Congruence Preservation and Recognizability

I. Guessarian
IRIF, CNRS & Université Denis Diderot-Paris 7

Joint work with

Patrick Cégielski & Serge Grigorieff
(Université Paris 12) (Université Paris 7)

31/01/2019
I. Guessarian

Outline

1. Original problem
2. Characterize Congruence Preservation Algebraically
3. Characterize Congruence Preservation via Lattice Closure
4. More on Algebras, Congruence preservation, Lattice closure
5. Case of \mathbb{Z}
I. Guessarian

Outline

1. Original problem
2. Characterize Congruence Preservation Algebraically
3. Characterize Congruence Preservation via Lattice Closure
4. More on Algebras, Congruence preservation, Lattice closure
5. Case of \mathbb{Z}
A Question by Jean-Eric Pin

\(\mathcal{L} \) lattice of finite subsets of \(\mathbb{N} \), (i.e. for \(L, L' \in \mathcal{L} \), \(L \cap L', L \cup L' \in \mathcal{L} \))

\(\mathcal{L} \) closed under decrement \(\implies \mathcal{L} \) closed under division

Closure under decrement: \(\forall L \in \mathcal{L}: (L - 1) = \{ n - 1 \mid n \in L, n - 1 \geq 0 \} \in \mathcal{L} \)

\(\{0, 3, 7\} - 1 = \{2, 6\} \)

Closure under division: \(\forall a \in \mathbb{N}, \forall L \in \mathcal{L}: L/a = \{ n \mid an \in L \} \in \mathcal{L} \)

\(\{0, 3, 7\}/3 = \{0, 1\} \)

Answer: YES ... and Much More...
Which functions $f : \mathbb{N} \to \mathbb{N}$ are such that

\[\forall \mathcal{L} \text{ lattice of finite subsets of } \mathbb{N} \]
\[\forall L \in \mathcal{L} \quad (L - 1) \in \mathcal{L} \implies \forall L \in \mathcal{L} \quad f^{-1}(L) \in \mathcal{L}\]

(\star)

Theorem (CGG13)

$f : \mathbb{N} \to \mathbb{N}$ satisfies $(\star) \iff f$ is congruence preserving

Idem for lattices of regular subsets of \mathbb{N}

Definition

f congruence preserving \iff

for any congruence \sim on \mathbb{N}: $x \sim y \implies f(x) \sim f(y)$
Congruences on $\langle \mathbb{N}, + \rangle$

$x \sim y$ iff; either $x = y$ or $\varphi(x) = \varphi(y)$ with φ

$$\varphi(x) = \begin{cases} x & \text{for } x \leq a \\ a + ((x - a) \mod k) & \text{for } x > a \end{cases} \quad a \geq 0, k \geq 1$$

frying pan monoid

$a \sim a + 8 \sim a + 16 \sim \cdots$ or $a + 3 \sim a + 11 \sim a + 19 \sim \cdots$
Morphisms, Congruences depend on signature

Morphism on $\langle \mathbb{N}, + \rangle \iff$ Morphism on $\langle \mathbb{N}, \times \rangle$

$\varphi(x) = 3x$ \hspace{1cm} $\psi(x) = \begin{cases} 1 & \text{iff } \exists n \ x = 2^n, \\ 0 & \text{otherwise.} \end{cases}$

$\langle \mathbb{N}, + \rangle$-congruence \implies $\langle \mathbb{N}, \times \rangle$-congruence.

$\langle \mathbb{N}, + \rangle$-congruence $\not\iff$ $\langle \mathbb{N}, \times \rangle$-congruence.

$x \sim y$ iff $\psi(x) = \psi(y)$ is a $\langle \mathbb{N}, \times \rangle$-congruence and not a $\langle \mathbb{N}, + \rangle$-congruence: $2 \sim 4$ and $4 \sim 4$ but $(2 + 4) \not\sim (4 + 4)$
I. Guessarian

Issue: capture congruence preservation

Theorem (CGG13)

\[f : \mathbb{N} \to \mathbb{N} \text{ congruence preserving} \iff \]

1. \(\forall a, b \in \mathbb{N} \quad a - b \text{ divides } f(a) - f(b) \) or equivalently (justifying the denomination), \(\forall n \geq 1, \)
 \[\forall a, b \in \mathbb{N} \quad (a \equiv b \mod n \implies f(a) \equiv f(b) \mod n) \]

2. and \(\forall a \in \mathbb{N} \quad f(a) \geq a \) or \(f \) constant

- Obvious example: Polynomials in \(\mathbb{N}[x] \)
- What else?
I. Guessarian

Congruence preserving functions

\[A = \langle A, \mathcal{O} \rangle \] algebra with operations \(\mathcal{O} \).

