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Abstract

We present a rigorous study of the classical scattering for any two-body inter-particle potential of
the form v(r) = g/rγ , with γ > 0, for repulsive (g > 0) and attractive (g < 0) interactions. We first
derive an explicit series expansion of the deflection angle in the impact factor b. Then, we study carefully
the modifications of the results when a regularization (softening) is introduced in the potential at small
scales. We check and illustrate all the results with the exact integration of the equations of motion.

1 Introduction

Scattering of particles are present in many physical processes in a broad area of Physics, as atomic (e.g. [?]),
plasma (e.g. [?]), astrophysics (e.g. [?]), active matter (e.g. [?]), etc. On this subject, a seminal paper was
published by Ernest Rutherford in 1911 [?], in which he studied the deflection of α and β particles by an
atom. He calculated analytically the angle of deflection of the incident particles with the nucleus. His
calculations, compared to experimental data (see [?] for references), permitted to conclude that the atom is
basically “empty” with a charge concentrated in the center, surrounded by the electron cloud, which lead to
the “planetary” model of the atom.

These two-body collisions play also a central role in collisional processes in Coulomb plasmas (see e.g.
[?]), in self-gravitating systems (as pointed out by Chandrasekhar in a seminal paper [?]), and, in general, in
systems of particles with power law interactions [?, ?]. In order to write kinetic equations which describe the
evolution of such systems, it is necessary to solve the two-body problem, i.e. to compute the final velocities
after a scattering event. For example, let us consider for simplicity the Boltzmann equation which describes
the evolution of the one-point distribution function f(r,v; t) of a system of particles interacting with the
inter-particle potential

v(r) =
g

rγ
. (1)

For simplicity, we will write the Boltzmann equation for a spatially homogeneous and isotropic three dimen-
sional system, in which collective effects are neglected. In this case, it has the simple form

∂ϕ

∂t
(v1; t) = 2π

∫
dv2

∫ ∞
0

db b uG(v′2,v
′
1,v2,v1; t), (2)

where ϕ(v; t) is the velocity probability function and

G(v′2,v
′
1,v2,v1; t) = ϕ(v′2; t)ϕ(v′1; t)− ϕ(v2; t)ϕ(v1; t), (3)

v1 and v2 are the velocities of the particles before the collision, v′1 and v′2 the velocities of the particles after
the collision, b the impact factor and u the modulus of the relative velocity, i.e.

u = ‖v2 − v1‖. (4)
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Figure 1: Collision in the center of mass frame. The black dot represents the fictitious (reduced) particle,
and the white dot the center of mass of the particles, which is at rest.

Despite the apparent simplicity of Eq. (??), the main difficulty consists in computing the final velocities v′i
as a function of the initial ones vi (i = 1, 2). In the center of mass frame (see Appendix ?? for details), the
angle φ (see Fig. ??) can be calculated as a function of the impact factor b using the formula

φ(b) =

∫ ∞
rmin

(b/r2)dr√
1− (b/r)2 ∓ (b0/r)γ

, (5)

where rmin is the largest root of the denominator. The “minus” sign in the denominator corresponds to a
repulsive interaction while the “plus” sign to an attractive one and b0 is the characteristic scale:

b0 =

(
2|g|
mu2

)1/γ

. (6)

In the case of Coulomb and gravitational interaction (γ = 1), there exists an analytical expression of the
deflection angle, the Rutherford formula [?]: for the repulsive case

φ(b/b0) = arctan

(
2b

b0

)
; (7)

and for the attractive one

φ(b/b0) = π − arctan

(
2b

b0

)
. (8)

In the case of different interactions, the process is well known only on the qualitative level or in particular
cases (see e.g. [?, ?, ?, ?, ?, ?, ?]). In the cases in which explicit solutions are not possible to compute, it is
natural to perform an asymptotic expansion in the adimensional variable b/b0. Inspecting for example the
gravitational case (??), we see that it is possible to write the solution in the form of two asymptotic series:
one in powers of b/b0, valid for b/b0 6 1/2, and another one in powers of b0/b, valid for b/b0 > 1/2. It is
then natural to ask the following questions

1. Is it possible to write, for γ 6= 1, an expression in the form of a power series of Eq. (??) for small b/b0
and for large b/b0?

2. If the answer of the previous question is positive, what are the exponent(s) of the power series?

3. In the case in which the answer to the previous question is positive, do the coefficients of these power
series have simple analytical expressions?

4. If so, do the convergence radius of the two power series for small and large b/b0 match?

It is not trivial to answer the questions listed above. A naive expansion in power series of b/b0 of Eq. (??),
gives in many cases divergent integrals, which indicates that the series are not in powers of b/b0. Moreover,
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special care should be given for attractive interactions and γ > 2, where the centrifugal barrier could not be
sufficient to prevent particles to crash.

In the present paper we will give the answers to the previous questions. We will derive the full asymptotic
power series, one valid for small b/b0, and another one for large b/b0, which extend the result [?] valid for
γ > 2, and we will show that their convergence radius match. Morevover, we will study how the trajectories
change when introducing a regularization at small scales in the potential.

2 Summary of the results

2.1 Pure power-law interactions

In this paper we have derived the full asymptotic series solution of Eq. (??) (in the cases in which it well-
defined) for both attractive and repulsive potentials. We first denote

β = (γ/2)1/γ |1− 2/γ| 2−γ2γ . (9)

Theorem 1 We assume repulsive interactions, that is the minus sign in Eq. (??) with an arbitrary γ > 0.
(i) For b > βb0, we have

φ(b/b0) =
√
π

+∞∑
n=0

(−1)nΓ((nγ + 1)/2)

2n!Γ(1 + n(γ/2− 1))
(b0/b)

γn. (10)

(ii) For b < βb0, we have

φ(b/b0) =

+∞∑
n=0

αn(b/b0)2n+1, (11)

where, for n ∈ N,

αn = αn(γ) =
(−1)n

√
π

(2n+ 1)n!

Γ (1 + (2n+ 1)/γ)

Γ (1/2− n+ (2n+ 1)/γ)
.

Theorem 2 We assume attractive interactions, that is the plus sign in Eq. (??).
(i) For b > βb0 and γ > 0 arbitrary, we have

φ(b/b0) =
√
π

+∞∑
n=0

Γ((nγ + 1)/2)

2n!Γ(1 + n(γ/2− 1))
(b0/b)

γn. (12)

(ii) For b < βb0, γ < 2 and if

γ 6∈
{

2
2k + 1

2`+ 1
, k, ` ∈ N, k < `

}
,

we have

φ(b/b0) =

+∞∑
n=0

an(b/b0)
2γ

2−γ n +

+∞∑
q=0

cq(b/b0)2q+1, (13)

where, for q ∈ N,

cq = (−1)q
(−1/2

q

)
× Γ((2q + 1)/γ + 1)Γ((q + 1/2)(1− 2/γ))

(2q + 1)Γ(q + 1/2)
(14)

=
Γ((2q + 1)/γ + 1)Γ((q + 1/2)(1− 2/γ))√

π(2q + 1)q!
,

a0 =
π

2− γ , (15)

3



and, for n > 1,

an = −
√
πΓ
(
γn
γ−2 + 1

2

)
2nΓ

(
2n
γ−2

)
n!

. (16)

(iii) If γ = γk,` = 2 2k+1
2`+1 ∈]0, 2[ for some k, ` ∈ N with k < `, then

φ(b/b0) =
∑

n∈N s.t.
1+n 2k+1

k−` 6∈−2N

an(γk,`)(b/b0)
2γk,`

2−γk,`
n

+
∑

q∈N s.t.

(2q+1) k−`2k+1 6∈−N

cq(γk,`)(b/b0)2q+1

+
∑

n,q∈N s.t.
(2q+1)(`−k)=n(2k+1)

√
π(−1)q(b/b0)2q+1

2nΓ(−n− q − 1/2)n!q!

(
2 ln(b/b0) (17)

+
Γ′

Γ
(−n− q − 1/2)

2

γk,`
+

2

γk,`
γ0 −Hq −

2− γk,`
γk,`

(Hn + 1/n)

)
.

Here, HN =
∑N
p=1 1/p is the harmonic sum of order N and γ0 is Euler’s constant.

(iv) For γ > 2, particles crash in a finite time if b 6 βb0. If b > βb0, we have

φ

(
b

b0

)
=

π

2
√

1− b20/b2
if γ = 2 and b > βb0 = b0, (18a)

φ

(
b

b0

)
≈ − ln(1− βb0/b)

2
√
γ − 2

if γ > 2 and b ≈ βb0. (18b)

Remark 1 Statement (i) of Theorems ?? and ?? are due to [?] for γ > 2. The formulas extend to arbitrary
γ positive.

Remark 2 In Eq. (??) (i), the coefficient is the same as in Eq. (??) (i), up to the (−1)n factor.

Remark 3 In the statement of Theorem ?? when γ < 2, we emphasize that in the generic (ii) case γ 6∈
{2 2k+1

2`+1 , k, ` ∈ N, k < `}, which we call the unexceptional cases, then φ(b/b0) is the sum of two power series
with different exponents, one does not depend on γ, the other one does. In particular, for a given γ, if we
want a first or second order expansion of φ for b/b0 � 1, we need to order the exponents in Eqs. (??) and
(??). For instance, noticing that 2γ/(2 − γ) < 1 as soon as γ < 2/3, for hard collisions (b/b0 � 1), we
obtain:

φ =
π

2− γ +



Γ(1 + 1/γ)Γ(1/2− 1/γ)√
π

b/b0 + o(b/b0) if 2/3 < γ < 2,

3

4
(b/b0) ln(b0/b) + o((b/b0) ln(b0/b)) if γ = 2/3,

−
√
πΓ(1/2− γ/(2− γ))

Γ(2/(2− γ))
(b/b0)2γ/(2−γ) + o((b/b0)2γ/(2−γ)) if 0 < γ < 2/3.

