n \geq 1 \).
- Batanin’s category \(Q_n \) of quasi-bijections is (dual to) the subcategory of \(\Theta_n \) spanned by pruned \(n \)-level trees and containing those operators of \(\Theta_n \) whose image under \(\gamma_n \) is invertible.
Proposition (B. ’07, Steiner ’07, Oury ’10)

\[\Theta_{n+1} = \Delta \wr \Theta_n \quad (n \geq 1) \]

This identification is compatible with the theory structures.

Remark (Batanin’s category of quasi-bijections ’10)

- If \(\mathcal{A} \) is augmented over Segal’s category \(\Gamma \) then so is \(\Delta \wr \mathcal{A} \).
- There is thus a canonical functor \(\gamma_n : \Theta_n \to \Gamma \) for each \(n \geq 1 \).
- Batanin’s category \(Q_n \) of quasi-bijections is (dual to) the subcategory of \(\Theta_n \) spanned by *pruned n-level trees* and containing those operators of \(\Theta_n \) whose image under \(\gamma_n \) is invertible.
Each topological space X is (weakly) homotopy equivalent to the inverse limit of its Postnikov tower

$$\cdots \longrightarrow X_{\leq n+1} \longrightarrow X_{\leq n} \longrightarrow \cdots$$

In principle this allows to reconstruct the homotopy type of X through cohomological invariants, called *Postnikov invariants* of X.

The fundamental groupoid $\Pi_1(X)$ captures the homotopy type of the Postnikov section $X_{\leq 1}$, but it is known that for $n \geq 3$ there cannot exist a strict fundamental n-groupoid capturing the homotopy type of $X_{\leq n}$ for all X.

Grothendieck (in Pursuing Stacks '83) conjectured that there exists a general notion of weak fundamental n-groupoid $\Pi_n(X)$ capturing the homotopy type of $X_{\leq n}$.
Each topological space X is (weakly) homotopy equivalent to the inverse limit of its Postnikov tower

$$
\cdots \longrightarrow X_{\leq n+1} \longrightarrow X_{\leq n} \longrightarrow \cdots
$$

In principle this allows to reconstruct the homotopy type of X through cohomological invariants, called *Postnikov invariants* of X.

The fundamental groupoid $\Pi_1(X)$ captures the homotopy type of the Postnikov section $X_{\leq 1}$, but it is known that for $n \geq 3$ there cannot exist a strict fundamental n-groupoid capturing the homotopy type of $X_{\leq n}$ for all X.

Grothendieck (in Pursuing Stacks '83) conjectured that there exists a general notion of weak fundamental n-groupoid $\Pi_n(X)$ capturing the homotopy type of $X_{\leq n}$.
Each topological space X is (weakly) homotopy equivalent to the inverse limit of its Postnikov tower

$$
\cdots \rightarrow X_{\leq n+1} \rightarrow X_{\leq n} \rightarrow \cdots
$$

In principle this allows to reconstruct the homotopy type of X through cohomological invariants, called Postnikov invariants of X.

The fundamental groupoid $\Pi_1(X)$ captures the homotopy type of the Postnikov section $X_{\leq 1}$, but it is known that for $n \geq 3$ there cannot exist a strict fundamental n-groupoid capturing the homotopy type of $X_{\leq n}$ for all X.

Grothendieck (in Pursuing Stacks '83) conjectured that there exists a general notion of weak fundamental n-groupoid $\Pi_n(X)$ capturing the homotopy type of $X_{\leq n}$.
Strict n-categories are Θ_n-sets fulfilling a restricted sheaf condition.

“Weak” n-categories are Θ_n-spaces which are fibrant for a Quillen model structure on Θ_n-spaces, introduced by Rezk ’10.

These fibrant Θ_n-spaces (the Rezk n-categories) are essentially those Θ_n-spaces X for which j^*X is a homotopy sheaf on $\Theta_{n,0}$. Rezk proves Grothendieck’s hypothesis for his n-groupoids.

There are discrete versions Rezk’s n-categories:

- Segal n-categories, i.e. fibrant objects for a suitable model structure on Θ_n-spaces which are discrete on Θ_{n-1};
- Joyal n-categories, i.e. fibrant objects for a suitable model structure on Θ_n-sets.

These discrete-sized model structures have been shown to exist only for $n = 1$, cf. Joyal-Tierney ’07 !!!
Strict n-categories are Θ_n-sets fulfilling a restricted sheaf condition.

“Weak” n-categories are Θ_n-spaces which are fibrant for a Quillen model structure on Θ_n-spaces, introduced by Rezk ’10.

These fibrant Θ_n-spaces (the Rezk n-categories) are essentially those Θ_n-spaces X for which j^*X is a homotopy sheaf on $\Theta_{n,0}$. Rezk proves Grothendieck’s hypothesis for his n-groupoids.

There are discrete versions Rezk’s n-categories:

- Segal n-categories, i.e. fibrant objects for a suitable model structure on Θ_n-spaces which are discrete on Θ_{n-1};
- Joyal n-categories, i.e. fibrant objects for a suitable model structure on Θ_n-sets.

These discrete sized model structures have been shown to exist only for $n = 1$, cf. Joyal-Tierney ’07 !!
Strict n-categories are Θ_n-sets fulfilling a restricted sheaf condition.