Definition

\(f : A^n \rightarrow A \) is congruence preserving iff, for any \(\mathcal{O} \)-congruence \(\sim \) on \(A \):

\[
\forall x_1, \ldots, x_n, y_1, \ldots, y_n \in A \\
\bigwedge_{i=1}^{i=n} x_i \sim y_i \implies f(x_1, \ldots, x_n) \sim f(y_1, \ldots, y_n)
\]

Example: “Polynomial functions” \(= \) expressed by terms with constants in \(A \). What else?
Outline

1. Original problem
2. Characterize Congruence Preservation Algebraically
3. Characterize Congruence Preservation via Lattice Closure
4. More on Algebras, Congruence preservation, Lattice closure
5. Case of \mathbb{Z}
Representing functions \(\mathbb{N} \rightarrow \mathbb{Z} \)

We represent functions \(\mathbb{N} \rightarrow \mathbb{Z} \) by
series of polynomials in \(\mathbb{Q}[x] \) mapping \(\mathbb{N} \) into \(\mathbb{Z} \)

Binomial polynomial function \(\mathbb{N} \rightarrow \mathbb{N} \) in \(\mathbb{Q}[x] \)

\[
\binom{x}{0} = 1 \quad \binom{x}{n} = \frac{x(x-1) \cdots (x-n+1)}{n!}
\]

Functions \(\mathbb{N} \rightarrow \mathbb{Z} \) \(\equiv \) \(1-1 \)

Infinite \(\mathbb{Z} \)-linear combinations of the binomial polynomials

NO CONVERGENCE PROBLEM: For every \(x \in \mathbb{N} \)
infinite sum \(\sum_{n \in \mathbb{N}} a_n \binom{x}{n} \) reduces to the finite sum \(\sum_{n \leq x} a_n \)
Characterize preservation of modular congruences

Theorem (CGG15)

If \(f : \mathbb{N} \rightarrow \mathbb{Z} \), then \((1) \iff (2)\)

\[
(1) \forall x, y \ x - y \text{ divides } f(x) - f(y)
\]

\[
(2) f(x) = a_0 + a_1 x + a_2 \frac{x(x - 1)}{2!} + a_3 \frac{x(x - 1)(x - 2)}{3!} + \cdots,
\]

where \(\ell \) divides \(a_n \) for all \(2 \leq \ell \leq n \).

I. Guessarian

Characterize congruence preservation on \mathbb{N}

$f : \mathbb{N} \rightarrow \mathbb{N}$ congruence preserving \iff

1. $\forall a, b \in \mathbb{N} \quad a - b$ divides $f(a) - f(b)$

2. and $\forall x \in \mathbb{N} \quad f(x) \geq x$ or f constant.

Theorem

$f : \mathbb{N} \rightarrow \mathbb{N}$ Congruence preserving \iff (1) and (2)

(1) $f(x) = a_0 + a_1 x + a_2 \frac{x(x - 1)}{2!} + a_3 \frac{x(x - 1)(x - 2)}{3!} + \cdots$, where ℓ divides a_n for all $2 \leq \ell \leq n$

(2) $\forall x \in \mathbb{N} \quad f(x) \geq x$ or f constant.
Characterize congruence preservation on \mathbb{N}

$f : \mathbb{N} \rightarrow \mathbb{N}$ congruence preserving \iff

1. $\forall a, b \in \mathbb{N}$, $a - b$ divides $f(a) - f(b)$
2. and $\forall x \in \mathbb{N}$, $f(x) \geq x$ or f constant.

Theorem

$f : \mathbb{N} \rightarrow \mathbb{N}$ Congruence preserving \iff (1) and (2)

(1) $f(x) = a_0 + a_1 x + a_2 \frac{x(x - 1)}{2!} + a_3 \frac{x(x - 1)(x - 2)}{3!} + \cdots$,

where ℓ divides a_n for all $2 \leq \ell \leq n$

(2) $\forall x \in \mathbb{N}$, $f(x) \geq x$ or f constant.
Corollary (CGG)

Non polynomial congruence preserving functions $\mathbb{N} \rightarrow \mathbb{N}$

$$f(x) = \lfloor e^{1/a} a^x x! \rfloor \quad \text{for} \ a \in \mathbb{N} \setminus \{0, 1\}$$

third kind Bessel function g

$$g(x) = \frac{\Gamma(1/2)}{2 \times 4^x \times x!} \int_1^\infty e^{-t/2} (t^2 - 1)^x dt$$

Idem for $f(x) = \lceil e^{1/a} a^x x! \rceil$

[CGG] Integral Difference Ratio Functions on Integers, LNCS 8808 (2014).