(19)

In the exceptional cases (iii), then logarithmic corrections appear (see Eq. (??)).

2.2 Hard collisions with regularized interactions

We have calculated the modification of the above results, at first order and for hard collisions, when a
regularization is applied at small scales in the potential (which is a standard procedure, e.g. in molecular
dynamics simulations). In this case the angle φ is given by the formula

φε(b, b0) =
b

rmin

∫ 1

0

dx√
1− ( bx

rmin
)2 ± bγ0

εγ V( rminεx )
. (20)
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In the conclusion section we will give an example of the use of these results. In order to be able to make
explicit calculations, we will consider two regularizations commonly used in the astrophysical literature (see
e.g. [?, ?]), the Plummer potential

vPl(r, ε) =
g

(r2 + ε2)
γ/2

(21)

and the compact softening

vco(r, ε) =


g

rγ
if r > ε

g

εγ
v (r/ε) if 0 6 r 6 ε,

(22)

where v is a function on [0, 1] such that v(1) = 1. For these regularized potentials, we do not expect series
expansions with analytically simple coefficients. We have however been able to compute the following second
order expansions (the explicit coefficients are given in Section ??):

Theorem 3 We consider repulsive interactions, that is the minus sign in Eq. (??).
(i) For the Plummer softening, when ε < b0 are fixed, we have, for small b/b0,

φε(b, b0) = BPl
ε/b0

(γ)(b/b0) +O((b/b0)3),

where the coefficient BPl
ε/b0

(γ) is given in Eq. (??) in subsection ??.

(ii) For the compact softening, when ε < b0 are fixed and for small b/b0, the deflection angle φε is not affected
by the softening, hence we have the same asymptotic behavior as in Eq. (??), namely

φε(b, b0) = α1(γ)(b/b0) +O((b/b0)3).

(iii) For the Plummer (resp. compact) softening, when ε > b0 (resp. ε > b0(max v)1/γ) and b/ε small, we
have

φε(b, b0) =
π

2
− B̃ε/b0(γ)b/ε+ o(b/ε),

where the coefficient B̃ε/b0(γ) is given in Eq. (??) in Subsection ?? (resp. Eq. (??) in Subsection ??).

Theorem 4 We consider attractive interactions, that is the plus sign in Eq. (??) and either the Plummer
or the compact softening. Let us fix ε > 0 and b0 > 0 arbitrary. Then, for b/ε small, we have

φε(b, b0) =
π

2
+ Cε/b0(γ)b/ε+ o(b/ε),

where Cε/b0(γ) is given in Eq. (??) in Subsection ??.

Remark 4 Let us point out that the statement of Theorem ?? holds true independently whether ε/b0 is small
or not.

Proposition 1 We consider the case γ > 2 with either the Plummer or the compact softening. Then, there
exists a threshold ε∗(b0, γ), depending only on b0 and γ, such that

• if ε 6 ε∗(b0, γ), then the angle φε diverges to +∞ for some critical impact factor b;

• if ε > ε∗(b0, γ), then φε is a smooth function of b/b0 for b/b0 > 0.

For the Plummer softening, we have

εPl
∗ (b0, γ) = b0

(
γ − 2

γ + 2

) 1
2 + 1

γ

, (23)

and the expression of ε∗(b0, γ) in the case of compact softening (see Eq. (??)) is slightly more involved but
still proportional to b0.
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2.3 Numerical checking and discussion

First of all, we show in Fig. ?? the truncated series expansions Eqs. (??), (??), (??) and (??) for the pure
power-law case, for several values of γ: γ = 1/2 and γ = 7/4, for repulsive and attractive interactions and
γ = 2/3 and γ = 6/7 for attractive interactions, the ”exceptional case”, see Eq. (??). We plot the numerical
solution (“exact”) obtained by numerical integration of Eq. (??) and the truncated series with different
number of terms, showing the convergence towards the “exact” solution. In the inset we show the relative
error of the numerical solution and the series with the largest number of terms (nmax) plotted in the main
figure. We observe, as expected, that the maximum difference between the two solutions is at the convergence
radius of the series, denoted by a vertical dotted line. We observe that the truncation of the respective series
to the tenth term provides an excellent approximation for both b/b0 ∈ [0, β[ and b/b0 ∈]β,+∞[.

It is interesting to study the different kind of trajectories inspecting the first terms of the asymptotic
series. In the case of repulsive potentials, the maximum value that the angle φ can take is π/2, which
corresponds to particles coming back in their original direction. In the case of attractive potentials, different
cases arise depending on the value of γ:

• For 0 < γ < 2, the leading order value of φ for b/b0 � 1 is π/(2 − γ). A number nloops of loops may
appear in the trajectory, that can be calculated by using the formula:

nloops = floor

(
1

2− γ

)
. (24)

A typical trajectory for γ close to 2 is illustrated in Fig. ??, with γ = 1.95 and b/b0 = 0.6β, for which
nloops = 12.

• For γ > 2, we have formation of pairs for impact factors smaller than a critical one. For impact factors
exactly at the critical one there is the phenomena of orbiting, in which the particles are trapped into
a circular orbit. For larger impact factors the collision is well behaved. We illustrate this behavior in
Fig. ??.

The numerical checking for regularized potentials can be found in Section ??.

3 Series expansions for pure power-law potentials

For the general case γ 6= 1, we do not expect to be able to derive an explicit expression through elementary
functions for the angle φ as a function of b/b0, as we did for γ = 1 in Eqs. (??) and (??). However, it is
possible to express the integral (??) as a sum of a series. It is important to note that the angle φ is a function
of the ratio of b and b0 (see Eq. (??) in Appendix ??). We will seek therefore for power series of (b/b0)σ for
some suitable σ, not necessarily integer. As a first step, we perform the substitution r = rmin/x, 0 < x 6 1,
in Eq. (??), yielding

φ(b/b0) =
b

rmin

∫ 1

0

dx√
1− (bx/rmin)2 ∓ (b0x/rmin)γ

. (25)

We recall that the “minus” sign in the denominator corresponds to a repulsive interaction while the “plus”
sign to an attractive one. We will see that it is necessary to use two power series: one valid for the weak
scattering regime (b � b0) and another one for the strong scattering regime (b � b0). We will see that the
radius of convergence of both series match, and therefore the solution is fully described by the two power
series.

The main difficulty in finding the power series is that a naive Taylor expansion in b/b0 in Eq. (??) does
not work. We shall proceed by first identifying an appropriate small parameter, which we call generically
δ, and make a first Taylor expansion in δ; then, we expand δ in terms of b/b0 and substitute in the first
expansion. In the following we detail the procedure for each case.
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Figure 2: Top: repulsive interaction, with γ = 1/2 (left) and γ = 7/4 (right). Middle: attractive interaction
with the same values of γ. Bottom: two “exceptional” attractive cases (see Eq. (??)), with γ = 2/3 (left)
and γ = 6/7 (right). The integer n∗ corresponds to the number of terms summed in the first series, the
number of terms summed in the second series is chosen such that the final exponents are as close as possible.
Inset: relative error for maximal n∗.
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Figure 3: Near-collision in the center of mass frame for γ = 1.95 and b/b0 = 0.6β. The dotted line is the axis
of symmetry of the trajectory. The square in each plot represents the frame of the next plot (which have to
be read from left to right and top to down). The first half part of the trajectory — from x = +∞ to the
axis of symmetry — is plotted in red, the other half of the trajectory in green. The points of intersection of
the trajectory lie on the axis of symmetry.
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Figure 4: A trajectory in the center of mass frame for attractive interaction γ = 2.05 and b/b0 = β+1.4×10−6

(only a portion of the trajectory is plotted). The first half part of the trajectory — from x = +∞ to the
axis of symmetry — is plotted in red, the other half of the trajectory in green. The points of intersection of
the trajectory lie on the axis of symmetry.

3.1 The regime of soft collisions for attractive and repulsive interactions (proof
of Theorem ?? (i) and ?? (i))

The regime of soft collisions corresponds to the case in which the scale b0 is small compared to the impact
factor b. In this regime the trajectories of the particles are weakly perturbed. In this Subsection, γ is any
positive number. In this case the appropriate small parameter is

δ = (b0/rmin)γ = ∓[(b/rmin)2 − 1].

From Eq. (??) we obtain
rmin
b

φ(b/b0) =

∫ 1

0

dx√
1− x2 ∓ δ(xγ − x2)

.

We proceed in two steps: we first prove that φ is a power series in (b0/b)
γ for b sufficiently large, and then

identify the coefficients in the expansion.
We want an expansion of the above integral using that δ is a small parameter. It is then natural to write

it under the form ∫ 1

0

dx
√

1− x2
√

1∓ δ xγ−x2

1−x2

and to expand the second square root in power series. This is possible since the expression (xγ−x2)/(1−x2)
is bounded on [0, 1] (for γ > 0) and this implies that (rmin/b)φ(b/b0) is actually a power series in δ. Moreover,
since

b

rmin
=
√

1± (b0/rmin)γ =
√

1± (b0/b)γ(b/rmin)γ ,

it is easy to show that b/rmin, thus also δ = ±((b/rmin)2 − 1), is itself a power series of the variable (b0/b)
γ

(with positive radius). By substitution and Cauchy product, φ is a power series in (b0/b)
γ for b sufficiently

large, that is there exists some coefficients κn(γ), n ∈ N, such that, for b large enough,

φ =

+∞∑
n=0

κn(γ)(b0/b)
γn.
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In addition, from the above computation, we know that each coefficient κn(γ) is a finite sum of the type

n∑
k=0

C(n, k)

∫ 1

0

(
xγ − x2

1− x2

)k
dx√

1− x2
,

the integrals coming from the expansion of the integral (rmin/b)φ in powers of δ, and the coefficients C(n, k)
of the Cauchy products and the substitution. In particular, each coefficient κn(γ) is an analytic function of
γ in (0,+∞) (and even in the half-space {Re > 0}).

