Feynman categories, derived modular envelopes and moduli spaces

Clemens Berger1

University of Nice

Topology Feest Utrecht
August 28, 2018

1joint with Ralph Kaufmann (Purdue University)
1. Moduli space of bordered Riemann surfaces
2. Feynman categories
3. Symmetric, cyclic and modular operads
4. Non-symmetric, planar-cyclic and surface-modular operads
5. W-construction and derived modular envelopes
6. Perspectives and open problems
Feynman categories, derived modular envelopes and moduli spaces

Moduli space of bordered Riemann surfaces

Definition (moduli space for oriented surfaces/ribbon graphs)

- $\mathcal{M}_{g,n}$ moduli space of hyperbolic metrics on a surface $S_{g,n}$ of genus g with n punctures where $\chi(S_{g,n}) < 0$ and $n > 0$.
- \mathcal{M}_G moduli space of admissible metrics on ribbon graph G.

Theorem (Mumford, Strebel, Penner, Kontsevich, ...)

$\mathcal{M}_{g,n} \simeq \bigcup G \mathcal{M}_G$ where the metric ribbon graphs G are of type (g, n) and at least trivalent.

Proposition (Igusa)

$\bigcup G \mathcal{M}_G \simeq |\text{nerve}(\text{rb}_{g,n})|$ where the ribbon category $\text{rb}_{g,n}$ is generated by orientation preserving edge contractions between ribbon graphs of type (g, n).
Definition (moduli space for oriented surfaces/ribbon graphs)

- $\mathcal{M}_{g,n}$ moduli space of *hyperbolic metrics* on a surface $S_{g,n}$ of genus g with n punctures where $\chi(S_{g,n}) < 0$ and $n > 0$.
- \mathcal{M}_G moduli space of *admissible metrics* on ribbon graph G.

Theorem (Mumford, Strebel, Penner, Kontsevich, ...)

$\mathcal{M}_{g,n} \simeq \bigcup_G \mathcal{M}_G$ where the metric ribbon graphs G are of type (g, n) and at least trivalent.

Proposition (Igusa)

$\bigcup_G \mathcal{M}_G \simeq |\text{nerve}(\text{rb}_{g,n})|$ where the *ribbon category* $\text{rb}_{g,n}$ is generated by orientation preserving edge contractions between ribbon graphs of type (g, n).
Definition (moduli space for oriented surfaces/ribbon graphs)

- $\mathcal{M}_{g,n}$ moduli space of *hyperbolic metrics* on a surface $S_{g,n}$ of genus g with n punctures where $\chi(S_{g,n}) < 0$ and $n > 0$.
- \mathcal{M}_G moduli space of *admissible metrics* on ribbon graph G.

Theorem (Mumford, Strebel, Penner, Kontsevich, ...)

$\mathcal{M}_{g,n} \simeq \bigcup_{G} \mathcal{M}_G$ where the metric ribbon graphs G are of type (g, n) and at least trivalent.

Proposition (Igusa)

$\bigcup_{G} \mathcal{M}_G \simeq |\text{nerve}(rb_{g,n})|$ where the *ribbon category* $rb_{g,n}$ is generated by orientation preserving edge contractions between ribbon graphs of type (g, n).
Definition (moduli space for oriented surfaces/ribbon graphs)

- $\mathcal{M}_{g,n}$ moduli space of *hyperbolic metrics* on a surface $S_{g,n}$ of *genus* g with n *punctures* where $\chi(S_{g,n}) < 0$ and $n > 0$.
- \mathcal{M}_G moduli space of *admissible metrics* on ribbon graph G.

Theorem (Mumford, Strebel, Penner, Kontsevich, ...)

$\mathcal{M}_{g,n} \simeq \bigcup_G \mathcal{M}_G$ where the metric ribbon graphs G are of type (g, n) and at least trivalent.

Proposition (Igusa)

$\bigcup_G \mathcal{M}_G \simeq |\text{nerve}(\text{rb}_{g,n})|$ where the *ribbon category* $\text{rb}_{g,n}$ is generated by orientation preserving edge contractions between ribbon graphs of type (g, n).
Feynman categories, derived modular envelopes and moduli spaces

Moduli space of bordered Riemann surfaces

Definition (moduli space for oriented surfaces/ribbon graphs)

- $\mathcal{M}_{g,n}$ moduli space of *hyperbolic metrics* on a surface $S_{g,n}$ of genus g with n punctures where $\chi(S_{g,n}) < 0$ and $n > 0$.
- \mathcal{M}_G moduli space of *admissible metrics* on ribbon graph G.

Theorem (Mumford, Strebel, Penner, Kontsevich, ...)

$\mathcal{M}_{g,n} \simeq \bigcup G \mathcal{M}_G$ where the metric ribbon graphs G are of type (g, n) and at least trivalent.

Proposition (Igusa)

$\bigcup G \mathcal{M}_G \simeq \text{nerve}(\text{rb}_{g,n})|$ where the *ribbon category* $\text{rb}_{g,n}$ is generated by orientation preserving edge contractions between ribbon graphs of type (g, n).
Definition (moduli space for oriented surfaces/ribbon graphs)

- \(\mathcal{M}_{g,n} \) moduli space of *hyperbolic metrics* on a surface \(S_{g,n} \) of genus \(g \) with \(n \) punctures where \(\chi(S_{g,n}) < 0 \) and \(n > 0 \).
- \(\mathcal{M}_G \) moduli space of *admissible metrics* on ribbon graph \(G \).

Theorem (Mumford, Strebel, Penner, Kontsevich, ...)

\(\mathcal{M}_{g,n} \cong \bigcup_G \mathcal{M}_G \) where the metric ribbon graphs \(G \) are of type \((g, n)\) and at least trivalent.

Proposition (Igusa)

\(\bigcup_G \mathcal{M}_G \cong |\text{nerve}(\text{rb}_{g,n})| \) where the *ribbon category* \(\text{rb}_{g,n} \) is generated by orientation preserving edge contractions between ribbon graphs of type \((g, n)\).
Definition (bordered case)

\(\mathcal{M}_{g,s}^{p_1,\ldots,p_\nu} \) moduli space of hyperbolic metrics on a surface \(S_{g,s}^{p_1,\ldots,p_\nu} \) of genus \(g \) with \(s \) punctures and \(\nu \) cyclic boundary components containing \(p_i > 0 \) marked points respectively.

Theorem (Penner, Igusa, B-K)

\[\mathcal{M}_{g,s}^{p_1,\ldots,p_\nu} \cong \bigcup G \mathcal{M}_G \cong \left| \mathcal{Rb}_{g,s}^{p_1,\ldots,p_\nu} \right| \] where the flagged ribbon graphs \(G \) are of type \((g, s; p_1, \ldots, p_\nu)\) and at least trivalent.

Proof sketch (via doubling construction).

(bordered R. surface with \(\chi < 0 \)) \(\sim \) (involutive hyperbolic surface)
(flagged ribbon graph with \(\chi < 0 \)) \(\sim \) (involutive ribbon graph)
involution = orientation-reversing with separating fixpoint set
Definition (bordered case)

\[\mathcal{M}_{g,s}^{p_1,\ldots,p_\nu} \] moduli space of hyperbolic metrics on a surface \(S_{g,s}^{p_1,\ldots,p_\nu} \) of genus \(g \) with \(s \) punctures and \(\nu \) cyclic boundary components containing \(p_i > 0 \) marked points respectively.

Theorem (Penner, Igusa, B-K)

\[\mathcal{M}_{g,s}^{p_1,\ldots,p_\nu} \cong \bigcup_G \mathcal{M}_G \cong |rb_{g,s}^{p_1,\ldots,p_\nu}| \] where the flagged ribbon graphs \(G \) are of type \((g, s; p_1, \ldots, p_\nu)\) and at least trivalent.

Proof sketch (via doubling construction).

(bordered R. surface with \(\chi < 0 \)) \(\sim \) (involutive hyperbolic surface) (flagged ribbon graph with \(\chi < 0 \)) \(\sim \) (involutive ribbon graph) involution = orientation-reversing with separating fixpoint set
Definition (bordered case)

\[M_{g,s}^{p_1,\ldots,p_\nu} \] moduli space of hyperbolic metrics on a surface \(S_{g,s}^{p_1,\ldots,p_\nu} \) of genus \(g \) with \(s \) punctures and \(\nu \) cyclic boundary components containing \(p_i > 0 \) marked points respectively.

Theorem (Penner, Igusa, B-K)

\[M_{g,s}^{p_1,\ldots,p_\nu} \cong \bigcup_G M_G \cong |\text{rb}_{g,s}^{p_1,\ldots,p_\nu}| \] where the flagged ribbon graphs \(G \) are of type \((g, s; p_1, \ldots, p_\nu)\) and at least trivalent.

Proof sketch (via doubling construction).

(bordered R. surface with \(\chi < 0 \)) \(\leadsto \) (involutive hyperbolic surface)

(flagged ribbon graph with \(\chi < 0 \)) \(\leadsto \) (involutive ribbon graph)

involution = orientation-reversing with separating fixpoint set
Definition (bordered case)

\[\mathcal{M}_{g,s}^{p_1,\ldots,p_\nu} \] moduli space of hyperbolic metrics on a surface \(S_{g,s}^{p_1,\ldots,p_\nu} \) of genus \(g \) with \(s \) punctures and \(\nu \) cyclic boundary components containing \(p_i > 0 \) marked points respectively.

Theorem (Penner, Igusa, B-K)

\[\mathcal{M}_{g,s}^{p_1,\ldots,p_\nu} \cong \bigcup_G \mathcal{M}_G \simeq |\text{rb}_{g,s}^{p_1,\ldots,p_\nu}| \] where the flagged ribbon graphs \(G \) are of type \((g,s;p_1,\ldots,p_\nu)\) and at least trivalent.

Proof sketch (via doubling construction).

(bordered R. surface with \(\chi < 0 \)) \(\mapsto \) (involutive hyperbolic surface) (flagged ribbon graph with \(\chi < 0 \)) \(\mapsto \) (involutive ribbon graph) involution = orientation-reversing with separating fixpoint set
Definition (bordered case)

\[\mathcal{M}_{g,s}^{p_1,\ldots,p_\nu} \] moduli space of hyperbolic metrics on a surface \(S_{g,s}^{p_1,\ldots,p_\nu} \) of genus \(g \) with \(s \) punctures and \(\nu \) cyclic boundary components containing \(p_i > 0 \) marked points respectively.