“Weak” n-categories are Θ_n-spaces which are fibrant for a Quillen model structure on Θ_n-spaces, introduced by Rezk ’10.

These fibrant Θ_n-spaces (the Rezk n-categories) are essentially those Θ_n-spaces X for which j^*X is a homotopy sheaf on $\Theta_{n,0}$.

Rezk proves Grothendieck’s hypothesis for his n-groupoids.

There are discrete versions Rezk’s n-categories:

- Segal n-categories, i.e. fibrant objects for a suitable model structure on Θ_n-spaces which are discrete on Θ_{n-1};
- Joyal n-categories, i.e. fibrant objects for a suitable model structure on Θ_n-sets.

These discretized model structures have been shown to exist only for $n = 1$, cf. Joyal-Tierney ’07!!
Strict n-categories are Θ_n-sets fulfilling a restricted sheaf condition. “Weak” n-categories are Θ_n-spaces which are fibrant for a Quillen model structure on Θ_n-spaces, introduced by Rezk ’10.

These fibrant Θ_n-spaces (the Rezk n-categories) are essentially those Θ_n-spaces X for which j^*X is a homotopy sheaf on $\Theta_{n,0}$. Rezk proves Grothendieck’s hypothesis for his n-groupoids.

There are discrete versions Rezk’s n-categories:

- Segal n-categories, i.e. fibrant objects for a suitable model structure on Θ_n-spaces which are discrete on Θ_{n-1};
- Joyal n-categories, i.e. fibrant objects for a suitable model structure on Θ_n-sets.

These discretized model structures have been shown to exist only for $n = 1$, cf. Joyal-Tierney ’07 !!
Strict n-categories are Θ_n-sets fulfilling a restricted sheaf condition. “Weak” n-categories are Θ_n-spaces which are fibrant for a Quillen model structure on Θ_n-spaces, introduced by Rezk ’10.

These fibrant Θ_n-spaces (the Rezk n-categories) are essentially those Θ_n-spaces X for which j^*X is a homotopy sheaf on $\Theta_{n,0}$.

Rezk proves Grothendieck’s hypothesis for his n-groupoids.

There are discrete versions Rezk’s n-categories:

- Segal n-categories, i.e. fibrant objects for a suitable model structure on Θ_n-spaces which are discrete on Θ_{n-1};
- Joyal n-categories, i.e. fibrant objects for a suitable model structure on Θ_n-sets.

These discretized model structures have been shown to exist only for $n = 1$, cf. Joyal-Tierney ’07 !!
Strict n-categories are Θ_n-sets fulfilling a restricted sheaf condition. “Weak” n-categories are Θ_n-spaces which are fibrant for a Quillen model structure on Θ_n-spaces, introduced by Rezk ’10. These fibrant Θ_n-spaces (the Rezk n-categories) are essentially those Θ_n-spaces X for which j^*X is a homotopy sheaf on $\Theta_{n,0}$. Rezk proves Grothendieck’s hypothesis for his n-groupoids.

There are discrete versions Rezk’s n-categories:

- Segal n-categories, i.e. fibrant objects for a suitable model structure on Θ_n-spaces which are discrete on Θ_{n-1};
- Joyal n-categories, i.e. fibrant objects for a suitable model structure on Θ_n-sets.

These discretized model structures have been shown to exist only for $n = 1$, cf. Joyal–Tierney ’07 !!
Strict n-categories are Θ_n-sets fulfilling a restricted sheaf condition. “Weak” n-categories are Θ_n-spaces which are fibrant for a Quillen model structure on Θ_n-spaces, introduced by Rezk ’10. These fibrant Θ_n-spaces (the Rezk n-categories) are essentially those Θ_n-spaces X for which j^*X is a homotopy sheaf on $\Theta_{n,0}$. Rezk proves Grothendieck’s hypothesis for his n-groupoids.

There are discrete versions Rezk’s n-categories:

- Segal n-categories, i.e. fibrant objects for a suitable model structure on Θ_n-spaces which are discrete on Θ_{n-1};
- Joyal n-categories, i.e. fibrant objects for a suitable model structure on Θ_n-sets.

These discretized model structures have been shown to exist only for $n = 1$, cf. Joyal-Tierney ’07 !!
Strict n-categories are Θ_n-sets fulfilling a restricted sheaf condition. “Weak” n-categories are Θ_n-spaces which are fibrant for a Quillen model structure on Θ_n-spaces, introduced by Rezk ’10.

These fibrant Θ_n-spaces (the Rezk n-categories) are essentially those Θ_n-spaces X for which j^*X is a homotopy sheaf on $\Theta_{n,0}$.

Rezk proves Grothendieck’s hypothesis for his n-groupoids.

There are discrete versions Rezk’s n-categories:

- Segal n-categories, i.e. fibrant objects for a suitable model structure on Θ_n-spaces which are discrete on Θ_{n-1};
- Joyal n-categories, i.e. fibrant objects for a suitable model structure on Θ_n-sets.

These discretized model structures have been shown to exist only for $n = 1$, cf. Joyal-Tierney ’07 !!

P.-A. Melliès – *Segal condition meets computational effects*, see his homepage.