We now identify the coefficients κn(γ) by considering the two expansions valid for γ > 2 and b large,

φ =
√
π

+∞∑
n=0

Γ((nγ + 1)/2)

2n!Γ(1 + n(γ/2− 1))
(∓(b0/b)

γ)n =

+∞∑
n=0

κn(γ)(b0/b)
γn,

where the first equality, valid for γ > 2, comes from [?]. By uniqueness of the power series expansions, we
deduce that if γ > 2, then for all n ∈ N,

κn(γ) = (∓1)n
√
π

Γ((nγ + 1)/2)

2n!Γ(1 + n(γ/2− 1))
. (26)

Since κn is an analytic function in (0,+∞) and both γ 7→ Γ((nγ + 1)/2) and γ 7→ 1/Γ(1 + n(γ/2 − 1)) are
analytic in (0,+∞), we deduce from the principle of permanence for analytic functions that Eq. (??) holds
true for any γ > 0.

We may now compute the radius of convergence. If γ > 2, this has been carried out in [?] using the
generalized Stirling formula Γ(s+ 1) ≈ (s/e)s

√
2πs when s→ +∞, showing the convergence of the series for

b0/b < 1/β. The generalization to γ 6 2 follows from the same type of computations, combined with Euler’s
reflection formula Γ(s)Γ(1− s) = π/ sin(πs). This proves Eq. (??) and Eq. (??).

3.2 The regime of hard collisions for repulsive interactions (proof of Theorem
?? (ii))

This corresponds to the minus sign in Eq. (??). In this Subsection again, γ is any positive number. It is
then easy to check that rmin ≈ b0 for small b/b0. In this case the appropriate small parameter δ is

δ = (b/rmin)2 ∼ (b/b0)2 � 1.

Substituting (b0/rmin)γ = 1− δ in Eq. (??), we obtain the expression

φ(b/b0) =
√
δ

∫ 1

0

dx√
1− xγ + δ(xγ − x2)

,

Since the quantity (xγ − x2)/(1− xγ) is bounded on [0, 1], the above integral is here again a power series in
δ: ∫ 1

0

dx√
1− xγ + δ(xγ − x2)

=

+∞∑
p=0

(−1/2

p

)
δpIp, (27)

where the integrals

Ip =

∫ 1

0

(xγ − x2)p

(1− xγ)p+1/2
dx,

p ∈ N, may be expressed, after using the substitution xγ = cos2(ϑ), with the help of the Γ function:

I0 =

√
πΓ (1 + 1/γ)

Γ (1/2 + 1/γ)
, I1 =

2Γ(1 + 3/γ)

3Γ(−1/2 + 3/γ)
− 2Γ(1 + 1/γ)

γΓ(1/2 + 1/γ)
, etc.

10



Furthermore, by definition of rmin, we have

√
δ =

b

b0
(1− δ)1/γ . (28)

This implicit relation provides
√
δ as the sum of a power series in b/b0, i.e.,

√
δ =

∞∑
n=0

λn(b/b0)2n+1. (29)

The coefficients λn can be calculated inserting Eq. (??) in Eq. (??). We claim therefore that there exists
some coefficients αn (n ∈ N), depending only on n and γ, such that

φ(b/b0) =

+∞∑
n=0

αn(b/b0)2n+1, (30)

with

αn =
(−1)n

√
π

(2n+ 1)n!

Γ (1 + (2n+ 1)/γ)

Γ (1/2− n+ (2n+ 1)/γ)
.

The form of αn can be verified by calculating the coefficients λn and inserting Eq. (??) in Eq. (??). The
computation of the convergence radius of this series follows from straightforward computations involving, as
in [?], the generalized Stirling formula and (for γ > 2) Euler’s reflection formula. This proves Eq. (??).

3.3 The regime of hard collisions for attractive interactions (proof of Theorem
?? (ii), (iii) and (iv))

We focus now on the plus sign in Eq. (??) in the regime b� b0. As we shall see, the situation is drastically
different since the qualitative behavior strongly depends on γ. In this section, we wish to give, for b � b0,
a series expansion of φ analoguous to (??). For this regime, we shall consider the small parameter δ =
(rmin/b)

2 � 1 and substitute (b0/rmin)γ = δ−1 − 1 in Eq. (??) to obtain the expression

φ(b/b0) =

∫ 1

0

dx√
xγ − x2 + δ(1− xγ)

, (31)

which tends, as δ → 0, to
∫ 1

0
(xγ − x2)−1/2dx, which is finite only for 0 < γ < 2. This already leads us to

study separately the cases γ < 2 and γ > 2 separately.

3.3.1 The case 0 < γ < 2, γ unexceptional (ii)

We use the change of variables y = xδ−1/γ in Eq. (??), which is adapted to our problem, to deduce

φ(b/b0) = δ
2−γ
2γ

∫ δ−1/γ

0

dy√
yγ − δ2/γ−1y2 + 1− δyγ

.

The idea is now to expand the integrand in power series in δ2/γ−1, arguing as in sections ?? and ??. We
obtain

δ−
2−γ
2γ φ(b/b0) =

∫ δ−1/γ

0

dy√
yγ + 1− δyγ (1− δ2/γ−1H1(y))−1/2,

with H1(y) = y2/(yγ + 1− δyγ). It is elementary to prove that δ2/γ−1H1(y) is increasing in y from 0 to 1,
hence we may Taylor expand

δ−
2−γ
2γ φ(b/b0) =

+∞∑
n=0

(−δ2/γ−1)n
(−1/2

n

)∫ δ−1/γ

0

y2ndy

(yγ + 1− δyγ)n+1/2
,

11



where
(−1/2

n

)
= (
∏n−1
j=0 (−1/2 + j))/n!. The integral may be expressed through the hypergeometric function

(see [?], chapter 15) 2F1 = F :∫ δ−1/γ

0

y2ndy

(yγ + 1− δyγ)n+1/2
=
δ−

2n+1
γ

2n+ 1
F

(
n+ 1/2,

2n+ 1

γ
,

2n+ 1

γ
+ 1, 1− 1/δ

)
,

=
δ−

2n+1
γ

2n+ 1
δn+1/2 2

2− γ F (n+ 1/2, 1, 1− (n+ 1/2)(2− γ)/γ, δ)

+
δ−

2n+1
γ

2n+ 1
δ

2n+1
γ

Γ((2n+ 1)/γ + 1)Γ((n+ 1/2)(1− 2/γ))

Γ(n+ 1/2)

× F
(

2n+ 1

γ
, 1 + (n+ 1/2)(2− γ)/γ, 1 + (n+ 1/2)(2− γ)/γ, δ

)
=
δ−

2n+1
γ

2n+ 1
δn+1/2 2

2− γ F (n+ 1/2, 1, (n+ 1/2)(1− 2/γ) + 1, δ)

+
Γ((2n+ 1)/γ + 1)Γ((n+ 1/2)(1− 2/γ))

(2n+ 1)Γ(n+ 1/2)
(1− δ)− 2n+1

γ ,

by using the functional relation 15.3.8 in [?] and the fact that F (a, b, b, z) = (1− z)−a. These formulas hold
when γ/2 is not of the form (2k+ 1)/(2`+ 1) for some k, ` ∈ N with k < `, since then 1− (n+ 1/2)(2− γ)/γ
is never a nonpositive integer. This is precisely the unexceptional γ’s. Reporting these expressions, we infer

φ(b/b0) = φI(b/b0) + φII(b/b0),

where

φI(b/b0) =
2

2− γ
+∞∑
n=0

(−1)n

2n+ 1

(−1/2

n

)
F (n+ 1/2, 1, (n+ 1/2)(1− 2/γ) + 1, δ)

and

φII(b/b0) = δ
2−γ
2γ

+∞∑
n=0

(−1)n(δ2/γ−1)n
(−1/2

n

)
(1− δ)− 2n+1

γ × Γ((2n+ 1)/γ + 1)Γ((n+ 1/2)(1− 2/γ))

(2n+ 1)Γ(n+ 1/2)
.

In the series φII , we observe that, by definition of δ, we have b/b0 = δ
1
γ− 1

2 (1− δ)−1/γ , thus

δ
2−γ
2γ (δ2/γ−1)n(1− δ)− 2n+1

γ = (b/b0)2n+1.

By using Stirling’s formula and the complement formula, we easily obtain

(−1)n
(−1/2

n

)
Γ((2n+ 1)/γ + 1)Γ((n+ 1/2)(1− 2/γ))

(2n+ 1)Γ(n+ 1/2)
≈ − β−2n−1

γn
√

2− γ sin(π(n+ 1/2)(2− γ)/γ)
,

where β = (γ/2)1/γ(2/γ − 1)
2−γ
2γ (see Eq. (??)). Therefore,

φII(b/b0) =

+∞∑
n=0

(−1)n(b/b0)2n+1

(−1/2

n

)
× Γ((2n+ 1)/γ + 1)Γ((n+ 1/2)(1− 2/γ))

(2n+ 1)Γ(n+ 1/2)
,

which is a power series in b/b0 of radius β.