Theorem (Penner, Igusa, B-K)

\[\mathcal{M}_{g,s}^{p_1,\ldots,p_\nu} \cong \bigcup_G \mathcal{M}_G \cong |\text{rb}_{g,s}^{p_1,\ldots,p_\nu}| \] where the flagged ribbon graphs \(G \) are of type \((g, s; p_1, \ldots, p_\nu)\) and at least trivalent.

Proof sketch (via doubling construction).

(bordered R. surface with \(\chi < 0 \)) \(\rightsquigarrow \) (involutive hyperbolic surface)
(involutive ribbon graph with \(\chi < 0 \)) \(\rightsquigarrow \) (involutive ribbon graph)
involution = orientation-reversing with separating fixpoint set
Definition (bordered case)

\[\mathcal{M}_{g,s}^{p_1,\ldots,p_\nu} \] moduli space of hyperbolic metrics on a surface \(S_{g,s}^{p_1,\ldots,p_\nu} \) of genus \(g \) with \(s \) punctures and \(\nu \) cyclic boundary components containing \(p_i > 0 \) marked points respectively.

Theorem (Penner, Igusa, B-K)

\[\mathcal{M}_{g,s}^{p_1,\ldots,p_\nu} \simeq \bigcup_G \mathcal{M}_G \simeq |\text{rb}_{g,s}^{p_1,\ldots,p_\nu}| \] where the flagged ribbon graphs \(G \) are of type \((g,s;p_1,\ldots,p_\nu)\) and at least trivalent.

Proof sketch (via doubling construction).

(bordered R. surface with \(\chi < 0 \)) \(\hookrightarrow \) (involutive hyperbolic surface)
(flagged ribbon graph with \(\chi < 0 \)) \(\hookrightarrow \) (involutive ribbon graph)

involution = orientation-reversing with separating fixpoint set
Definition (bordered case)

\[\mathcal{M}_{g,s}^{p_1,\ldots,p_\nu} \] moduli space of hyperbolic metrics on a surface \(S_{g,s}^{p_1,\ldots,p_\nu} \) of genus \(g \) with \(s \) punctures and \(\nu \) cyclic boundary components containing \(p_i > 0 \) marked points respectively.

Theorem (Penner, Igusa, B-K)

\[\mathcal{M}_{g,s}^{p_1,\ldots,p_\nu} \cong \bigcup_G \mathcal{M}_G \cong |r_{b_{g,s}}^{p_1,\ldots,p_\nu}| \] where the flagged ribbon graphs \(G \) are of type \((g,s;p_1,\ldots,p_\nu)\) and at least trivalent.

Proof sketch (via doubling construction).

(bordered R. surface with \(\chi < 0 \)) \(\Longleftrightarrow \) (involutive hyperbolic surface)

(flagged ribbon graph with \(\chi < 0 \)) \(\Longleftrightarrow \) (involutive ribbon graph)

involution = orientation-reversing with separating fixpoint set
Feynman categories, derived modular envelopes and moduli spaces
Moduli space of bordered Riemann surfaces

Remark (dual point of view: Harer, Kaufmann-Penner)

- \(\text{nerve}(rb_{g,n}) \cong (\text{quasi-filling arc systems on } S_{g,n})^{\text{op}} \)
- \(\text{nerve}(rb_{g,s}^{p_1, \ldots, p_\nu}) \cong (\text{quasi-filling arc systems on } S_{g,s}^{p_1, \ldots, p_\nu})^{\text{op}} \)

Purpose of the talk

- define surface-modular operads (cf. Markl)
- show that the functor

\[
J : (\text{planar-cyclic operads}) \longrightarrow (\text{surface-modular operads})
\]

induces homotopy equivalences

\[
L_J((g,s; p_1, \ldots, p_\nu)) \cong M_{g,s}^{p_1, \ldots, p_\nu}
\]
Remark (dual point of view: Harer, Kaufmann-Penner)

- \(\text{nerve}(rb_{g,n}) \cong (\text{quasi-filling arc systems on } S_{g,n})^{\text{op}} \)
- \(\text{nerve}(rb_{g,s}^{p_1,\ldots,p_\nu}) \cong (\text{quasi-filling arc systems on } S_{g,s}^{p_1,\ldots,p_\nu})^{\text{op}} \)

Purpose of the talk

- Define surface-modular operads (cf. Markl)
- Show that the functor
 \[
 J : (\text{planar-cyclic operads}) \longrightarrow (\text{surface-modular operads})
 \]
 induces homotopy equivalences
 \[
 L_J([1],g,s,p_1,\ldots,p_\nu) \cong M_{g,s}^{p_1,\ldots,p_\nu}
 \]
Remark (dual point of view: Harer, Kaufmann-Penner)

- \(\text{nerve} \left(\text{rb}_{g,n} \right) \cong (\text{quasi-filling arc systems on } S_{g,n})^{\text{op}} \)
- \(\text{nerve} \left(\text{rb}_{g,s}^{p_1, \ldots, p_\nu} \right) \cong (\text{quasi-filling arc systems on } S_{g,s}^{p_1, \ldots, p_\nu})^{\text{op}} \)

Purpose of the talk

- define surface-modular operads (cf. Markl)
- show that the functor

\[J : (\text{planar-cyclic operads}) \to (\text{surface-modular operads}) \]

induces homotopy equivalences

\[L_1 J (1) (g, n; p_1, \ldots, p_\nu) \cong M_{g,s}^{p_1, \ldots, p_\nu} \]
Feynman categories, derived modular envelopes and moduli spaces
Moduli space of bordered Riemann surfaces

Remark (dual point of view: Harer, Kaufmann-Penner)

- $\text{nerve}(r_{b_{g,n}}) \cong (\text{quasi-filling arc systems on } S_{g,n})^{\text{op}}$
- $\text{nerve}(r_{b_{g,s}^{p_1,\ldots,p_\nu}}) \cong (\text{quasi-filling arc systems on } S_{g,s}^{p_1,\ldots,p_\nu})^{\text{op}}$

Purpose of the talk

- define surface-modular operads (cf. Markl)
- show that the functor

$$J : (\text{planar-cyclic operads}) \longrightarrow (\text{surface-modular operads})$$

induces homotopy equivalences

$$LJ(1)(g,s;p_1,\ldots,p_\nu) \simeq M_{g,s}^{p_1,\ldots,p_\nu}$$
Remark (dual point of view: Harer, Kaufmann-Penner)

- \(\text{nerve}(rb_{g,n}) \cong (\text{quasi-filling arc systems on } S_{g,n})^{\text{op}}\)
- \(\text{nerve}(rb_{g,s}^{p_1,\ldots,p_\nu}) \cong (\text{quasi-filling arc systems on } S_{g,s}^{p_1,\ldots,p_\nu})^{\text{op}}\)

Purpose of the talk

- define surface-modular operads (cf. Markl)
- show that the functor

\[J : (\text{planar-cyclic operads}) \longrightarrow (\text{surface-modular operads}) \]

induces homotopy equivalences

\[\mathbb{L}J_!(1)(g, s; p_1, \ldots, p_\nu) \cong \mathcal{M}_{g,s}^{p_1,\ldots,p_\nu} \]
Remark (dual point of view: Harer, Kaufmann-Penner)

- \text{nerve}(rb_{g,n}) \cong (\text{quasi-filling arc systems on } S_{g,n})^{\text{op}}
- \text{nerve}(rb_{g,s}^{p_1,\ldots,p_\nu}) \cong (\text{quasi-filling arc systems on } S_{g,s}^{p_1,\ldots,p_\nu})^{\text{op}}

Purpose of the talk

- define surface-modular operads (cf. Markl)
- show that the functor

\[J : (\text{planar-cyclic operads}) \longrightarrow (\text{surface-modular operads}) \]

induces homotopy equivalences

\[L \omega (1)(g, s; p_1, \ldots, p_\nu) \cong \mathcal{M}_{g,s}^{p_1,\ldots,p_\nu} \]
Feynman categories, derived modular envelopes and moduli spaces
Moduli space of bordered Riemann surfaces

Remark (dual point of view: Harer, Kaufmann-Penner)

\bullet \text{nerve}(\text{rb}_{g,n}) \cong (\text{quasi-filling arc systems on } S_{g,n})^{\text{op}}
\bullet \text{nerve}(\text{rb}_{g,s}^{p_1,\cdots,p_\nu}) \cong (\text{quasi-filling arc systems on } S_{g,s}^{p_1,\cdots,p_\nu})^{\text{op}}

Purpose of the talk

\bullet \text{define surface-modular operads (cf. Markl)}
\bullet \text{show that the functor}

\[J : (\text{planar-cyclic operads}) \longrightarrow (\text{surface-modular operads}) \]
induces homotopy equivalences

\[\mathbb{L}J!(1)(g,s;p_1,\ldots,p_\nu) \simeq \mathcal{M}_{g,s}^{p_1,\cdots,p_\nu} \]

(cf. Costello, Giansiracusa)
Remark (dual point of view: Harer, Kaufmann-Penner)

- $\text{nerve}(\text{rb}_{g,n}) \cong (\text{quasi-filling arc systems on } S_{g,n})^{\text{op}}$
- $\text{nerve}(\text{rb}_{g,s}^{p_1,\ldots,p_\nu}) \cong (\text{quasi-filling arc systems on } S_{g,s}^{p_1,\ldots,p_\nu})^{\text{op}}$

Purpose of the talk

- define surface-modular operads (cf. Markl)
- show that the functor

$$J : (\text{planar-cyclic operads}) \to (\text{surface-modular operads})$$

induces homotopy equivalences

$$\mathbb{L}J!(1)(g, s; p_1, \ldots, p_\nu) \simeq \mathcal{M}_{g,s}^{p_1,\ldots,p_\nu}$$

(cf. Costello, Giansiracusa)
Remark (dual point of view: Harer, Kaufmann-Penner)

- $\text{nerve}(rb_{g,n}) \cong (\text{quasi-filling arc systems on } S_{g,n})^{\text{op}}$
- $\text{nerve}(rb_{g,s}^{p_1,\ldots,p_\nu}) \cong (\text{quasi-filling arc systems on } S_{g,s}^{p_1,\ldots,p_\nu})^{\text{op}}$

Purpose of the talk

- define surface-modular operads (cf. Markl)
- show that the functor

\[J : (\text{planar-cyclic operads}) \rightarrow (\text{surface-modular operads}) \]

induces homotopy equivalences

\[\mathbb{L} J!(1)(g, s; p_1, \ldots, p_\nu) \simeq \mathcal{M}_{g,s}^{p_1,\ldots,p_\nu} \]

(cf. Costello, Giansiracusa)
Proposition (May-Thomason, Elmendorf-Mandell, Hermida)
Each coloured operad \(\mathcal{O}(i_1, \ldots, i_k; i) \) induces a symmetric monoidal category \(\mathcal{F}_\mathcal{O} \) having as objects ordered sequences of colours and as morphisms ordered sequences of operations.