- What about other algebras ??
Algebraic characterization of congruence preservation

Abbrev: \(CP = \) congruence preserving

\[f \text{ CP on } \langle \mathbb{N}, + \rangle \iff f \text{ infinite } \mathbb{Z}-\text{linear combination of binomial polynomials satisfying some conditions} \]

- On \(\mathbb{Z}, \mathbb{Z}_p \) with + and \(\times \): similar to \(\mathbb{N} \)
- On \(\langle \mathbb{N}, \times \rangle \): much simpler characterization

Theorem

\[f : \mathbb{N} \rightarrow \mathbb{N}; \]

\[f \text{ CP on } \langle \mathbb{N}, \times \rangle \]

\[f(x) = f(1) \times x^k, \text{ with } k \in \mathbb{N} \]
Algebraic characterization of congruence preservation

Abbrev: CP = congruence preserving

\[f \text{ CP on } \langle \mathbb{N}, + \rangle \iff f \text{ infinite } \mathbb{Z}\text{-linear combination of binomial polynomials satisfying some conditions} \]

- On \(\mathbb{Z}, \mathbb{Z}_p \) with + and \(\times \): similar to \(\mathbb{N} \)
- On \(\langle \mathbb{N}, \times \rangle \): much simpler characterization

Theorem

\[f : \mathbb{N} \rightarrow \mathbb{N}; \]

\[f \text{ CP on } \langle \mathbb{N}, \times \rangle \iff f(x) = f(1) \times x^k, \text{ with } k \in \mathbb{N} \]
Algebraic characterization of congruence preservation

Abbrev: CP = congruence preserving

\[f \text{ CP on } \langle \mathbb{N}, + \rangle \iff f \text{ infinite } \mathbb{Z}\text{-linear combination of binomial polynomials satisfying some conditions} \]

- On \(\mathbb{Z}, \mathbb{Z}_p \) with \(+\) and \(\times\): similar to \(\mathbb{N}\)
- On \(\langle \mathbb{N}, \times \rangle\): much simpler characterization

Theorem

\[f : \mathbb{N} \longrightarrow \mathbb{N}; \]

\[f \text{ CP on } \langle \mathbb{N}, \times \rangle \]

\[f(x) = f(1) \times x^k, \text{ with } k \in \mathbb{N} \]
Congruence preservation on a non commutative algebras

\[f \text{ CP on } \langle \mathbb{N}, \times \rangle \iff f(x) = f(1) \times x^k, \ k \in \mathbb{N}. \]

Theorem

On the algebra of words with concatenation, \(S = \langle \Sigma^, \cdot \rangle \)*
\[f \text{ CP } \iff f : x \mapsto w_0xw_1xw_2 \cdots xw_k, \]
\[k \in \mathbb{N}, \ w_0, w_1, \ldots, w_k \in \Sigma^*. \]

Non trivial proof using restricted morphisms.

affine complete algebras: for all \(f, \) \(f \text{ CP } \iff f \text{ polynomial.} \)
\(S, \langle \mathbb{N}, \times \rangle \) are affine complete.
\(\langle \mathbb{N}, + \rangle \) is not affine complete
Outline

1. Original problem
2. Characterize Congruence Preservation Algebraically
3. Characterize Congruence Preservation via Lattice Closure
4. More on Algebras, Congruence preservation, Lattice closure
5. Case of \mathbb{Z}
Theorem (CGG14)

Algebra $\mathcal{N} = \langle \mathbb{N}, + \rangle$, $f : \mathbb{N} \rightarrow \mathbb{N}$, then \((1) \iff (2) \)

\((1) \) f CP on \mathcal{N} and, $\forall a \in \mathbb{N}$, $f(a) \geq a$,

\((2) \) for every recognizable subset L of \mathcal{N} the smallest lattice of subsets of \mathbb{N} containing L and closed under $x \mapsto x - 1$ is also closed under f^{-1}.

- What about other algebras ??
Is congruence preservation characterized via lattice closure for any algebra?