Let us now turn to φI . The series is very slowly converging, since
(−1/2

n

)
≈ (−1)n+1

√
π/n. In particular,

we know that φ(0+) = a0(γ) = π/(2− γ) and indeed

π

2− γ = φI(0
+) + 0 =

2

2− γ
+∞∑
n=0

(−1)n

2n+ 1

(−1/2

n

)
=

2

2− γ arcsin(1),
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but the remainder
∑+∞
n=N+1

(−1)n

2n+1

(−1/2
n

)
is of order 1/

√
N . If we truncate the series φI , we then have a quite

large error even on the zeroth order term. As a consequence, we shall try to give a power series expansion
of φI in suitable powers of b/b0. We claim that there exist numbers (depending on γ only) an, n ∈ N, such
that

φI(b/b0) =

+∞∑
n=0

an(b/b0)
2γ

2−γ n. (32)

By expanding the hypergeometric function in power series, it is clear that φI(b/b0) is a power series in δ
with positive radius, namely

φI(b/b0) =
2

2− γ
+∞∑
p=0

Apδ
p with Ap =

+∞∑
n=0

dn,p,

where

dn,p =
(−1)n

2n+ 1

(−1/2

n

)
Γ(n+ 1/2 + p)Γ((n+ 1/2)(1− 2/γ) + 1)

Γ(n+ 1/2)Γ((n+ 1/2)(1− 2/γ) + 1 + p)
.

Moreover, δ is related to b/b0 through the formula b/b0 = δ
1
γ− 1

2 (1− δ)−1/γ , or

(b/b0)
2γ

2−γ = δ(1− δ)− 2
2−γ = δ +

2

2− γ δ
2 + . . . =

+∞∑
k=0

(−1)k
(− 2

2−γ
k

)
δk+1

hence, inverting this relation, we see that δ is a power series (with coefficients depending on γ only) of

(b/b0)
2γ

2−γ with positive radius. The result Eq. (??) then follows by substitution.
We wish now to obtain an explicit expression for the coefficients an. The strategy is to equate the

coefficients in the expansions in powers of δ in

φI(b/b0) =

+∞∑
n=0

(
2

2− γ
+∞∑
p=0

dn,pδ
p

)
and φI(b/b0) =

+∞∑
p=0

ap

( +∞∑
k=0

(−1)k
(− 2

2−γ
k

)
δk
)p
,

and then solve the linear, upper triangular, system relating the ap and Ap (through the coefficients dn,p),
the sum over n being performed at the end of the calculation. We have then obtained the formulas Eqs.
(??), (??) and (??), thus proving Eq. (??).

3.3.2 The case 0 < γ < 2, γ exceptional (iii)

It remains to study the case where γ/2 is of the form γk,`/2 = 2k+1
2`+1 , which we shall call exceptional. We

then fix two integers k, ` with 0 6 k < `. The idea will be to pass to the limit in the formula given in Eq.
(??) when γ unexceptional tends to γk,`. Notice that we may write Eq. (??), for γ unexceptional, under the
form

φ(b/b0) =
∑

n∈N s.t.
1+n 2k+1

k−` 6∈−2N

an(b/b0)
2γ

2−γ n +
∑

q∈N s.t.

(2q+1) k−`2k+1 6∈−N

cq(b/b0)2q+1

+
∑

n,q∈N s.t.
(2q+1)(`−k)=n(2k+1)

(
an(b/b0)

2γ
2−γ n + cq(b/b0)2q+1

)
.

Passing to the limit as γ → γk,` = 2(2k+1)
2`+1 in the first two sums is immediate, but we have to pay attention to

the last sum since Γ is infinite at the non-positive integers. We fix some n, q ∈ N such that (2q+ 1)(`− k) =
n(2k + 1) (hence n > 1) and denote

σ = n
γ

2− γ − q −
1

2
→ 0,

13



so that γ − γk,` = σ(2− γk,`)2/(2n) +O(σ2) as σ → 0. It follows that

2q + 1

γ
+ 1 =

2q + 1

γk,`
+ 1− σ(2q + 1)

(2− γk,`)2

2nγ2
k,`

+O(σ2)

= q + 1 + n+
1

2
− σ(2q + 1)

(2− γk,`)2

2nγ2
k,`

+O(σ2)

= q + n+
3

2
− σ 2n

2q + 1
+O(σ2),

since 2n/(2q + 1) = (`− k)/(2k + 1) = (2− γk,`)/γk,`, and that

(q + 1/2)(1− 2/γ) = −n+ σ
2− γ
γ

= −n+ σ
2− γk,`
γk,`

− σ2 (2− γk,`)2

nγ2
k,`

+O(σ3).

Then, by using the formula, for m ∈ N and z → −m,

Γ(z) =
(−1)m

m!

(
1

z +m
+ (Hm − γ0) +O(z +m)

)
,

where Hm =
∑m
j=1 1/j and γ0 = limm→+∞(Hm − lnm) is Euler’s constant, we deduce

cq =
Γ((2q + 1)/γ + 1)Γ((q + 1/2)(1− 2/γ))√

π(2q + 1)q!

= (−1)n
Γ(q + n+ 3/2)− σ 2n

2q+1Γ′(q + n+ 3/2) +O(σ2)
√
π(2q + 1)q!n!

×
(

1

σ(2− γk,`)/γk,` − σ2 (2−γk,`)2
nγ2
k,`

+ (Hn − γ0) +O(σ)

)
(33)

=
(−1)nΓ(q + n+ 3/2)√

π(2q + 1)q!n!σ

γk,`
2− γk,`

+O(1).

Moreover, for n 6= 0, we have 2n/(2− γ) = n+ q + 1/2 + σ, thus

an = −
√
πΓ
(
γn
γ−2 + 1

2

)
2nΓ

(
2n
γ−2

)
n!

= −
√
πΓ (−q − σ)

2nΓ (−n− q − 1/2− σ)n!

=

√
π(1 + σΓ′(−n− q − 1/2)/Γ(−n− q − 1/2) +O(σ2))

2nΓ(−n− q − 1/2)n!

(−1)q

q!σ

(
1− (Hq − γ0)σ +O(σ)

)
(34)

=

√
π(−1)q

2nΓ(−n− q − 1/2)n!q!σ
+O(1).

We may then check that the two singular terms in an and cq cancel out when σ → 0. Indeed, using the
reflection formula, we infer

π

Γ(−q − n− 1/2)
= (−1)q+n+1Γ(q + n+ 3/2),

and combining this with the fact that 2n/(2q+1) = (`−k)/(2k+1) = (2−γk,`)/γk,`, we deduce an+cq = O(1)
as σ → 0. We shall now inspect the terms of order σ0. First, we have

(b/b0)2nγ/(2−γ) = (b/b0)2q+1+2σ = (b/b0)2q+1 + 2σ(b/b0)2q+1 ln(b/b0) +O(σ2).
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Then, going back to Eq. (??) and Eq. (??), we obtain

cq =
(−1)nΓ(q + n+ 3/2)√

π(2q + 1)q!n!σ

γk,`
2− γk,`

− (−1)n√
π(2q + 1)n!q!

Γ′(q + n+ 3/2)

+
(−1)n

n!

Γ(q + n+ 3/2)√
π(2q + 1)q!

(Hn − γ0) +O(σ)

=

√
π(−1)q+1

2nΓ(−n− q − 1/2)n!q!σ
+

(−1)q
√
π

(2q + 1)n!q!Γ(−n− q − 1/2)
× Γ′(−q − n− 1/2)

Γ(−q − n− 1/2)

+

√
π(−1)q+1

2nΓ(−n− q − 1/2)n!q!

2− γk,`
γk,`

(Hn − γ0 + 1/n) +O(σ),

by using the reflection formula and its logarithmic derivative, and

an =

√
π(−1)q

2nΓ(−n− q − 1/2)n!q!σ
+

√
π(−1)q

2nΓ(−n− q − 1/2)n!q!

(
Γ′(−n− q − 1/2)

Γ(−n− q − 1/2)
−Hq + γ0

)
+O(σ).

Therefore, as σ → 0,

an(b/b0)
2γ

2−γ n + cq(b/b0)2q+1

= (b/b0)2q+1

(
an + cq + 2σan ln(b/b0) +O(σ)

)
→

√
π(−1)q(b/b0)2q+1

2nΓ(−n− q − 1/2)n!q!

×
(

Γ′

Γ
(−n− q − 1/2)

2

γk,`
+ γ0 −Hq +

2− γk,`
γk,`

(γ0 −Hn − 1/n) + 2 ln(b/b0)

)
.

This concludes in the exceptional cases.

3.3.3 γ = 2 (iv)

The case γ = 2 allows explicit computation and we see that it is a case where the attractive term is strong
enough to form pairs when b is small. Of course, this will be also the case when γ > 2. Actually, when
γ = 2, the behavior of the expression

W (r) = 1− b2

r2
+
b20
r2

= 1− b2 − b20
r2

depends whether b > b0 or b < b0. If b > b0, then W possesses rmin =
√
b2 − b20 as unique positive zero, and

we have the exact value

φ(b/b0) =

∫ +∞

rmin

(b/r2) dr√
1− r2

min/r
2

=
bπ

2rmin
=

π

2
√

1− b20/b2
. (35)

If b 6 b0, then W > 1 has no zero. This means that the two particles will crash one onto the other in finite
time with a spiraling motion. The integral in the right-hand side of Eq. (??) is then equal to +∞, but the
angle φ has then no geometrical meaning and the picture given in Fig. ?? is then no longer the good one.
The parameter b0 is then a threshold with the property that particles crash as soon as b 6 b0.