Remark (framed symmetric monoidal categories)
\(\mathcal{F}_\mathcal{O} \) contains the invertible unary operations of \(\mathcal{O} \) as subgroupoid \(\mathcal{V}_\mathcal{O} \) such that \((\mathcal{V}_\mathcal{O}) \otimes \simeq \text{Iso}(\mathcal{F}_\mathcal{O}) \) (we call \(\mathcal{V}_\mathcal{O} \) a *framing* of \(\mathcal{F}_\mathcal{O} \)).

Proposition (Getzler, B-K, Batanin-Kock-Weber)
Coloured operads are *coreflective* inside framed symmetric monoidal categories. The essential image consists of *Feynman categories*.

Definition (Kaufmann-Ward)
A Feynman category \(\mathcal{F} \) is a symmetric monoidal category with framing \(\mathcal{V} \otimes \simeq \text{Iso}(\mathcal{F}) \) such that hereditary and size conditions are satisfied.
Feynman categories, derived modular envelopes and moduli spaces

Feynman categories

Proposition (May-Thomason, Elmendorf-Mandell, Hermida)

Each coloured operad $O(i_1, \ldots, i_k; i)$ induces a symmetric monoidal category \mathcal{F}_O having as objects ordered sequences of colours and as morphisms ordered sequences of operations.

Remark (framed symmetric monoidal categories)

\mathcal{F}_O contains the invertible unary operations of O as subgroupoid \mathcal{V}_O such that $(\mathcal{V}_O) \otimes \simeq \text{Iso}(\mathcal{F}_O)$ (we call \mathcal{V}_O a framing of \mathcal{F}_O).

Proposition (Getzler, B-K, Batanin-Kock-Weber)

Coloured operads are coreflective inside framed sym. monoidal categories. The essential image consists of Feynman categories.

Definition (Kaufmann-Ward)

A Feynman category \mathcal{F} is a sym. mon. cat. with framing $\mathcal{V} \otimes \simeq \text{Iso}(\mathcal{F})$ such that hereditary and size conditions are satisfied.
Proposition (May-Thomason, Elmendorf-Mandell, Hermida)

Each coloured operad $O(i_1, \ldots, i_k; i)$ induces a symmetric monoidal category \mathcal{F}_O having as objects ordered sequences of colours and as morphisms ordered sequences of operations.

Remark (framed symmetric monoidal categories)

\mathcal{F}_O contains the invertible unary operations of O as subgroupoid \mathcal{V}_O such that $(\mathcal{V}_O) \otimes \simeq \text{Iso}(\mathcal{F}_O)$ (we call \mathcal{V}_O a framing of \mathcal{F}_O).

Proposition (Getzler, B-K, Batanin-Kock-Weber)

Coloured operads are coreflective inside framed sym. monoidal categories. The essential image consists of Feynman categories.

Definition (Kaufmann-Ward)

A Feynman category \mathcal{F} is a sym. mon. cat. with framing $\mathcal{V} \otimes \simeq \text{Iso}(\mathcal{F})$ such that hereditary and size conditions are satisfied.
Proposition (May-Thomason, Elmendorf-Mandell, Hermida)

Each coloured operad $\mathcal{O}(i_1, \ldots, i_k; i)$ induces a symmetric monoidal category $\mathcal{F}_\mathcal{O}$ having as objects ordered sequences of colours and as morphisms ordered sequences of operations.

Remark (framed symmetric monoidal categories)

$\mathcal{F}_\mathcal{O}$ contains the invertible unary operations of \mathcal{O} as subgroupoid $\mathcal{V}_\mathcal{O}$ such that $(\mathcal{V}_\mathcal{O})^\otimes \simeq \text{Iso}(\mathcal{F}_\mathcal{O})$ (we call $\mathcal{V}_\mathcal{O}$ a framing of $\mathcal{F}_\mathcal{O}$).

Proposition (Getzler, B-K, Batanin-Kock-Weber)

Coloured operads are coreflective inside framed sym. monoidal categories. The essential image consists of Feynman categories.

Definition (Kaufmann-Ward)

A Feynman category \mathcal{F} is a sym. mon. cat. with framing $\mathcal{V}^\otimes \simeq \text{Iso}(\mathcal{F})$ such that hereditary and size conditions are satisfied.
Feynman categories, derived modular envelopes and moduli spaces

Feynman categories

Proposition (May-Thomason, Elmendorf-Mandell, Hermida)

Each coloured operad $\mathcal{O}(i_1, \ldots, i_k; i)$ induces a symmetric monoidal category $\mathcal{F}_\mathcal{O}$ having as objects ordered sequences of colours and as morphisms ordered sequences of operations.

Remark (framed symmetric monoidal categories)

$\mathcal{F}_\mathcal{O}$ contains the invertible unary operations of \mathcal{O} as subgroupoid $\mathcal{V}_\mathcal{O}$ such that $(\mathcal{V}_\mathcal{O})^\otimes \simeq \text{Iso}(\mathcal{F}_\mathcal{O})$ (we call $\mathcal{V}_\mathcal{O}$ a framing of $\mathcal{F}_\mathcal{O}$).

Proposition (Getzler, B-K, Batanin-Kock-Weber)

Coloured operads are coreflective inside framed sym. monoidal categories. The essential image consists of *Feynman categories*.

Definition (Kaufmann-Ward)

A Feynman category \mathcal{F} is a sym. mon. cat. with framing $\mathcal{V}^\otimes \simeq \text{Iso}(\mathcal{F})$ such that hereditary and size conditions are satisfied.
Feynman categories, derived modular envelopes and moduli spaces

Feynman categories

Lemma (\(O\)-algebra=\(\mathcal{F}_O\)-operad)

Any \(O\)-algebra extends to a strong sym. mon. functor \(\mathcal{F}_O \to \text{Sets}\).

Proposition (Kaufmann-Ward)

Any Feynman functor \(j : \mathcal{F} \to \mathcal{F}'\) induces an adjunction

\[
j_! : \mathcal{F}\text{-operads} \longrightarrow \mathcal{F}'\text{-operads} : j^*
\]

such that the left adjoint is given by pointwise left Kan extension

\[
(j_! P)(A') = \text{colim}_{j(-) \downarrow A'} P(-).
\]

Proposition (B-K, cf. Street-Walters' comprehensive factorisation)

Any Feynman functor \(j : \mathcal{F} \to \mathcal{F}'\) factors essentially uniquely as a connected Feynman functor followed by a covering where \(j\) is connected (resp. a covering) iff \(j_!(1) = 1\) (resp. \(\mathcal{F} \cong \text{el}_{\mathcal{F}'}(j_!(1))\)).
Lemma (\(\mathcal{O}\)-algebra=\(\mathcal{F}_\mathcal{O}\)-operad)

Any \(\mathcal{O}\)-algebra extends to a strong sym. mon. functor \(\mathcal{F}_\mathcal{O} \to \text{Sets}\).

Proposition (Kaufmann-Ward)

Any Feynman functor \(j : \mathcal{F} \to \mathcal{F}'\) induces an adjunction

\[j! : \mathcal{F}\text{-operads} \to \mathcal{F}'\text{-operads} : j^* \]

such that the left adjoint is given by pointwise left Kan extension

\[(j! P)(A') = \text{colim}_{j(-) \downarrow A'} P(-). \]

Proposition (B-K, cf. Street-Walters’ comprehensive factorisation)

Any Feynman functor \(j : \mathcal{F} \to \mathcal{F}'\) factors essentially uniquely as a connected Feynman functor followed by a covering where \(j\) is connected (resp. a covering) iff \(j!(1) = 1\) (resp. \(\mathcal{F} \cong \text{el}_{\mathcal{F}'}(j!(1))\)).
Lemma (\(\mathcal{O}\)-algebra=\(\mathcal{F}_\mathcal{O}\)-operad)

Any \(\mathcal{O}\)-algebra extends to a strong sym. mon. functor \(\mathcal{F}_\mathcal{O} \to \text{Sets}\).

Proposition (Kaufmann-Ward)

Any Feynman functor \(j : \mathcal{F} \to \mathcal{F}'\) induces an adjunction

\[
j_! : \mathcal{F}\text{-operads} \longrightarrow \mathcal{F}'\text{-operads} : j^*
\]

such that the left adjoint is given by pointwise left Kan extension

\[
(j_! P)(A') = \text{colim}_{j(-) \downarrow A'} P(-).
\]

Proposition (B-K, cf. Street-Walters’ comprehensive factorisation)

Any Feynman functor \(j : \mathcal{F} \to \mathcal{F}'\) factors essentially uniquely as a connected Feynman functor followed by a covering where \(j\) is connected (resp. a covering) iff \(j_!(1) = 1\) (resp. \(\mathcal{F} \cong \mathcal{F}'(j_!(1))\)).
Lemma (\(\mathcal{O}\)-algebra=\(\mathcal{F}_\mathcal{O}\)-operad)

Any \(\mathcal{O}\)-algebra extends to a strong sym. mon. functor \(\mathcal{F}_\mathcal{O} \to \text{Sets}\).

Proposition (Kaufmann-Ward)

Any Feynman functor \(j : \mathcal{F} \to \mathcal{F}'\) induces an adjunction

\[
j_! : \mathcal{F}\text{-operads} \longrightarrow \mathcal{F}'\text{-operads} : j^*
\]

such that the left adjoint is given by pointwise left Kan extension

\[
(j_! P)(A') = \colim_{j(-)(A')} P(-).
\]

Proposition (B-K, cf. Street-Walters’ comprehensive factorisation)

Any Feynman functor \(j : \mathcal{F} \to \mathcal{F}'\) factors essentially uniquely as a connected Feynman functor followed by a covering where \(j\) is connected (resp. a covering) iff \(j_!(1) = 1\) (resp. \(\mathcal{F} \cong \text{el}_{\mathcal{F}'}(j_!(1))\)).
Lemma (\(\mathcal{O}\)-algebra=\(\mathcal{F}_\mathcal{O}\)-operad)

Any \(\mathcal{O}\)-algebra extends to a strong sym. mon. functor \(\mathcal{F}_\mathcal{O} \to \text{Sets}\).