Theorem ((1) ⇐⇒ (2) on $\mathcal{N} = \langle \mathbb{N}, + \rangle$)

(1) f CP on \mathcal{N} and, $\forall a \in \mathbb{N}, f(a) \geq a$,
(2) for every recognizable subset L of \mathcal{N} the smallest lattice of subsets of \mathbb{N} containing L and closed under $x \mapsto x - 1$ is also closed under f^{-1}.

Can be generalized to arbitrary algebras?

Theorem ((1) ⇐⇒ (2) on $\mathcal{A} = \langle A, \mathcal{O} \rangle$)

(1) f CP on \mathcal{A} and, something else,
(2) for every recognizable subset L of \mathcal{A} the smallest lattice $\mathcal{L}_A(L)$ of subsets of A containing L and closed under some operations is also closed under f^{-1}.
Recognizability in algebra $\mathcal{A} = \langle A, \mathcal{O} \rangle$

Definition

L is recognizable iff $L = \varphi^{-1}(F)$ with $\varphi : A \to M$ morphism, M a finite algebra with same signature as \mathcal{A}, $F \subset M$.

Examples

- $\langle \mathbb{N}, + \rangle$-recognizable: finite sets, $1 + 3\mathbb{N}$, $\{2\} \cup \{\{5, 7\} + 8\mathbb{N}\}$, $F \cup \{F' + k\mathbb{N}\}$ (general form)

- $\langle \mathbb{Z}, + \rangle$-recognizable: $F + k\mathbb{Z}$ (general form)

- $\langle \Sigma^*, \cdot \rangle$-recognizable: regular sets.
Recognizability depends on signature

\[\langle \mathbb{N}, + \rangle \text{-recognizable} \implies \langle \mathbb{N}, \times \rangle \text{-recognizable.} \]
\[\langle \mathbb{N}, + \rangle \text{-recognizable} \nLeftarrow \langle \mathbb{N}, \times \rangle \text{-recognizable.} \]

\((1 + 3\mathbb{N})\) is \(\langle \mathbb{N}, +, \times \rangle\)-recognizable, but \(\{2^n \mid n \in \mathbb{N}\}\) is \(\langle \mathbb{N}, \times \rangle\)-recognizable and not \(\langle \mathbb{N}, + \rangle\)-recognizable.

- \(\langle \mathbb{N}, \times \rangle\)-recognizables:
 1. all \(\langle \mathbb{N}, + \rangle\)-recognizables \((L = F \cup \{F' + k\mathbb{N}\})\),
 2. all finite unions \(p_1^{L_1} \cdots p_n^{L_n}\), with \(p_1, \ldots, p_n\) primes in \(P\), \(L_1, \ldots, L_n\) \(\langle \mathbb{N}, + \rangle\)-recognizable.
 3. suitably completed
Generalization to algebra: $\mathcal{N}_x = \langle \mathbb{N}, \times \rangle$

Theorem ((1) \iff (2) on $\mathcal{N}_x = \langle \mathbb{N}, \times \rangle$)

(1) f CP on \mathcal{N}_x and, $\forall a \in \mathbb{N}$, a divides $f(a)$,

(2) for every recognizable subset L of \mathcal{N}_x the smallest lattice $\mathcal{L}_{\mathcal{N}_x}(L)$ of subsets of \mathbb{N} containing L and closed under division is also closed under f^{-1}.

Division: $S \subset \mathbb{N}$, $a \in \mathbb{N}$, let $S/a = \{x/a | x \in S \text{ and } x/a \in \mathbb{N}\}$

\[
\begin{align*}
(9 + 5\mathbb{N})/5 &= \emptyset \\
(9 + 5\mathbb{N})/4 &= \{9, 14, 19, 24, 29, 34, 39, 44, \ldots \}/4 \\
&= \{6, 11, 16 \ldots \} = 6 + 5\mathbb{N}
\end{align*}
\]
Tentative Generalization to Algebra $\mathcal{A} = \langle A, \mathcal{O} \rangle$

$\text{gen}(a, A, \mathcal{O}) = \text{set generated by } a \text{ in } A$.

- $\text{gen}(a, \mathbb{N}, +) = \{a + n \mid n \in \mathbb{N}\}$
- $\text{gen}(a, \mathbb{N}, \times) = \{a \times n \mid n \in \mathbb{N}\}$
- Words with concatenation:
 $\text{gen}(a, \Sigma^*, \cdot) = \{w \cdot a \cdot w' \mid w, w' \in \Sigma^*\}$

Theorem (1) \iff (2) ???