3.3.4 γ > 2 (iv)

If γ > 2, the attractive term is strong enough to form pairs for sufficiently small b, and we shall explicit the
threshold. Notice first that when γ > 2, the function W (r) = 1− b2/r2 + 2bγ0/r

γ decreases on (0, r∗(b)] and
increases on [r∗(b),+∞), with

r∗(b) =

(
γbγ0
2b2

) 1
γ−2

.
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Figure 5: Graph of W as a function of r/b0 for different values of b for γ = 5/2 for the attractive case.
Observe that for b = βb0/2 there is no root, b = βb0 is the limiting case with a double root and for b = 2βb0
there is one root.

Since W (r∗(b)) = 1 − b2/r2
∗(b) + bγ0/r

γ
∗ (b) = 1 − (b0/b)

− 2γ
γ−2 [1 − 2/γ](γ/2)−

2
γ−2 , we may then easily check

that if
b > βb0, (36)

where β is defined in (??), then W has a larger positive zero rmin, whereas if b < βb0, the expression W is
positive on (0,+∞), and if b = βb0, the expression W has a double root at r = r∗(βb0) = b0(γ/2−1)1/γ > 0,
where W (r∗(βb0)) = 0. These three behaviors are illustrated in Fig. ??.

When γ → 2+, we have, as expected, β = (γ/2)1/γ (1− 2/γ)
2−γ
2γ = (γ/2)1/γ exp((1/2) (1− 2/γ) ln(1 −

2/γ)) → 1, which is the threshold when γ = 2. If b < βb0, the particles crash in finite time and φ has here
again no physical or geometrical meaning, despite the fact that the integral∫ +∞

0

(b/r2) dr√
1− b2/r2 + bγ0/r

γ
=

∫ +∞

0

dx√
1− x2 + (b0/b)γxγ

,

where rmin has been replaced by 0, converges.
When b = βb0, the reduced particle remain asymptotically trapped on a circular orbit of radius r∗(βb0) >

0. This phenomenon is called in the atomic physics literature orbiting (see e.g. [?]). The angle φ has once
again no physical or geometrical meaning, and∫ +∞

r∗(βb0)

(b/r2) dr√
1− b2/r2 + bγ0/r

γ
= +∞

in view of the fact that 1− b2/r2 + bγ0/r
γ ∼ (r − r∗(βb0))2 for r close to r∗(βb0).

Let us now consider the situation where we take γ > 2 and b slightly larger than βb0, so that one expect
a divergence in the integral φ. We have

φ(b/b0) =

∫ +∞

rmin

b dr

r2
√
Wb(r)

,

with Wb(r) = 1 − b2/r2 + bγ0/r
γ (we have stressed the dependency on b since we are interested in the limit

b → βb0). As b approaches βb0, we have both r∗(b) → r∗(βb0) = b0(γ/2− 1)1/γ > 0 (r∗(b) is the minimum
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for Wb) and rmin → r∗(βb0) (rmin is the largest zero of Wb). In the integral φ, the contributions for r close
to r∗(βb0) will make the integral diverge since we shall have Wb(r) ∼ (r − r∗(βb0))2 (we have a double root
when b = βb0), whereas the contributions for r much larger than r∗(βb0) will remain of order one. As a
consequence, for any small length parameter ` > 0, we have

φ(b/b0) ≈
∫ rmin+`

rmin

b dr

r2
√
Wb(r)

,

and we may then replace Wb(r) by its second order Taylor expansion near r∗(b):

Wb(r) = Wb(r∗(b)) + (r − r∗(b))W ′b(r∗(b)) +
1

2
(r − r∗(b))2W ′′b (r∗(b)) +O((r − r∗(b))3).

Since W ′b(r∗(b)) = 0 and

W ′′b (r∗(b)) =
γ(γ + 1)bγ0
rγ+2
∗ (b)

− 6b2

r4∗(b)
≈ 2(γ − 2)b2

r∗(βb0)4
> 0, (37)

this yields

φ(b/b0) ≈
∫ rmin+`

rmin

br−2 dr/
√
Wb(r∗(b)) + (r − r∗(b))2(W ′′b (r∗(b))/2 +O(r − r∗(b))).

We have Wb(r∗(b)) < 0 < W ′′b (r∗(b)) with Wb(r∗(b)) small but W ′′b (r∗(b)) of order one. The idea is then to
use the substitution

z
√
−Wb(r∗(b)) = (r − r∗(b))

√
W ′′b (r∗(b))/2 +O(r − r∗(b)),

so that the expression in the square root in the integral becomes simply −Wb(r∗(b))(z2 − 1). This yields

φ(b/b0) ≈ b√
−Wb(r∗(b))

∫ zmax

1

r(z)−2 dr/dz√
z2 − 1

dz, (38)

where zmin = 1 and zmax ≈ Cte(`)/
√
−Wb(r∗(b)) � 1 are the corresponding values to rmin and rmin +

` in the z variable. The idea is now that, roughly speaking, r(z) ≈ r∗(b) ≈ r∗(βb0) and dr/dz ≈√
−2Wb(r∗(b))/W ′′b (r∗(b)), which implies

φ(b/b0) ≈ b

r∗(βb0)2

√
2

W ′′b (r∗(b))

∫ zmax

1

dz√
z2 − 1

≈
√

2b2

r∗(βb0)4W ′′b (r∗(βb0))
ln(zmax) ≈ − ln|Wb(r∗(b))|

2
√
γ − 2

,

(39)
in view of Eq. (??) and the fact that zmax ≈ Cte(`)/

√
−Wb(r∗(b)) � 1. Finally, Wb(r∗(b)) = 1 −

(βb0/b)
− 2γ
γ−2 , and we end up with

φ(b/b0) ≈ − ln(1− βb0/b)
2
√
γ − 2

. (40)

For the sake of simplicity, we have included the mathematical details leading to Eq. (??) in Appendix ??.

4 Leading order expansions for hard regularized interactions

In this section we will present the details of the results for regularized hard interactions presented in Sect. ??,
for the Plummer potential Eq. (??) and compact softening Eq. (??). A common feature for both of these
potentials is that they fulfill the relation

v(r, ε) =
1

εγ
V
(r
ε

)
, (41)
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with

VPl(R) =
1

(R2 + 1)γ/2

and

Vco(R) =

{
1

Rγ
if R > 1

v(R) if 0 6 R 6 1.

We will show that the results presented below do not depend qualitatively on the explicit form of the
regularization used. In what follow, we will study how the angle φ is modified by the regularization in the
potential, first for repulsive interactions and then for attractive ones.

We recall the angle φε corresponding to the regularized potential:

φε(b, b0) =
b

rmin

∫ 1

0

dx√
1− ( bx

rmin
)2 ± bγ0

εγ V( rminεx )
. (42)

4.1 Hard repulsive interactions with Plummer softening

Here V(R) = VPl(R) = (R2 + 1)−γ/2. Then, the function r 7→ 1 − b2/r2 − bγ0/
(
r2 + ε2

)γ/2
increases from

−∞ to 1 as r increases from 0+ to +∞, hence has a single positive zero rmin. It is easily checked that rmin

is an increasing function of b and that the function r 7→ 1− bγ0/
(
r2 + ε2

)γ/2
possesses a positive zero if and

only if ε < b0. Therefore, for small b,

rmin ≈ r0 = b0
√

1− (ε/b0)2

if ε/b0 6 1, and

rmin ≈
b√

1− (ε/b0)−γ

if ε/b0 > 1. This naturally leads us to distinguish the case ε < b0 and the case ε > b0.

4.1.1 The case ε < b0 (proof of Theorem ?? (i))

We assume ε/b0 < 1, so that r0 > 0, rmin = r0(1 +O((b/b0)2)), and consider here again the small parameter
δ = (b/rmin)2 � 1. Substituting

bγ0
εγ

=
1− b2/r2

min

V(rmin/ε)
=

1− δ
V(rmin/ε)

yields

φε(b, b0) =
√
δ

∫ 1

0

dx√
1− δx2 − (1− δ)V(rmin/(εx))

V(rmin/ε)

=
√
δ

∫ 1

0

dx√
F (x, rmin/ε) + δ(1− x2 − F (x, rmin/ε))

,

(43)
where we have set

F (x, rmin/ε) = 1− V(rmin/(εx))

V(rmin/ε)
.

We prove in App. ?? that the function x 7→ 1−x2

F (x,rmin/ε)
is bounded on [0, 1] independently of b. This shows

that we may apply the Taylor expansion in δ used in subsection ?? and write

φε(b, b0) =
√
δ

∫ 1

0

dx√
F (x, rmin/ε)

√
1 + δ( 1−x2

F (x,rmin/ε)
− 1)

=
√
δ

∫ 1

0

dx√
F (x, rmin/ε)

+O(δ3/2).
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At this stage, since rmin = r0(1 +O((b/b0)2)), one could legitimate the expansion∫ 1

0

dx√
F (x, rmin/ε)

=

∫ 1

0

dx√
F (x, r0/ε)

+O((b/b0)2).