Proposition (Kaufmann-Ward)

Any Feynman functor \(j : \mathcal{F} \to \mathcal{F}'\) induces an adjunction

\[
j_! : \mathcal{F}\text{-operads} \to \mathcal{F}'\text{-operads} : j^*
\]

such that the left adjoint is given by pointwise left Kan extension

\[
(j_! P)(A') = \text{colim}_{j(-) \downarrow A'} P(-).
\]

Proposition (B-K, cf. Street-Walters’ comprehensive factorisation)

Any Feynman functor \(j : \mathcal{F} \to \mathcal{F}'\) factors essentially uniquely as a connected Feynman functor followed by a covering where \(j\) is connected (resp. a covering) iff \(j_!(1) = 1\) (resp. \(\mathcal{F} \cong \text{el}_{\mathcal{F}'}(j_!(1))\)).
Lemma (Ginzburg-Kapranov, B-Moerdijk, Kontsevich-Soibelman)

There is a coloured operad S whose algebras are symmetric operads. Its associated Feynman category $\mathcal{F}_S = \mathcal{F}_{\text{sym}}$ has

- as objects disjoint unions of rooted corollas
- as morphisms disjoint unions of rooted trees
- composition induced by rooted tree insertion

Lemma (Getzler-Kapranov)

The Feynman category \mathcal{F}_{cyc} for cyclic operads has

- as objects disjoint unions of corollas
- as morphisms disjoint unions of trees
- composition induced by tree insertion
Lemma (Ginzburg-Kapranov, B-Moerdijk, Kontsevich-Soibelman)

There is a coloured operad S whose algebras are symmetric operads. Its associated Feynman category $\mathcal{F}_S = \mathcal{F}_{\text{sym}}$ has
- as objects disjoint unions of rooted corollas
- as morphisms disjoint unions of rooted trees
- composition induced by rooted tree insertion

Lemma (Getzler-Kapranov)

The Feynman category \mathcal{F}_{cyc} for cyclic operads has
- as objects disjoint unions of corollas
- as morphisms disjoint unions of trees
- composition induced by tree insertion
Lemma (Ginzburg-Kapranov, B-Moerdijk, Kontsevich-Soibelman)

There is a coloured operad S whose algebras are symmetric operads. Its associated Feynman category $\mathcal{F}_S = \mathcal{F}_{sym}$ has

- as objects disjoint unions of *rooted* corollas
- as morphisms disjoint unions of *rooted* trees
- composition induced by *rooted* tree insertion

Lemma (Getzler-Kapranov)

The Feynman category \mathcal{F}_{cyc} for cyclic operads has

- as objects disjoint unions of corollas
- as morphisms disjoint unions of trees
- composition induced by tree insertion
Lemma (Ginzburg-Kapranov, B-Moerdijk, Kontsevich-Soibelman)

There is a coloured operad S whose algebras are symmetric operads. Its associated Feynman category $\mathcal{F}_S = \mathcal{F}_{sym}$ has

- as objects disjoint unions of *rooted* corollas
- as morphisms disjoint unions of *rooted* trees
- composition induced by *rooted* tree insertion

Lemma (Getzler-Kapranov)

The Feynman category \mathcal{F}_{cyc} for cyclic operads has

- as objects disjoint unions of corollas
- as morphisms disjoint unions of trees
- composition induced by tree insertion
Lemma (Ginzburg-Kapranov, B-Moerdijk, Kontsevich-Soibelman)

There is a coloured operad S whose algebras are symmetric operads. Its associated Feynman category $\mathcal{F}_S = \mathcal{F}_{sym}$ has

- as objects disjoint unions of *rooted* corollas
- as morphisms disjoint unions of *rooted* trees
- composition induced by *rooted* tree insertion

Lemma (Getzler-Kapranov)

The Feynman category \mathcal{F}_{cyc} for cyclic operads has

- as objects disjoint unions of corollas
- as morphisms disjoint unions of trees
- composition induced by tree insertion
Lemma (Ginzburg-Kapranov, B-Moerdijk, Kontsevich-Soibelman)

There is a coloured operad S whose algebras are symmetric operads. Its associated Feynman category $\mathcal{F}_S = \mathcal{F}_{sym}$ has

- as objects disjoint unions of *rooted* corollas
- as morphisms disjoint unions of *rooted* trees
- composition induced by *rooted* tree insertion

Lemma (Getzler-Kapranov)

The Feynman category \mathcal{F}_{cyc} for cyclic operads has

- as objects disjoint unions of corollas
- as morphisms disjoint unions of trees
- composition induced by tree insertion
Lemma (Ginzburg-Kapranov, B-Moerdijk, Kontsevich-Soibelman)

There is a coloured operad S whose algebras are symmetric operads. Its associated Feynman category $\mathcal{F}_S = \mathcal{F}_{sym}$ has

- as objects disjoint unions of rooted corollas
- as morphisms disjoint unions of rooted trees
- composition induced by rooted tree insertion

Lemma (Getzler-Kapranov)

The Feynman category \mathcal{F}_{cyc} for cyclic operads has

- as objects disjoint unions of corollas
- as morphisms disjoint unions of trees
- composition induced by tree insertion
Lemma (Ginzburg-Kapranov, B-Moerdijk, Kontsevich-Soibelman)

There is a coloured operad \mathcal{S} whose algebras are symmetric operads. Its associated Feynman category $\mathcal{F}_\mathcal{S} = \mathcal{F}_{sym}$ has

- as objects disjoint unions of *rooted* corollas
- as morphisms disjoint unions of *rooted* trees
- composition induced by *rooted* tree insertion

Lemma (Getzler-Kapranov)

The Feynman category \mathcal{F}_{cyc} for cyclic operads has

- as objects disjoint unions of corollas
- as morphisms disjoint unions of trees
- composition induced by tree insertion
Lemma (Ginzburg-Kapranov, B-Moerdijk, Kontsevich-Soibelman)

There is a coloured operad \mathcal{S} whose algebras are symmetric operads. Its associated Feynman category $\mathcal{F}_\mathcal{S} = \mathcal{F}_{\text{sym}}$ has

- as objects disjoint unions of rooted corollas
- as morphisms disjoint unions of rooted trees
- composition induced by rooted tree insertion

Lemma (Getzler-Kapranov)

The Feynman category \mathcal{F}_{cyc} for cyclic operads has

- as objects disjoint unions of corollas
- as morphisms disjoint unions of trees
- composition induced by tree insertion
Lemma (Ginzburg-Kapranov, B-Moerdijk, Kontsevich-Soibelman)

There is a coloured operad S whose algebras are symmetric operads. Its associated Feynman category $\mathcal{F}_S = \mathcal{F}_{sym}$ has

- as objects disjoint unions of *rooted* corollas
- as morphisms disjoint unions of *rooted* trees
- composition induced by *rooted* tree insertion

Lemma (Getzler-Kapranov)

The Feynman category \mathcal{F}_{cyc} for cyclic operads has

- as objects disjoint unions of corollas
- as morphisms disjoint unions of trees
- composition induced by tree insertion
Lemma (Borisov-Manin, Kaufmann-Ward)

There are Feynman functors $\mathcal{F}_{\text{sym}} \rightarrow \mathcal{F}_{\text{cyc}} \rightarrow \mathcal{F}_{\text{ctd}}$ where \mathcal{F}_{ctd} has
- as objects disjoint unions of corollas
- as morphisms disjoint unions of connected graphs
- composition induced by graph insertion.

Proposition (Getzler-Kapranov)

The Feynman functor $h : \mathcal{F}_{\text{cyc}} \rightarrow \mathcal{F}_{\text{ctd}}$ factors as connected functor
$j : \mathcal{F}_{\text{cyc}} \rightarrow \mathcal{F}_{\text{mod}}$ followed by a covering $k : \mathcal{F}_{\text{mod}} \rightarrow \mathcal{F}_{\text{ctd}}$
where \mathcal{F}_{mod} is the Feynman category for modular operads.

Corollary (B-K)

The \mathcal{F}_{ctd}-operad $h_!(1)$ is “genus-labeling” and $j_!(1) = 1$.
Lemma (Borisov-Manin, Kaufmann-Ward)
There are Feynman functors $\mathcal{F}_{\text{sym}} \to \mathcal{F}_{\text{cyc}} \to \mathcal{F}_{\text{ctd}}$ where \mathcal{F}_{ctd} has
- as objects disjoint unions of corollas
- as morphisms disjoint unions of connected graphs
- composition induced by graph insertion

Proposition (Getzler-Kapranov)
The Feynman functor $h : \mathcal{F}_{\text{cyc}} \to \mathcal{F}_{\text{ctd}}$ factors as connected functor $j : \mathcal{F}_{\text{cyc}} \to \mathcal{F}_{\text{mod}}$ followed by a covering $k : \mathcal{F}_{\text{mod}} \to \mathcal{F}_{\text{ctd}}$ where \mathcal{F}_{mod} is the Feynman category for modular operads.

Corollary (B-K)
The \mathcal{F}_{ctd}-operad $h!(1)$ is “genus-labeling” and $j!(1) = 1$.
Lemma (Borisov-Manin, Kaufmann-Ward)

There are Feynman functors \(\mathcal{F}_{\text{sym}} \to \mathcal{F}_{\text{cyc}} \to \mathcal{F}_{\text{ctd}} \) where \(\mathcal{F}_{\text{ctd}} \) has

- as objects disjoint unions of corollas
- as morphisms disjoint unions of connected graphs
- composition induced by graph insertion

Proposition (Getzler-Kapranov)

The Feynman functor \(h : \mathcal{F}_{\text{cyc}} \to \mathcal{F}_{\text{ctd}} \) factors as connected functor \(j : \mathcal{F}_{\text{cyc}} \to \mathcal{F}_{\text{mod}} \) followed by a covering \(k : \mathcal{F}_{\text{mod}} \to \mathcal{F}_{\text{ctd}} \) where \(\mathcal{F}_{\text{mod}} \) is the Feynman category for modular operads.