1. f CP on \mathcal{A} and, $\forall a \in A$, $f(a) \in \text{gen}(a, A, \mathcal{O})$
2. For every recognizable subset L of \mathcal{A} the smallest lattice $\mathcal{L}_A(L)$ of subsets of A containing L and closed under o^{-1} for all $o \in \mathcal{O}$ is also closed under f^{-1}.

Characterize Congruence Preservation via Lattice Closure
Affine complete algebras

Theorem

In algebra $\mathcal{A} = \langle A, \mathcal{O} \rangle$, if $f : A \rightarrow A$ defined by a polynomial and L recognizable, then $f^{-1}(L)$ recognizable.

Algebra $\mathcal{A} = \langle A, \mathcal{O} \rangle$ is affine complete if:

for all f, f CP \iff f polynomial.

PROBLEM: $f^{-1}(L)$ in lattice??

WHAT ELSE??
I. Guessarian

Outline

1. Original problem

2. Characterize Congruence Preservation Algebraically

3. Characterize Congruence Preservation via Lattice Closure

4. More on Algebras, Congruence preservation, Lattice closure

5. Case of \mathbb{Z}
To which structures does the lattice closure characterization of CP extend?

- Goal: generalize the algebraic characterization of congruence preservation via lattices to algebras beyond \mathbb{N}
- stable preorder preservation characterized via closure of lattices.
- congruence preservation characterized via closure of boolean algebras.
- except in some cases
Stable Preorder vs Congruence Preservation on \(\mathcal{A} = \langle A, \mathcal{O} \rangle \)

Theorem

1. \(f \) **SPP** on \(\mathcal{A} \) and, \(\forall a \in A, f(a) \in \text{gen}(a, A, \mathcal{O}) \)
2. for every subset \(L \) of \(\mathcal{A} \) the smallest **complete lattice** \(\mathcal{L}_A^\infty(L) \) of subsets of \(A \) containing \(L \) and closed under \(o^{-1} \) for all \(o \in \mathcal{O} \) is also closed under \(f^{-1} \).

Theorem

1. \(f \) **CP** on \(\mathcal{A} \) and, \(\forall a \in A, f(a) \in \text{gen}(a, A, \mathcal{O}) \)
2. for every subset \(L \) of \(\mathcal{A} \) the smallest **complete boolean algebra** \(\mathcal{B}_A^\infty(L) \) of subsets of \(A \) containing \(L \) and closed under \(o^{-1} \) for all \(o \in \mathcal{O} \) is also closed under \(f^{-1} \).
Sufficient conditions to characterize Congruence Preservation via Lattice closure

If \(f : A \rightarrow A \), and \(\mathcal{A} = \langle A, \mathcal{O} \rangle \)

- residually finite algebra
- containing a group operation,

then congruence preservation is characterized via lattices

\[f \text{ CP and } \forall a \in A, \ f(a) \in \text{gen}(a, A, \mathcal{O}) \]

for every recognizable \(L \), the smallest lattice \(\mathcal{L}_{\mathcal{A}}(L) \) of subsets of \(A \) containing \(L \) and closed under \(o^{-1} \) for all \(o \in \mathcal{O} \) is also closed under \(f^{-1} \).
I. Guessarian

Outline

1. Original problem
2. Characterize Congruence Preservation Algebraically
3. Characterize Congruence Preservation via Lattice Closure
4. More on Algebras, Congruence preservation, Lattice closure
5. Case of \mathbb{Z}
$\mathcal{Z} = \langle \mathbb{Z}, + \rangle$

Theorem

$\mathcal{Z} = \langle \mathbb{Z}, + \rangle, \ f : \mathbb{Z} \rightarrow \mathbb{Z} \iff \begin{array}{c} 1 \iff 2 \iff 3 \iff 4 \end{array}$

1. f is CP on \mathcal{Z}.
2. $|x - y|$ divides $|f(x) - f(y)|$ for all $x, y \in \mathbb{Z}$.
3. For every recognizable subset L of \mathcal{Z}, the lattice $\mathcal{L}_{\mathcal{Z}}(L)$ is closed under f^{-1}.
4. $f(x) = \sum_{n \in \mathbb{N}} a_n P_n(x)$ where, for all $2 \leq \ell \leq n$, ℓ divides a_n.

Similar theorem for $\mathcal{Z} = \langle \mathbb{Z}, +, \times \rangle$ and $\mathcal{Z}_p = \langle \mathbb{Z}_p, +, \times \rangle$
moral of the story: CP functions correspond to functions definable in terms of the algebra operations... in general ...

affine complete non commutative algebras different from the free monoid?