Since rmin = r0(1 +O((b/b0)2)),
√
δ = b/rmin = b/r0(1 +O((b/b0)2)), and thus, when ε/b0 < 1,

φPl
ε (b, b0) = BPl

ε/b0
(γ)(b/b0) +O((b/b0)3), (44)

where

BPl
ε/b0

(γ) =
1√

1− (ε/b0)2

∫ 1

0

dx√
1− xγ

(1− (ε/b0)2(1− x2))γ/2

. (45)

Comparing Eq. (??) with the expression Eq. (??) of the angle of closest approach without softening, namely

φ(b/b0) = α1(γ)(b/b0)+O((b/b0)3) = −
√
πΓ(1+3/γ)

3Γ(3/γ−1/2) (b/b0)+O((b/b0)3), we observe that the linear dependence

(at leading order) of φ with respect to b/b0 is not modified, only the pre-factor changes. It is also easy to
check that in the limit ε → 0 we have, as expected, BPl

ε/b0
(γ) → α1(γ). As expected, the new introduced

scale is ε.

4.1.2 The case ε > b0 (proof of Theorem ?? (iii))

In the case ε > b0, we recall that, for b small,

rmin ≈ b/
√

1− (ε/b0)−γ (46)

and that

φε(b, b0) =
b

rmin

∫ 1

0

dx√
1− (bx/rmin)2 − (bγ0/ε

γ)V(rmin/(εx))
.

Substituting 1 = b2/r2
min + (ε/b0)−γV(rmin/ε) in the integral and considering the small parameter δ =

r2
min/ε

2 ∼ b2/ε2 gives

φε(b, b0) =

∫ 1

0

dx√
Gb(x)

,

where

Gb(x) = 1− x2 − r2
min

b2(ε/b0)γ

(
V(
√
δ/x)− V(

√
δ)
)
.

In view of the fact that r2
min ≈ b2/(1− (ε/b0)−γ) and b0 6 ε, we expect

φε(b, b0) ≈
∫ 1

0

dx√
1− x2

=
π

2
.

We also see that the situation is similar to the case studied in subsection ??, but the dependency on the
small parameter δ is more intricate. Actually, for the Plummer potential, we have VPl(R) = (R2 + 1)−γ/2,
thus, for small R, VPl(R) = 1− γR2/2 +O(R4). Therefore, for fixed x and small δ, we obtain

Gb(x) = 1− x2 − γδ

2((ε/b0)γ − 1)

(
1

x2
− 1

)
+O(δ2),

which is a situation very similar to the case studied in subsection ??, but unfortunately the function x 7→
(1/x2 − 1)/(1− x2) = −1/x2 being too singular near the origin, the power series expansion trick used there
(see Subsect. ??) breaks down.
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We divide the correction φε(b, b0)− π/2 by δ and write it under the form

−1

δ

(
φε(b, b0)− π

2

)
=
r2
minb

γ
0ε

2

b2

∫ 1

0

gδ(x) dx ≈ 1

(ε/b0)γ − 1

∫ 1

0

gδ(x) dx

by Eq. (??) and with

gδ(x) =
V(
√
δ)− V(

√
δ/x)

δ
√
Gb(x)

√
1− x2[

√
Gb(x) +

√
1− x2]

> 0.

Clearly, as b/ε goes to 0, δ � 1, Gb(x) ≈ 1− x2 and we have∫ 1

0

gδ(x) dx→ γ

4

∫ 1

0

1
x2 − 1

(1− x2)3/2
dx = +∞,

due to the non integrable singularity at the origin. We shall prove that actually
∫ 1

0
gδ(x) dx ∼ δ−1/2. As a

first step, we get rid of the contribution for 1/2 6 x 6 1. Indeed,
∫ 1

0
gδ(x) dx→ +∞ whereas∫ 1

1/2

gδ(x) dx→ γ

4

∫ 1

1/2

1
x2 − 1

(1− x2)3/2
dx < +∞.

As a consequence, using the natural substitution y =
√
δ/x,∫ 1

0

gδ(x) dx ≈
∫ 1/2

0

g(x) dx =
1√
δ

∫ +∞

2
√
δ

V(
√
δ)− V(y)

Db(y)
dy

where we have denoted

Db(y) = y2

√√√√Gb

(√
δ

y

)(
1− δ

y2

)
√√√√Gb

(√
δ

y

)
+

√
1− δ

y2

 .
When δ → 0, we have

Gb(
√
δ/y)→ G−ε/b0(y) = 1− 1

(ε/b0)γ − 1
(V(y)− V(0))

and one could rigorously justify that∫ 1

0

gδ(x) dx ≈ 1√
δ

∫ +∞

0

V(0)− V(y)

y2
√
G−ε/b0(y)[

√
G−ε/b0(y) + 1]

dy

=
(ε/b0)γ − 1√

δ

∫ +∞

0

1− 1√
1 + 1

(ε/b0)γ−1 (V(0)− V(y))

 dy

y2
.

The last integral is indeed convergent since: for large y, V(y)→ 0, thus the integrand is ∼ 1/y2; for small y,
VPl(0)−VPl(y) = 1− (1 + y2)−γ/2 ≈ γ/(2y2), thus the integrand is continuous at the origin. It then follows
that, for b� ε:

φε(b, b0) =
π

2
−BPl

ε/b0
(γ)b/ε+ o(b/ε), (47)

with

B̃Pl
ε/b0

(γ) =
1√

1− (ε/b0)−γ
×
∫ +∞

0

1− 1√
1 + 1

(ε/b0)γ−1 (VPl(0)− VPl(y))

 dy

y2
> 0. (48)
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If ε� b0, we justify in Appendix ?? that

B̃Pl
ε/b0

(γ) ≈ (ε/b0)−γ
√
π

Γ
(
γ+1

2

)
4Γ
(
γ
2

) . (49)

We see here that, because ε� b0, the value of φ is completely different compared to the case ε→ 0. As
expected, in the limit b → 0, φ → π/2, which means that the particle trajectory is unperturbed compared
with the case without softening.

4.2 Hard repulsive interactions with compact softening

In this Subsection, we give the few modifications appearing in the asymptotic expansions when we consider a
compact softening Eq. (??). The formula we shall obtain are qualitatively comparable to those in Subsect. ??
for the Plummer softening. The first step is to determine the asymptotic behavior of rmin, and here again,
we shall distinguish the cases where ε/b0 is small or large.

4.2.1 The case ε < b0 (proof of Theorem ?? (ii))

Assume that ε < b0. Then, the function r 7→ 1−b2/r2−bγ0/rγ is increasing on [ε,+∞) and 1−b2/ε2−bγ0/εγ < 0
for b/ε� 1. It follows that this function has a unique zero rmin on [ε,+∞), which satisfies, for b/b0 � 1,

rmin ≈ b0 > ε.

In view of the fact that rmin ≈ b0 > ε, the trajectory never enters into the region {r 6 ε} where the softening
has an effect, hence we obtain the same asymptotics as in the case without softening (see Eq. (??)):

φε(b, b0) = α1(γ)(b/b0) +O((b/b0)3) = −
√
πΓ(1 + 3/γ)

3Γ(3/γ − 1/2)
(b/b0) +O((b/b0)3). (50)

4.2.2 The case ε > b0(maxR V)1/γ (proof of Theorem ?? (iii))

Assume now that ε > b0(maxR V)1/γ , that is (ε/b0)γ > maxR V = max[0,1] V > 1. The function r 7→
1− b2/r2 − bγ0/rγ is then increasing on [ε,+∞) from 1− b2/ε2 − (ε/b0)−γ to 1. Since ε/b0 > 1, we have, for
b� ε, 1− b2/ε2− (ε/b0)−γ ≈ 1− (ε/b0)−γ > 0, hence 1− b2/r2− bγ0/rγ is positive on [ε,+∞). On [0, ε], the
function r 7→ 1− b2/r2− (ε/b0)−γV(r/ε) is > 0 for r = ε and tends to −∞ for r → 0, thus has a largest root
rmin 6 ε. Moreover, since b2/r2

min = 1 − V(rmin/ε)(ε/b0)−γ > 1 − (ε/b0)−γ maxR V > 0 by our hypothesis,
we have rmin . b� ε, hence

rmin =
b√

1− V(rmin/ε)(ε/b0)−γ
≈ b√

1− V(0)(ε/b0)−γ

that is close to Eq. (??). We may then carry out computations very similar to those leading to Eq. (??),
provided v is C2 on [0, 1], positive on (0, 1] and v′(0) = 0. This yields

φε(b, b0) =
π

2
− B̃co

ε/b0
(γ)b/ε+ o(b/ε), (51)

with

B̃co
ε/b0

(γ) =
1√

1− Vco(0)(ε/b0)−γ

∫ +∞

0

1− 1√
1 + 1

(ε/b0)γ−Vco(0) (Vco(0)− Vco(y))

 dy

y2
. (52)

Here, we do not claim that Bco
ε/b0

(γ) is a positive constant. For instance, if v(0) = 0, then Bco
ε/b0

(γ) < 0,

whereas if v(x) = 1 on [0, 1], then Bco
ε/b0

(γ) > 0. For a general function v on [0, 1], it may happen exceptionally

that Bco
ε/b0

(γ) vanishes, and in this case, the correction φε−π/2 is not of order b/ε but smaller. This however
does not happen for generic functions v.
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4.3 Hard attractive interactions with a softening (proof of Theorem ??)