Corollary (B-K)

The \(\mathcal{F}_{\text{ctd}} \)-operad \(h_!(1) \) is “genus-labeling” and \(j!(1) = 1 \).
Lemma (Borisov-Manin, Kaufmann-Ward)

There are Feynman functors $\mathcal{F}_{\text{sym}} \to \mathcal{F}_{\text{cyc}} \to \mathcal{F}_{\text{ctd}}$ where \mathcal{F}_{ctd} has

- as objects disjoint unions of corollas
- as morphisms disjoint unions of connected graphs
- composition induced by graph insertion

Proposition (Getzler-Kapranov)

The Feynman functor $h: \mathcal{F}_{\text{cyc}} \to \mathcal{F}_{\text{ctd}}$ factors as connected functor $j: \mathcal{F}_{\text{cyc}} \to \mathcal{F}_{\text{mod}}$ followed by a covering $k: \mathcal{F}_{\text{mod}} \to \mathcal{F}_{\text{ctd}}$ where \mathcal{F}_{mod} is the Feynman category for modular operads.

Corollary (B-K)

The \mathcal{F}_{ctd}-operad $h_!(1)$ is “genus-labeling” and $j_!(1) = 1$.
Lemma (Borisov-Manin, Kaufmann-Ward)

There are Feynman functors $\mathcal{F}_{sym} \rightarrow \mathcal{F}_{cyc} \rightarrow \mathcal{F}_{ctd}$ where \mathcal{F}_{ctd} has

- as objects disjoint unions of corollas
- as morphisms disjoint unions of connected graphs
- composition induced by graph insertion

Proposition (Getzler-Kapranov)

The Feynman functor $h : \mathcal{F}_{cyc} \rightarrow \mathcal{F}_{ctd}$ factors as connected functor $j : \mathcal{F}_{cyc} \rightarrow \mathcal{F}_{mod}$ followed by a covering $k : \mathcal{F}_{mod} \rightarrow \mathcal{F}_{ctd}$ where \mathcal{F}_{mod} is the Feynman category for modular operads.

Corollary (B-K)

The \mathcal{F}_{ctd}-operad $h! (1)$ is “genus-labeling” and $j! (1) = 1$.
Lemma (Borisov-Manin, Kaufmann-Ward)

There are Feynman functors $\mathcal{F}_{\text{sym}} \rightarrow \mathcal{F}_{\text{cyc}} \rightarrow \mathcal{F}_{\text{ctd}}$ where \mathcal{F}_{ctd} has

- as objects disjoint unions of corollas
- as morphisms disjoint unions of connected graphs
- composition induced by graph insertion

Proposition (Getzler-Kapranov)

The Feynman functor $h : \mathcal{F}_{\text{cyc}} \rightarrow \mathcal{F}_{\text{ctd}}$ factors as connected functor $j : \mathcal{F}_{\text{cyc}} \rightarrow \mathcal{F}_{\text{mod}}$ followed by a covering $k : \mathcal{F}_{\text{mod}} \rightarrow \mathcal{F}_{\text{ctd}}$

where \mathcal{F}_{mod} is the Feynman category for modular operads.

Corollary (B-K)

The \mathcal{F}_{ctd}-operad $h!(1)$ is “genus-labeling” and $j!(1) = 1$.
Lemma (Borisov-Manin, Kaufmann-Ward)

There are Feynman functors $\mathcal{F}_{sym} \to \mathcal{F}_{cyc} \to \mathcal{F}_{ctd}$ where \mathcal{F}_{ctd} has

- as objects disjoint unions of corollas
- as morphisms disjoint unions of connected graphs
- composition induced by graph insertion

Proposition (Getzler-Kapranov)

The Feynman functor $h : \mathcal{F}_{cyc} \to \mathcal{F}_{ctd}$ factors as connected functor $j : \mathcal{F}_{cyc} \to \mathcal{F}_{mod}$ followed by a covering $k : \mathcal{F}_{mod} \to \mathcal{F}_{ctd}$ where \mathcal{F}_{mod} is the Feynman category for modular operads.

Corollary (B-K)

The \mathcal{F}_{ctd}-operad $h_!(1)$ is “genus-labeling” and $j_!(1) = 1.$
Lemma (Borisov-Manin, Kaufmann-Ward)

There are Feynman functors $\mathcal{F}_{\text{sym}} \to \mathcal{F}_{\text{cyc}} \to \mathcal{F}_{\text{ctd}}$ where \mathcal{F}_{ctd} has
- as objects disjoint unions of corollas
- as morphisms disjoint unions of connected graphs
- composition induced by graph insertion

Proposition (Getzler-Kapranov)

The Feynman functor $h : \mathcal{F}_{\text{cyc}} \to \mathcal{F}_{\text{ctd}}$ factors as connected functor $j : \mathcal{F}_{\text{cyc}} \to \mathcal{F}_{\text{mod}}$ followed by a covering $k : \mathcal{F}_{\text{mod}} \to \mathcal{F}_{\text{ctd}}$

where \mathcal{F}_{mod} is the Feynman category for modular operads.

Corollary (B-K)

The \mathcal{F}_{ctd}-operad $h_!(1)$ is “genus-labeling” and $j_!(1) = 1$.
where vertical arrows are coverings, and j, J are connected.

- τ_{assoc} is the \mathcal{F}_{sym}-operad for associative monoids
- τ_{planar} is the \mathcal{F}_{cyc}-operad for planar structures
- $i^*(\tau_{planar}) = \tau_{assoc}$ (τ_{planar} is the "cyclic" version of τ_{assoc})
- $\tau_{ribbon} = j!(\tau_{planar})$
Feynman categories, derived modular envelopes and moduli spaces
Non-symmetric, planar-cyclic and surface-modular operads

\[
\begin{array}{ccc}
\text{\tilde{F}}_{\text{non-sym}} & \xrightarrow{l} & \text{\tilde{F}}_{\text{plan-cyc}} & \xrightarrow{J} & \text{\tilde{F}}_{\text{surf-mod}} \\
\downarrow p(\tau_{\text{assoc}}) & & \downarrow p(\tau_{\text{planar}}) & & \downarrow p(\tau_{\text{ribbon}}) \\
\text{\tilde{F}}_{\text{sym}} & \xrightarrow{i} & \text{\tilde{F}}_{\text{cyc}} & \xrightarrow{j} & \text{\tilde{F}}_{\text{mod}} \\
\downarrow & & \downarrow h & & \downarrow \\
& & \text{\tilde{F}}_{\text{ctd}} & & \\
\end{array}
\]

where vertical arrows are coverings, and \(j, J \) are connected.

- \(\tau_{\text{assoc}} \) is the \(\tilde{F}_{\text{sym}} \)-operad for associative monoids
- \(\tau_{\text{planar}} \) is the \(\tilde{F}_{\text{cyc}} \)-operad for planar structures
- \(i^*(\tau_{\text{planar}}) = \tau_{\text{assoc}} \) (\(\tau_{\text{planar}} \) is the “cyclic” version of \(\tau_{\text{assoc}} \))
- \(\tau_{\text{ribbon}} = j!(\tau_{\text{planar}}) \)
Feynman categories, derived modular envelopes and moduli spaces
Non-symmetric, planar-cyclic and surface-modular operads

\[\mathcal{F}_{\text{non-sym}} \xrightarrow{I} \mathcal{F}_{\text{plan-cyc}} \xrightarrow{J} \mathcal{F}_{\text{surf-mod}} \]
\[\mathcal{F}_{\text{sym}} \xrightarrow{i} \mathcal{F}_{\text{cyc}} \xrightarrow{j} \mathcal{F}_{\text{mod}} \]
\[k = p(\tau_{\text{genus}}) \]

where vertical arrows are coverings, and \(j, J \) are connected.

- \(\tau_{\text{assoc}} \) is the \(\mathcal{F}_{\text{sym}} \)-operad for associative monoids
- \(\tau_{\text{planar}} \) is the \(\mathcal{F}_{\text{cyc}} \)-operad for planar structures
- \(i^*(\tau_{\text{planar}}) = \tau_{\text{assoc}} \) (\(\tau_{\text{planar}} \) is the “cyclic” version of \(\tau_{\text{assoc}} \))
- \(\tau_{\text{ribbon}} = j!(\tau_{\text{planar}}) \)
\(F_{\text{non-sym}} \xrightarrow{I} F_{\text{plan-cyc}} \xrightarrow{J} F_{\text{surf-mod}} \)

\[\downarrow_{p(\tau_{\text{assoc}})} \downarrow_{p(\tau_{\text{planar}})} \downarrow_{p(\tau_{\text{ribbon}})} \]

\(F_{\text{sym}} \xrightarrow{i} F_{\text{cyc}} \xrightarrow{j} F_{\text{mod}} \)

\[\downarrow_{i} \downarrow_{j} \]

\[\downarrow_{h} \downarrow_{k=p(\tau_{\text{genus}})} \]

\(\Rightarrow F_{\text{ctd}} \)

where vertical arrows are coverings, and \(j, J \) are connected.

- \(\tau_{\text{assoc}} \) is the \(F_{\text{sym}} \)-operad for associative monoids
- \(\tau_{\text{planar}} \) is the \(F_{\text{cyc}} \)-operad for planar structures
- \(i^*(\tau_{\text{planar}}) = \tau_{\text{assoc}} \) (\(\tau_{\text{planar}} \) is the “cyclic” version of \(\tau_{\text{assoc}} \))
- \(\tau_{\text{ribbon}} = j^!(\tau_{\text{planar}}) \)
\[\begin{array}{ccl}
\mathcal{F}_{\text{non-sym}} & \xrightarrow{I} & \mathcal{F}_{\text{plan-cyc}} \\
\downarrow p(\tau_{\text{assoc}}) & & \downarrow p(\tau_{\text{planar}}) \\
\mathcal{F}_{\text{sym}} & \xrightarrow{i} & \mathcal{F}_{\text{cyc}} \\
\downarrow & & \downarrow j \\
\downarrow h & & \downarrow k = p(\tau_{\text{genus}}) \\
\mathcal{F}_{\text{surf-mod}} & & \mathcal{F}_{\text{ctd}}
\end{array} \]

where vertical arrows are coverings, and \(j, J\) are connected.

- \(\tau_{\text{assoc}}\) is the \(\mathcal{F}_{\text{sym}}\)-operad for associative monoids
- \(\tau_{\text{planar}}\) is the \(\mathcal{F}_{\text{cyc}}\)-operad for planar structures
- \(i^*(\tau_{\text{planar}}) = \tau_{\text{assoc}}\) (\(\tau_{\text{planar}}\) is the “cyclic” version of \(\tau_{\text{assoc}}\))
- \(\tau_{\text{ribbon}} = j!(\tau_{\text{planar}})\)
\[
\begin{align*}
\mathcal{F}_{\text{non-sym}} & \xrightarrow{l} \mathcal{F}_{\text{plan-cyc}} \xrightarrow{J} \mathcal{F}_{\text{surf-mod}} \\
\mathcal{F}_{\text{sym}} & \xrightarrow{i} \mathcal{F}_{\text{cyc}} \xrightarrow{j} \mathcal{F}_{\text{mod}} \\
& \xrightarrow{h} \mathcal{F}_{\text{ctd}}
\end{align*}
\]

where vertical arrows are coverings, and \(j, J\) are connected.

- \(\tau_{\text{assoc}}\) is the \(\mathcal{F}_{\text{sym}}\)-operad for associative monoids
- \(\tau_{\text{planar}}\) is the \(\mathcal{F}_{\text{cyc}}\)-operad for planar structures
- \(i^*(\tau_{\text{planar}}) = \tau_{\text{assoc}}\) (\(\tau_{\text{planar}}\) is the “cyclic” version of \(\tau_{\text{assoc}}\))
- \(\tau_{\text{ribbon}} = j!(\tau_{\text{planar}})\)
Proposition (Doubek, B-K)

The set $j! (\tau_{planar})(\gamma, n)$ is in bijection with either
- equ. cl. of one-vertex ribbon graphs with γ loops and n flags
- $\{(g, s; p_1, \ldots, p_\nu) \mid n = p_1 + \cdots + p_\nu$ and $1 - 2g = \nu + s - \gamma\}$
- topological types of bordered oriented surfaces of genus g with s punctures and ν boundaries having p_i marked points each

Corollary (Markl, B-K)

The morphisms of the Feynman category $\mathcal{F}_{surf-mod}$ can be considered as genus-labeled “polycyclic” graphs and $J(1) = 1$.

Proposition (B-K)

$$J \downarrow (g, s; p_1, \ldots, p_\nu) \simeq rb_{g, s}^{p_1, \ldots, p_\nu}$$
Proposition (Doubek, B-K)

The set $j_! (\tau_{planar})(\gamma, n)$ is in bijection with either

- equ. cl. of one-vertex ribbon graphs with γ loops and n flags
- $\{(g, s; p_1, \ldots, p_\nu) | n = p_1 + \cdots + p_\nu \text{ and } 1 - 2g = \nu + s - \gamma\}$
- topological types of bordered oriented surfaces of genus g with s punctures and ν boundaries having p_i marked points each

Corollary (Markl, B-K)

The morphisms of the Feynman category $\mathcal{F}_{surf-mod}$ can be considered as genus-labeled “polycyclic” graphs and $J(1) = 1$.

Proposition (B-K)

$J \downarrow (g, s; p_1, \ldots, p_\nu) \cong rb_{g,s}^{p_1,\ldots,p_\nu}$
Proposition (Doubek, B-K)

The set $j! (\tau_{planar}) (\gamma, n)$ is in bijection with either

- equ. cl. of one-vertex ribbon graphs with γ loops and n flags
- $\{(g, s; p_1, \ldots, p_\nu) | n = p_1 + \cdots + p_\nu$ and $1 - 2g = \nu + s - \gamma}\$
- topological types of bordered oriented surfaces of genus g with s punctures and ν boundaries having p_i marked points each

Corollary (Markl, B-K)

The morphisms of the Feynman category $\mathcal{F}_{surf-mod}$ can be considered as genus-labeled “polycyclic” graphs and $J(1) = 1$.

Proposition (B-K)

$J \downarrow (g, s; p_1, \ldots, p_\nu) \simeq rb_{g,s}^{p_1,\ldots,p_\nu}$
Proposition (Doubek, B-K)

The set \(j! (\tau_{\text{planar}})(\gamma, n) \) is in bijection with either
- equ. cl. of one-vertex ribbon graphs with \(\gamma \) loops and \(n \) flags
- \(\{(g, s; p_1, \ldots, p_\nu) \mid n = p_1 + \cdots + p_\nu \text{ and } 1 - 2g = \nu + s - \gamma\} \)
- topological types of bordered oriented surfaces of genus \(g \) with \(s \) punctures and \(\nu \) boundaries having \(p_i \) marked points each

Corollary (Markl, B-K)

The morphisms of the Feynman category \(\mathcal{F}_{\text{surf-mod}} \) can be considered as genus-labeled “polycyclic” graphs and \(J(1) = 1 \).

Proposition (B-K)

\(J \downarrow (g, s; p_1, \ldots, p_\nu) \cong \text{rb}^{p_1, \ldots, p_\nu}_{g, s} \)
Feynman categories, derived modular envelopes and moduli spaces
Non-symmetric, planar-cyclic and surface-modular operads

Proposition (Doubek, B-K)

The set \(j!(\tau_{planar})(\gamma, n) \) is in bijection with either

- equ. cl. of one-vertex ribbon graphs with \(\gamma \) loops and \(n \) flags
- \(\{(g, s; p_1, \ldots, p_\nu) | n = p_1 + \cdots + p_\nu \text{ and } 1 - 2g = \nu + s - \gamma\} \)
- topological types of bordered oriented surfaces of genus \(g \) with \(s \) punctures and \(\nu \) boundaries having \(p_i \) marked points each

Corollary (Markl, B-K)

The morphisms of the Feynman category \(\mathcal{F}_{surf-mod} \) can be considered as genus-labeled “polycyclic” graphs and \(J(1) = 1 \).

Proposition (B-K)

\(J \downarrow (g, s; p_1, \ldots, p_\nu) \cong \text{rb}^{p_1, \ldots, p_\nu}_{g, s} \)
Proposition (Doubek, B-K)

The set $j!(\tau_{planar})(\gamma, n)$ is in bijection with either

- equ. cl. of one-vertex ribbon graphs with γ loops and n flags
- $\{(g, s; p_1, \ldots, p_\nu) \mid n = p_1 + \cdots + p_\nu \text{ and } 1 - 2g = \nu + s - \gamma\}$
- topological types of bordered oriented surfaces of genus g with s punctures and ν boundaries having p_i marked points each

Corollary (Markl, B-K)

The morphisms of the Feynman category $\mathcal{F}_{surf-mod}$ can be considered as genus-labeled “polycyclic” graphs and $J(1) = 1$.

Proposition (B-K)

$J(\downarrow (g, s; p_1, \ldots, p_\nu) \cong \text{rb}_{g,s}^{p_1,\ldots,p_\nu}$
Proposition (Doubek, B-K)

The set $j_!(\tau_{\text{planar}})(\gamma, n)$ is in bijection with either

- equ. cl. of one-vertex ribbon graphs with γ loops and n flags
- $\{(g, s; p_1, \ldots, p_\nu) \mid n = p_1 + \cdots + p_\nu$ and $1 - 2g = \nu + s - \gamma\}$
- topological types of bordered oriented surfaces of genus g with s punctures and ν boundaries having p_i marked points each

Corollary (Markl, B-K)

The morphisms of the Feynman category $\mathcal{F}_{\text{surf-mod}}$ can be considered as genus-labeled “polycyclic” graphs and $J(1) = 1$.

Proposition (B-K)

$J \downarrow (g, s; p_1, \ldots, p_\nu) \simeq \text{rb}_{g, s}^{p_1, \ldots, p_\nu}$
Definition (Kaufmann-Ward)

A Feynman category \mathcal{F} is *cubical* if there is a degree function $\text{deg} : \text{Mor}(\mathcal{F}) \to \mathbb{N}_0$ such that

- $\text{deg}(\phi \circ \psi) = \text{deg}(\phi) + \text{deg}(\psi)$
- $\text{deg}(\phi \otimes \psi) = \text{deg}(\phi) + \text{deg}(\psi)$
- Degree 0 morphisms are invertible
- Each degree n morphism factors (up to iso) in $n!$ ways into degree 1 morphisms “compatibly with composition”

Remark

In the non-unital case without constants, the Feynman categories $\mathcal{F}_{\text{sym}}, \mathcal{F}_{\text{cyc}}, \mathcal{F}_{\text{mod}}, \mathcal{F}_{\text{non-sym}}, \mathcal{F}_{\text{plan-cyc}}, \mathcal{F}_{\text{surf-mod}}$ are cubical. The degree of ϕ is the number of edges of the representing graph Γ_ϕ.
Definition (Kaufmann-Ward)

A Feynman category \mathcal{F} is \textit{cubical} if there is a degree function $\deg : \text{Mor}(\mathcal{F}) \to \mathbb{N}_0$ such that

- $\deg(\phi \circ \psi) = \deg(\phi) + \deg(\psi)$
- $\deg(\phi \otimes \psi) = \deg(\phi) + \deg(\psi)$
- Degree 0 morphisms are invertible
- Each degree n morphism factors (up to iso) in $n!$ ways into degree 1 morphisms “compatibly with composition”

Remark

In the non-unital case without constants, the Feynman categories $\mathcal{F}_{\text{sym}}, \mathcal{F}_{\text{cyc}}, \mathcal{F}_{\text{mod}}, \mathcal{F}_{\text{non-sym}}, \mathcal{F}_{\text{plan-cyc}}, \mathcal{F}_{\text{surf-mod}}$ are cubical. The degree of ϕ is the number of edges of the representing graph Γ_ϕ.
Definition (Kaufmann-Ward)

A Feynman category \mathcal{F} is *cubical* if there is a degree function $\text{deg} : \text{Mor}(\mathcal{F}) \to \mathbb{N}_0$ such that

- $\text{deg}(\phi \circ \psi) = \text{deg}(\phi) + \text{deg}(\psi)$
- $\text{deg}(\phi \otimes \psi) = \text{deg}(\phi) + \text{deg}(\psi)$

- Degree 0 morphisms are invertible
- Each degree n morphism factors (up to iso) in $n!$ ways into degree 1 morphisms “compatibly with composition”

Remark

In the non-unital case without constants, the Feynman categories $\mathcal{F}_{\text{sym}}, \mathcal{F}_{\text{cyc}}, \mathcal{F}_{\text{mod}}, \mathcal{F}_{\text{non-sym}}, \mathcal{F}_{\text{plan-cyc}}, \mathcal{F}_{\text{surf-mod}}$ are cubical. The degree of ϕ is the number of edges of the representing graph Γ_ϕ.
Definition (Kaufmann-Ward)

A Feynman category \mathcal{F} is *cubical* if there is a degree function $\text{deg} : \text{Mor}(\mathcal{F}) \to \mathbb{N}_0$ such that