The function r 7→ 1 − b2/r2 + (ε/b0)−γV (r/ε) tends to 1 at infinity and to −∞ at 0+, hence possesses a
largest zero rmin, but there may exist several zeros in general. Since 1 6 1 + (ε/b0)−γV (rmin/ε) = b2/r2

min,
we must have rmin 6 b� ε, and this in turn implies, independently whether ε/b0 is small or not,

rmin ≈
b√

1 + V(0)(ε/b0)−γ
(53)

(whereas without softening, we had rmin ∼ b2/(2−γ)).
Our small parameter here will be δ = r2

min/ε
2 � 1 (by Eq. (??)). Substituting 1 = b2/r2

min −
(ε/b0)−γV(rmin/ε) in the integral gives

φε(b, b0) =

∫ 1

0

dx√
Gb(x)

,

where

Gb(x) = 1− x2 +
r2
min

b2(ε/b0)γ

(
V(
√
δ/x)− V(

√
δ)
)
.

Comparing with § ??, the only difference is a change of sign. Therefore, similar computations to those in
that paragraph yield

φε(b, b0) =
π

2
+ Cε/b0(γ)b/ε+ o(b/ε), (54)

where

Cε/b0(γ) =
1√

1 + V(0)(ε/b0)−γ

∫ +∞

0

 1√
1− 1

(ε/b0)γ+V(0) (V(0)− V(y))
− 1

 dy

y2
. (55)

If ε� b0, we can show (as we have done for Eq. (??)) that

Cε/b0(γ) ≈ (ε/b0)−γ
√
π

Γ
(
γ+1

2

)
4Γ
(
γ
2

) . (56)

On the other hand, if γ < 2 and ε� b0, we can show that

Cε/b0(γ) ≈ (ε/b0)γ/2√
V(0)

∫ +∞

0

(√
V(0)

V(y)
− 1

)
dy

y2
.

We have then a big difference with the case of repulsive interactions studied in Sect. ?? (and also in Sect. ??),
where φε ∼ b/max(ε, b0), displaying the characteristic length ε or b0 depending which one is the largest one.
Here, for attractive interactions, only the softening characteristic length ε appears in the first order term
φε − π/2 ∼ b/ε in Eq. (??).

4.4 Computation of a threshold in ε for attractive potentials with γ > 2 (proof
of Proposition ??)

When γ > 2 and without softening in the potential (formally, ε = 0), the deflection angle φ diverges
logarithmically to +∞ when b > βb0 approaches βb0 (Eq. (??)). This divergence is due to the fact that
r∗ ≈ R = b0(2 − γ)1/γ becomes a double root of the function W in this limit. The first paragraph of this
Subsection is devoted to the proof of the existence of some threshold ε∗(b0, γ) > 0, for the Plummer softening,
such that if ε < ε∗(b0, γ), then the angle φε still diverges for some specific value of b (depending on b0, γ and
ε), whereas for ε > ε∗(b0, γ), the angle φε no longer diverges and is a smooth function of b/b0 for all positive
values of b/b0. This means that in order to remove the divergence in φ, one has to use a sufficiently large
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softening ε. In the first case, the divergence is here again due to the existence, for some critical value b, of
some positive double root in r for the function

Wb,ε(r) = 1− b2

r2
+ (ε/b0)−γV

(r
ε

)
,

which means that we have some jump for rmin for this critical value b, whereas for ε > ε∗(b0, γ), the function
Wb,ε(r) has no double root. In the second paragraph we will discuss the case of the compact softening.

4.4.1 The case of a Plummer softening

We now consider the Plummer softening V(R) = VPl(R) = (1 + R2)−γ/2 and are interested in determining
under which condition on ε the function Wb,ε has a unique zero rmin for any b > 0. We have

W ′b,ε(r) =
γbγ0
r3

(
2b2

γbγ0
− r4

(r2 + ε2)γ/2+1

)
and, denoting r = εR,

r4

(r2 + ε2)γ/2+1
= ε2−γ

R4

(R2 + 1)γ/2+1
.

The function R 7→ R4/(R2 + 1)γ/2+1 is increasing on [0, Rmax] and decreasing on [Rmax,+∞) (recall γ > 2),
where Rmax =

√
4/(γ − 2); its maximal value is M(γ) = 16(γ − 2)

γ
2−1(γ + 2)−

γ
2−1. Therefore, when

2b2/(γbγ0) < ε2−γM(γ) (case 1), the function Wb,ε is increasing on (0, r1], decreasing on [r1, r2] and increasing
on [r2,+∞); when 2b2/(γbγ0) > ε2−γM(γ) (case 2), the function Wb,ε is increasing on (0,+∞). The two
critical points r1 and r2 merge for 2b2/(γbγ0) = ε2−γM(γ), and we shall see that the threshold is determined
by the sign of Wb,ε at this merging point r1 = r2.

Let us now fix ε > 0. For b very small, we are in case 1 and the two positive roots r1 and r2 of the
equation 2b2/(γbγ0) = r4/(r2 + ε2)γ/2+1 are r1 (very small) and r2 (very large). The function Wb,ε has then a
local minimum Wb,ε(r2) ≈ 1. When b increase, Wb,ε decrease, the two critical points r1 and r2 merge when
2b2/(γbγ0) = ε2−γM(γ), and for larger b, Wb,ε is increasing on (0,+∞).

Let us consider the special value of bcrit where 2b2crit/(γb
γ
0) = ε2−γM(γ), for which the two critical points

r1 and r2 merge: r1 = r2 = rcrit = εRmax. If Wbcrit,ε(rcrit) > 0, then by monotonicity in b, for any b > 0,
the function Wbcrit,ε has a largest positive zero rmin which is never a double root. If now Wbcrit,ε(rcrit) < 0,
then, still by monotonicity in b, for b smaller, but close to bcrit, Wb,ε has two critical points 0 < r1 < r2

with 0 > Wb,ε(r1) > Wb,ε(r2). As b decreases, the critical value Wb,ε(r2) will be zero for some particular
value of b = b] for which r2 has become a double root of Wb],ε, yielding a logarithmic divergence in φε. As
a consequence, we simply need to determine the sign of

Wbcrit,ε(rcrit) = 1− b2crit
ε2R2

max

+
bγ0

(ε2R2
max + ε2)γ/2

= 1− ε−γM(γ)γbγ0
2R2

max

+
bγ0ε
−γ

(R2
max + 1)γ/2

= 1− (ε∗(b0, γ)/ε)γ ,

where the threshold is given by

ε∗(b0, γ) = b0

(
γ − 2

γ + 2

) 1
2 + 1

γ

. (57)

It follows that if ε > ε∗(b0, γ), then φε is a smooth function of b (see Fig. ??), whereas if ε < ε∗(b0, γ),
then φε diverges as b approaches some value b] = b](ε) corresponding to the case where Wb,ε has zero as
a local minimum. By computations very similar to those in Sect. ??, we see that the divergence is indeed
logarithmic. One may also check that if ε = ε∗(b0, γ), then φε is a diverging function of b for some b] = b](ε).
In other words, in order to regularize the divergence in the case γ > 2, we have to use a sufficiently large
softening parameter, namely ε > ε∗(b0, γ).

Let us finally consider the case γ = 2. Notice that formally, ε∗(b0, γ)→ 0 as γ → 2, hence we may think
that φε is a smooth function of b for any ε > 0, and this is indeed the case. Actually, in the case γ = 2, the
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function R 7→ R4/(R2 + 1)2 is increasing on [0,+∞), and tends to 1 at infinity. Therefore, either b/b0 < 1
and then the function Wb,ε is increasing on (0, r1] and decreasing on [r1,+∞); either b/b0 > 1 and then the
function Wb,ε is increasing on (0,+∞). In any case Wb,ε has a single zero rmin and we never have a double
root. It follows that φε is a smooth function of b.

4.4.2 The case of a compact softening

For a general compact softening V = Vco, computations are much less explicit. We first have

W ′b,ε(r = εR) =
bγ0

R3εγ+1

(
2b2εγ−2

bγ0
+R3V ′(R)

)
,

and we then need to know the behavior of the function R 7→ −R3V ′(R), which certainly has a positive
maximum M = M(v) attained at some 0 < Rmax 6 1 since γ > 2. If, for instance, the function R 7→
−R3V ′(R) is, for some 0 6 R+ 6 Rmax, nonpositive on [0, R+], then increasing on [R+, Rmax] and then
decreasing on [Rmax,+∞), the behavior is the same as the one previously described for the Plummer
softening. Since

Wbcrit,ε(rcrit) = 1− bγ0M(v)

2εγR2
max

+
bγ0
εγ
V(Rmax) = 1− bγ0

2εγ

(
M(v)

R2
max

− 2V(Rmax)

)
= 1 +

bγ0
2εγ

(RmaxV ′(Rmax) + 2V(Rmax)) ,

there exists a threshold if and only if M(v)/R2
max = −RmaxV ′(Rmax) > 2V(Rmax), in which case the

threshold is given by

εco
∗ (b0, γ) = b0

(
M(v)

2R2
max

− V(Rmax)

)1/γ

(58)

and otherwise, we never have a double root for Wb,ε hence no divergence in φε. The example below illustrates
the first case.

If γ = 3 and v(R) = 21R2− 35R3 + 15R4 for 0 6 R 6 1, then R 7→ −R3V ′(R) is decreasing and negative
on [0,≈ 0.474], increasing on [≈ 0.474,≈ 0.984] and decreasing on [≈ 0.984,+∞), hence has maximum
value M(v) ≈ 3.023 attained at Rmax ≈ 0.984. Moreover, M(v)/R2

max − 2V(Rmax) ≈ 1.023 > 0, thus the
variations of Wb,ε are the same as for the Plummer softening, with a threshold given by

ε∗(b0, γ) = b0

(
M(v)

2R2
max

− V(Rmax)

)1/3

≈ 0.855b0.