- $\text{deg}(\phi \circ \psi) = \text{deg}(\phi) + \text{deg}(\psi)$
- $\text{deg}(\phi \otimes \psi) = \text{deg}(\phi) + \text{deg}(\psi)$
- Degree 0 morphisms are invertible
- Each degree n morphism factors (up to iso) in $n!$ ways into degree 1 morphisms “compatibly with composition”

Remark

In the non-unital case without constants, the Feynman categories $\mathcal{F}_{\text{sym}}, \mathcal{F}_{\text{cyc}}, \mathcal{F}_{\text{mod}}, \mathcal{F}_{\text{non-sym}}, \mathcal{F}_{\text{plan-cyc}}, \mathcal{F}_{\text{surf-mod}}$ are cubical. The degree of ϕ is the number of edges of the representing graph Γ_{ϕ}.
Definition (Kaufmann-Ward)

A Feynman category \(\mathcal{F} \) is \textit{cubical} if there is a degree function \(\deg : \text{Mor}(\mathcal{F}) \rightarrow \mathbb{N}_0 \) such that

- \(\deg(\phi \circ \psi) = \deg(\phi) + \deg(\psi) \)
- \(\deg(\phi \otimes \psi) = \deg(\phi) + \deg(\psi) \)
- Degree 0 morphisms are invertible
- Each degree \(n \) morphism factors (up to iso) in \(n! \) ways into degree 1 morphisms “compatibly with composition”

Remark

In the non-unital case without constants, the Feynman categories \(\mathcal{F}_{\text{sym}}, \mathcal{F}_{\text{cyc}}, \mathcal{F}_{\text{mod}}, \mathcal{F}_{\text{non-sym}}, \mathcal{F}_{\text{plan-cyc}}, \mathcal{F}_{\text{surf-mod}} \) are cubical. The degree of \(\phi \) is the number of edges of the representing graph \(\Gamma_\phi \).
Definition (Kaufmann-Ward)

A Feynman category \mathcal{F} is *cubical* if there is a degree function $\text{deg} : \text{Mor}(\mathcal{F}) \rightarrow \mathbb{N}_0$ such that

- $\text{deg}(\phi \circ \psi) = \text{deg}(\phi) + \text{deg}(\psi)$
- $\text{deg}(\phi \otimes \psi) = \text{deg}(\phi) + \text{deg}(\psi)$
- Degree 0 morphisms are invertible
- Each degree n morphism factors (up to iso) in $n!$ ways into degree 1 morphisms “compatibly with composition”

Remark

In the non-unital case without constants, the Feynman categories $\mathcal{F}_{sym}, \mathcal{F}_{cyc}, \mathcal{F}_{mod}, \mathcal{F}_{non-sym}, \mathcal{F}_{plan-cyc}, \mathcal{F}_{surf-mod}$ are cubical. The degree of ϕ is the number of edges of the representing graph Γ_ϕ.
Definition (\(W_\mathfrak{F} \)-construction)

Let \(P \) be an operad over a cubical Feynman category \(\mathfrak{F} \). Put

\[
(W_\mathfrak{F}P)(B) = \left(\bigsqcup_{\phi \in \mathfrak{F}(A,B)} P(A) \times \text{Aut}_\mathfrak{F}(\phi) [0, 1]^{\text{deg}(\phi)} \right) / \sim
\]

where identifications are on faces of \([0, 1]^{\text{deg}(\phi)}\) according to coarser factorisations of \(\phi \). \(\text{Aut}_\mathfrak{F}(\phi) \) acts on both sides.

For “graphical” Feynman categories: \(\text{Aut}_\mathfrak{F}(\phi) \cong \text{Aut}(\Gamma_\phi) \).

Proposition (Kaufmann-Ward, cf. Boardman-Vogt, B-Moerdijk)

For any cubical Feynman category \(\mathfrak{F} \), the category of topological \(\mathfrak{F} \)-operads admits a *transferred model structure*. If \(P \) has an underlying cofibrant \(\mathcal{V} \)-collection then \(W_\mathfrak{F}P \) is a *cofibrant \(\mathfrak{F} \)-operad*.
Definition \((W_{\mathcal{F}}\text{-construction})\)

Let \(P\) be an operad over a cubical Feynman category \(\mathcal{F}\). Put

\[
(W_{\mathcal{F}}P)(B) = \left(\bigsqcup_{\phi \in \mathcal{F}(A,B)} P(A) \times_{\text{Aut}_{\mathcal{F}}(\phi)} [0, 1]^{\text{deg}(\phi)} \right) / \sim
\]

where identifications are on faces of \([0, 1]^{\text{deg}(\phi)}\) according to coarser factorisations of \(\phi\). \(\text{Aut}_{\mathcal{F}}(\phi)\) acts on both sides.

For “graphical” Feynman categories: \(\text{Aut}_{\mathcal{F}}(\phi) \cong \text{Aut}(\Gamma_{\phi})\).

Proposition (Kaufmann-Ward, cf. Boardman-Vogt, B-Moerdijk)

For any cubical Feynman category \(\mathcal{F}\), the category of topological \(\mathcal{F}\)-operads admits a transferred model structure. If \(P\) has an underlying cofibrant \(\mathcal{V}\)-collection then \(W_{\mathcal{F}}P\) is a cofibrant \(\mathcal{F}\)-operad.
Definition \((W_{\mathcal{F}}\text{-construction})\)

Let \(P\) be an operad over a cubical Feynman category \(\mathcal{F}\). Put

\[
(W_{\mathcal{F}}P)(B) = \left(\bigsqcup_{\phi \in \mathcal{F}(A,B)} P(A) \times_{\text{Aut}_\mathcal{F}(\phi)} [0, 1]^{\deg(\phi)} \right) / \sim
\]

where identifications are on faces of \([0, 1]^{\deg(\phi)}\) according to coarser factorisations of \(\phi\). \(\text{Aut}_\mathcal{F}(\phi)\) acts on both sides.

For “graphical” Feynman categories: \(\text{Aut}_\mathcal{F}(\phi) \cong \text{Aut}(\Gamma_\phi)\).

Proposition (Kaufmann-Ward, cf. Boardman-Vogt, B-Moerdijk)

For any cubical Feynman category \(\mathcal{F}\), the category of topological \(\mathcal{F}\)-operads admits a transferred model structure. If \(P\) has an underlying cofibrant \(\mathcal{V}\)-collection then \(W_{\mathcal{F}}P\) is a cofibrant \(\mathcal{F}\)-operad.
Definition ($W_{\mathcal{F}}$-construction)

Let P be an operad over a cubical Feynman category \mathcal{F}. Put

$$(W_{\mathcal{F}}P)(B) = \left(\coprod_{\phi \in \mathcal{F}(A,B)} P(A) \times_{\text{Aut}_{\mathcal{F}}(\phi)} [0,1]^{\deg(\phi)} \right) / \sim$$

where identifications are on faces of $[0,1]^{\deg(\phi)}$ according to coarser factorisations of ϕ. $\text{Aut}_{\mathcal{F}}(\phi)$ acts on both sides.

For “graphical” Feynman categories: $\text{Aut}_{\mathcal{F}}(\phi) \cong \text{Aut}(\Gamma_{\phi})$.

Proposition (Kaufmann-Ward, cf. Boardman-Vogt, B-Moerdijk)

For any cubical Feynman category \mathcal{F}, the category of topological \mathcal{F}-operads admits a transferred model structure. If P has an underlying cofibrant \mathcal{V}-collection then $W_{\mathcal{F}}P$ is a cofibrant \mathcal{F}-operad.
Example (cubically subdivided convex polytopes)

- $W_{\text{sym}}(T_{\text{assoc}})(\text{rooted corolla}) = \text{associahedron}$
- $W_{\text{cyc}}(T_{\text{planar}})(\text{corolla}) = \text{cyclohedron}$

Proposition (B-K)

Let $\phi : F \to F'$ be a functor of cubical Feynman categories.

- $(W_{\text{sym}})(B) \simeq |\text{nerve}(F \downarrow B)|$
- $\phi_!(W_{\text{sym}})(B') \simeq |\text{nerve}(\phi \downarrow B')|$

Theorem (B-K)

$J!(W_{\text{plan-cyc}})(g, s; p_1, \ldots, p_\nu) \simeq |\text{rb}_{g, s_{p_1, \ldots, p_\nu}}| \simeq M_{g, s_{p_1, \ldots, p_\nu}}$
Example (cubically subdivided convex polytopes)

- $W_{\text{sym}}(\tau_{\text{assoc}})(\text{rooted corolla}) = \text{associahedron}$
- $W_{\text{cyc}}(\tau_{\text{planar}})(\text{corolla}) = \text{cyclohedron}$

Proposition (B-K)

Let $\phi : \mathcal{F} \to \mathcal{F}'$ be a functor of cubical Feynman categories.

- $(W_{\text{cyc}})(B) \simeq |\text{nerve}(\mathcal{F} \downarrow B)|$
- $\phi_!(W_{\text{cyc}})(B') \simeq |\text{nerve}(\phi \downarrow B')|$}

Theorem (B-K)

$$J!(W_{\text{plan-cyc}})(g, s; p_1, \ldots, p_\nu) \simeq |\text{rb}_{g,s}^{p_1,\ldots,p_\nu}| \simeq M_{g,s}^{p_1,\ldots,p_\nu}$$
Example (cubically subdivided convex polytopes)

- $W_{\text{sym}}(\tau_{\text{assoc}})(\text{rooted corolla}) = \text{associahedron}$
- $W_{\text{cyc}}(\tau_{\text{planar}})(\text{corolla}) = \text{cyclohedron}$

Proposition (B-K)

Let $\phi : \mathcal{F} \to \mathcal{F}'$ be a functor of cubical Feynman categories.

- $(W_{\text{sym}})(B) \simeq \vert \text{nerve}(\mathcal{F} \downarrow B) \vert$
- $\phi_!(W_{\text{sym}})(B') \simeq \vert \text{nerve}(\phi \downarrow B') \vert$

Theorem (B-K)

$J_!(W_{\text{plan-cyc}})(g, s; p_1, \ldots, p_\nu) \simeq \vert \mathfrak{rb}_{g, s}^{p_1, \ldots, p_\nu} \vert \simeq M_{g, s}^{p_1, \ldots, p_\nu}$
Example (cubically subdivided convex polytopes)

- $W_{\text{sym}}(\tau_{\text{assoc}})(\text{rooted corolla}) = \text{associahedron}$
- $W_{\text{cyc}}(\tau_{\text{planar}})(\text{corolla}) = \text{cyclohedron}$

Proposition (B-K)

Let $\phi : \mathcal{F} \to \mathcal{F}'$ be a functor of cubical Feynman categories.

- $(W_{\mathcal{F}})(B) \simeq |\text{nerve}(\mathcal{F} \downarrow B)|$
- $\phi_!(W_{\mathcal{F}})(B') \simeq |\text{nerve}(\phi \downarrow B')|$

Theorem (B-K)

$$J_!(W_{\text{plan-cyc}})(g, s; p_1, \ldots, p_\nu) \simeq |\text{rb}_{g,s}^{p_1,\ldots,p_\nu}| \simeq \mathcal{M}_{g,s}^{p_1,\ldots,p_\nu}$$
Example (cubically subdivided convex polytopes)

- $W_{\text{sym}}(\tau_{\text{assoc}})(\text{rooted corolla}) = \text{associahedron}$
- $W_{\text{cyc}}(\tau_{\text{planar}})(\text{corolla}) = \text{cyclohedron}$

Proposition (B-K)

Let $\phi : \mathcal{F} \to \mathcal{F}'$ be a functor of cubical Feynman categories.

- $(W_{\mathbf{3}1})(B) \simeq |\text{nerve}(\mathcal{F} \downarrow B)|$
- $\phi!(W_{\mathbf{3}1})(B') \simeq |\text{nerve}(\phi \downarrow B')|$

Theorem (B-K)

$$J!(W_{\text{plan-cyc}1})(g, s; p_1, \ldots, p_\nu) \simeq |\text{rb}^{p_1, \ldots, p_\nu}_{g,s} | \simeq \mathcal{M}^{p_1, \ldots, p_\nu}_{g,s}$$
Example (cubically subdivided convex polytopes)

- $W_{\text{sym}}(\tau_{\text{assoc}})(\text{rooted corolla}) = \text{associahedron}$
- $W_{\text{cyc}}(\tau_{\text{planar}})(\text{corolla}) = \text{cyclohedron}$

Proposition (B-K)

Let $\phi : \mathfrak{F} \to \mathfrak{F}'$ be a functor of cubical Feynman categories.

- $(W_{\mathfrak{F}})_1(B) \simeq |\text{nerve}(\mathfrak{F} \downarrow B)|$
- $\phi_!(W_{\mathfrak{F}})_1(B') \simeq |\text{nerve}(\phi \downarrow B')|$

Theorem (B-K)

$$J_!(W_{\text{plan-cyc}})_1(g, s; p_1, \ldots, p_\nu) \simeq |\text{rb}_{g,s}^{p_1,\ldots,p_\nu}| \simeq \mathcal{M}_{g,s}^{p_1,\ldots,p_\nu}$$
Example (cubically subdivided convex polytopes)
- $W_{\text{sym}}(\tau_{\text{assoc}})$ (rooted corolla) = associahedron
- $W_{\text{cyc}}(\tau_{\text{planar}})$ (corolla) = cyclohedron

Proposition (B-K)
Let $\phi : \mathcal{F} \to \mathcal{F}'$ be a functor of cubical Feynman categories.
- $(W_{\mathcal{F}}(\mathcal{1}))(B) \simeq |\text{nerve}(\mathcal{F} \downarrow B)|$
- $\phi!(W_{\mathcal{F}}(\mathcal{1}))(B') \simeq |\text{nerve}(\phi \downarrow B')|$

Theorem (B-K)
$$J!(W_{\text{plan-cyc}})(g, s; p_1, \ldots, p_\nu) \simeq \left| \text{rb}^{p_1, \ldots, p_\nu}_{g,s} \right| \simeq \mathcal{M}_{g,s}^{p_1, \ldots, p_\nu}$$
Example (cubically subdivided convex polytopes)

- $W_{\text{sym}}(\tau_{\text{assoc}})(\text{rooted corolla}) = \text{associahedron}$
- $W_{\text{cyc}}(\tau_{\text{planar}})(\text{corolla}) = \text{cyclohedron}$

Proposition (B-K)

Let $\phi : \mathcal{F} \to \mathcal{F}'$ be a functor of cubical Feynman categories.

- $(W_{\mathcal{F}} 1)(B) \simeq |\text{nerve}(\mathcal{F} \downarrow B)|$
- $\phi!(W_{\mathcal{F}} 1)(B') \simeq |\text{nerve}(\phi \downarrow B')|$

Theorem (B-K)

$$J!(W_{\text{plan-cyc}} 1)(g, s; p_1, \ldots, p_\nu) \simeq \left| rb_{g,s}^{p_1,\ldots,p_\nu} \right| \simeq \mathcal{M}_{g,s}^{p_1,\ldots,p_\nu}$$
Feynman categories, derived modular envelopes and moduli spaces
Perspectives and open problems

- $J!(W_{plan-cyc} \mathbb{1}) = (\mathbb{L}J!)(\mathbb{1})$?
 - no for transferred \textit{projective} model structure, but yes for transferred \textit{equivariant} model structure, cf. Vogt.

- Since $p!(\mathbb{1}_{plan-cyc}) = \tau_{planar}$, $j!(W\tau_{planar})$ decomposes according to $p!J!(W_{plan-cyc} \mathbb{1})$. What about derived modular envelopes of other cyclic operads ?

- $\chi_{orbi}(\mathcal{M}_{g,1}) = \chi_{orbi}(rb_{g,1}) = \zeta(1 - 2g) = \zeta(\chi(S_{g,1}))$ (Harer-Zagier).
 - What about $\chi_{orbi}(rb^{p_1,\ldots,p_\nu}_{g,s})$?
 - Relationship with multi-zeta functions ?

- Relationship with Kontsevich’s graph homology or a flagged version of it ?
Feynman categories, derived modular envelopes and moduli spaces
Perspectives and open problems

- $J!(W_{plan-cyc} \mathbf{1}) = (\mathbb{L}J!)(\mathbf{1})$?
 no for transferred projective model structure, but yes for transferred equivariant model structure, cf. Vogt.

- Since $p!(1_{plan-cyc}) = \tau_{planar}$, $j!(W_{\tau_{planar}})$ decomposes according to $p!J!(W_{plan-cyc} \mathbf{1})$. What about derived modular envelopes of other cyclic operads?

- $\chi_{orbi}(M_{g,1}) = \chi_{orbi}(rb_{g,1}) = \zeta(1 - 2g) = \zeta(\chi(S_{g,1}))$ (Harer-Zagier).
 What about $\chi_{orbi}(rb_{g,s}^{p_1,...,p_\nu})$?
 Relationship with multi-zeta functions?

- Relationship with Kontsevich’s graph homology or a flagged version of it?
• $J!(W_{plan-cyc}) = (\mathbb{L}J!)(1)$?
no for transferred projective model structure, but yes for transferred equivariant model structure, cf. Vogt.

• Since $p!(1_{plan-cyc}) = \tau_{planar}, J!(W_{\tau_{planar}})$ decomposes according to $p!J!(W_{plan-cyc})$. What about derived modular envelopes of other cyclic operads?

• $\chi_{orbi}(M_{g,1}) = \chi_{orbi}(rb_{g,1}) = \zeta(1 - 2g) = \zeta(\chi(S_{g,1}))$ (Harer-Zagier).
What about $\chi_{orbi}(rb_{g,s}^{p_1,...,p_\nu})$?
Relationship with multi-zeta functions?

• Relationship with Kontsevich’s graph homology or a flagged version of it?
Feynman categories, derived modular envelopes and moduli spaces
Perspectives and open problems

- $J!(\mathcal{W}_{\text{plan-cyc}}) = (\mathbb{L}J!)(1)$?
 - no for transferred *projective* model structure, but yes for transferred *equivariant* model structure, cf. Vogt.

- Since $p!(1_{\text{plan-cyc}}) = \tau_{\text{planar}}$, $j!(\mathcal{W}_{\tau_{\text{planar}}})$ decomposes according to $p!J!(\mathcal{W}_{\text{plan-cyc}})$. What about derived modular envelopes of other cyclic operads?

- $\chi_{\text{orbi}}(\mathcal{M}_{g,1}) = \chi_{\text{orbi}}(\text{rb}_{g,1}) = \zeta(1 - 2g) = \zeta(\chi(S_{g,1}))$ (Harer-Zagier).
 - What about $\chi_{\text{orbi}}(\text{rb}_{g,1}^{p_1,\ldots,p_\nu})$?
 - Relationship with multi-zeta functions?

- Relationship with Kontsevich’s graph homology or a flagged version of it?
\(J!(\mathcal{W}_{plan-cyc}1) = (\mathbb{L}J!)(1) \) ?
no for transferred \textit{projective} model structure, but yes for transferred \textit{equivariant} model structure, cf. Vogt.

Since \(p!(1_{plan-cyc}) = \tau_{planar}, J!(\mathcal{W}_{\tau_{planar}}) \) decomposes according to \(p!J!(\mathcal{W}_{plan-cyc}1) \). What about derived modular envelopes of other cyclic operads ?

\(\chi_{orbi}(\mathcal{M}_{g,1}) = \chi_{orbi}(rb_{g,1}) = \zeta(1-2g) = \zeta(\chi(S_{g,1})) \) (Harer-Zagier).
What about \(\chi_{orbi}(rb_{g,s}^{p_1,...,p_\nu}) \) ?
Relationship with multi-zeta functions ?

Relationship with Kontsevich’s graph homology or a flagged version of it ?
\(J!(W_{plan-cyc} \mathbf{1}) = (\mathbb{L} J!)(\mathbf{1}) \) ?
no for transferred \textit{projective} model structure, but yes for transferred \textit{equivariant} model structure, cf. Vogt.

Since \(p!(1_{plan-cyc}) = \tau_{planar}, j!(W_{\tau_{planar}}) \) decomposes according to \(p! J!(W_{plan-cyc} \mathbf{1}) \). What about derived modular envelopes of other cyclic operads?

\(\chi_{orbi}(\mathcal{M}_{g,1}) = \chi_{orbi}(rb_{g,1}) = \zeta(1 - 2g) = \zeta(\chi(S_{g,1})) \) (Harer-Zagier).
What about \(\chi_{orbi}(rb_{g,s}^{p_1,\ldots,p_\nu}) \)?
Relationship with multi-zeta functions?

Relationship with Kontsevich’s graph homology or a flagged version of it?