4.5 Summary of the results and numerical checking

We summarize in table ?? the results obtained in this section for the Plummer softening. We have shown
that the effect of the softening does not depend strongly on the form of the softening, obtaining the same
qualitative results for the two softening considered — Plummer and compact one. There is an exception for
repulsive interactions and ε < b0, in which case the compact softening does not modify the trajectory of the
particles because they do not reach the region in which the potential is regularized.

In the case of repulsive interactions, we have seen that two different behaviours are shown depending
whether ε/b0 is larger than 1 or not. In the case ε/b0 < 1, the softening does not modify strongly the angle
φ: it behaves linearly for b � b0, only its slope is modified with ε. In the case in which ε/b0 > 1, hard
collisions are radically modified, obtaining limb/b0→0 φε = π/2. The change of behaviour occurs sharply at
ε/b0 = 1 as we show in Fig. ??, in which φ is plotted as a function of ε at fixed b, for some values of γ. The
range of validity in b of the linear correction is given by the largest value of b0 and ε. In Fig. ?? (top) we
show the comparison between the numerical integration of φε in Eq. (??) with the asymptotic predictions
Eqs. (??) and (??). We see a very good matching between the curves.
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repulsive potential attractive potential

φε ∼ b/b0 when b� b0 if ε/b0 < 1
φε − π/2 ∼ −b/ε when b� ε if ε/b0 > 1

φε − π/2 ∼ b/ε when b� ε

Table 1: Summary of the expansions of the angle φε with a Plummer softening in the potential for hard
collisions
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Figure 6: Value of φ for b/b0 = 10−2. The vertical line correspond to ε/b0 = 1.

For the case of attractive interactions, the range of validity in b of the linear correction is always given
by ε. In Fig. ?? (bottom) we show a very good agreement matching between the exact integration Eq. (??)
with the asymptotic predictions Eqs. (??) and (??).

We have also studied, for γ > 2, for which value of the softening, there is no formation of pairs for any
value of b. We have seen that introducing a softening ε > 0 but smaller than some critical one ε∗(b0, γ),
automatically regularizes the angle φ for any value b, except one, for which there is orbiting. If ε > ε∗(b0, γ)
then the problem is completely regularized. In Fig. ?? we illustrate this behavior. The continuous red curve
corresponds to the case in which ε > ε∗(b0, γ). In this case, φε is a regular function of b, as it can be seen in
the inset. The dashed green curve corresponds to the case in which ε < ε∗(b0, γ), for which φε diverges for
b = b](ε), which is related to some jump for rmin at b = b](ε).

5 Conclusions and applications

In this paper we have studied the scattering of two particles interacting with a central potential v(r) ∼ 1/rγ .
This is a generalization of the Rutherford formula of the scattering of two particles interacting via a Coulomb
or gravitational force. Unlike the original case, it is not possible to compute in general the deflection angle
of the particles explicitly for general γ 6= 1. We have seen that the problem can be solved in form of power
series, both for the attractive and repulsive case: one for the weak scattering regime (b/b0 > β) and another
one (or two) for the hard scattering regime (b/b0 < β). We have also studied the case in which the exponent
γ of the attractive potential is larger than 2, for which the angular momentum term cannot, in general,
prevent the system to collapse and the particles crash. Studying the distance of closest approach rmin we
have found two different behaviors whether γ is smaller or larger than 2:

• If γ < 2, in the limit γ → 2− (for any b smaller than some critical value which we have calculated
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Figure 7: Top: Numerical computations for repulsive potentials with Plummer softening. Left: Graph of φε
as a function pf b/b0 and of the leading order term (dashed-dotted line) given in Eq. (??), for different values
of γ and ε/b0 = 1/10. Right: Graph of φε for ε/b0 = 10 (thick lines) and the leading order expansion given in
Eq. (??) (black dashed-dotted lines). The thin curves corresponds to φ0. Bottom: Numerical computations
for attractive potentials with Plummer softening (hard scattering). Left: Graphs of φε (thick curves) and
the theoretical prediction Eq. (??) (black dashed-dotted lines) as a function of b/b0 for different values of γ
and ε/b0 = 1/10. The thin curves corresponds to φ0. Right: same quantity for ε/b0 = 10 and the theoretical
prediction Eq. (??) (black dashed-dotted lines). The thin curves corresponds to φ0.
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Figure 8: Plot of φε as a function of b/b0 for γ = 5/2 and two different values of the softening. The red
continuous curve corresponds to a value of ε slightly larger than ε∗(b0, γ) and the dashed green one to a value
of ε slightly smaller than ε∗(b0, γ).

explicitly), the value of rmin tends to 0. The trajectories in this limit is a succession of smaller and
smaller loops embedded one in the other. An example of such trajectory was given in Fig. ??.

• If γ > 2, the particles do not crash if the impact factor is larger than some critical value, which we
have calculated. For impact factor slightly larger than this critical value, we have trajectories with
rmin ∼ b0. The particles then orbite with distance rmin forming a binary, which will be destroyed in a
finite time. We gave an example of such trajectories in Fig. ??.

We have also studied the effect of introducing a regularization at small scales in the potential. The
conclusions are detailed in Subsect. ??.

One of the motivations of the paper was the computation of the Boltzmann collision operator Eq. (??).
With the expressions given in the paper, knowing the velocity distribution function ϕ(v; t), it is straighfor-
ward to write a full series expansion of it in the case of pure power-law potentials.

In what follow we will give an example of application of the results for softened potentials, developed
recently in [?, ?]. In the context of astrophysics or plasma physics, it is natural to be interested in calculating
the average change of velocity due to the collisions. It is classical (see e.g. [?]) to decompose the relative
velocity of the particles before the collisions V as the sum of its component along the direction of the initial
relative velocity e‖ and the component perpendicular to it e⊥, i.e.

V = V⊥e⊥ + V‖e‖. (59)

It is possible to compute the average change of velocity ∆V⊥ and ∆V‖ after a collision has been completed
integrating over all the impact factors b:

∆V⊥
V

= sin(2φ) (60a)

∆V‖
V

= 1 + cos(2φ). (60b)

One quantity of interest is the average change velocity square, which can be expressed by the integral over
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all the impact factors, i.e.

〈∆V 2
⊥〉 ∼

∫ R

0

dbbd−2 sin2

(
2φε

(
b

b0

))
(61a)

〈∆V 2
‖ 〉 ∼

∫ R

0

dbbd−2

[
1 + cos

(
2φε

(
b

b0

))]2

, (61b)

where d > 1 is the physical dimension and R the size of the system, which is the maximal impact factor
available.

In astrophysical or cosmological N-body simulations, the goal is to simulate collisionless dynamics sam-
pling a continuous distribution with macro-particles (see e.g. [?]). The softening used in these simulations
is much larger than b0 (in order to suppress collisional effects), and hence (see Sect. ??), φ− π/2 � 1. We
can therefore write

〈∆V 2
⊥〉 ∼ 4

∫ R

0

dbbd−2

[
φε

(
b

b0

)
− π

2

]2

(62)

and 〈∆V 2
‖ 〉 � 〈∆V 2

⊥〉. We can estimate Eq. (??) using the following approximate expression (see section ??

and Eq. (??)) for the angle φε (we will consider explicitly attractive interactions with Plummer softening to
simplify notations, the compact softening or repulsive case is analogous):

φε −
π

2
'
{
Cε/b0(γ) bε if b < ε

A(γ)
(
b0
b

)γ
if b > ε.

(63)

Using Eq. (??) to compute integral (??), considering softenings such that b0 � ε � R we get the scaling,
for γ > (d− 1)/2,

〈∆V 2
⊥〉 ∼ b2γ0 εd−1−2γ (64)

where we have used the asymptotic value of Cε(γ) Eq. (??). Notice that impact factors smaller or larger
than ε contributes to the scaling (??). In the limiting case γ = (d− 1)/2, we get

〈∆V 2
⊥〉 ∼ b20 ln

(
R

ε

)
. (65)

In this case contributions of collisions with b < ε are negligible. For γ < (d− 1)/2, the effect of the softening
is negligible because the main contribution to the change of velocity is given by impact factors b ∼ R.
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A Derivation of the scattering formula

Let us consider the scattering of two isolated particles. It is convenient to use the center of mass frame to
transform the two-particle problem in a one-particle one. Let us consider that particles have masses m1 and
m2 and their position r1 and r2 respectively. We define their relative position as

r = r1 − r2 (66)

and fix the origin of the frame at the center of mass, i.e.

m1r1 +m2r2 = 0. (67)
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The relation between the position of the particles in the center of mass frame r and in the laboratory frame
is, using Eqs. (??) and (??):

r1 =
m

m1
r (68a)

r2 = − m

m2
r, (68b)

where we have defined the reduced mass
m =

m1m2

m1 +m2
. (69)

In the center of mass frame, the collision occurs as depicted in Fig. ??, in which appears the definition of
the impact factor b, the angle of closest approach φ and the angle of deflection χ, which is χ = 2φ. In order
to define the angles with the usual mathematical signs, the incident particle comes from +∞. This picture
assumes that the two particles are far away from each other for t→ −∞ and for t→ +∞. The angle φ can
be calculated, as a function of the impact factor b, using the classical formula [?]

φ(b) =

∫ ∞
rmin

(b/r2)dr√
1− (b/r)2 − 2v(r)/(mu2)

, (70)

where u is the asymptotic velocity of the incident particle at +∞ (u = |ṙ|). The quantity rmin is the largest
positive root of the denominator, i.e. of

W (r) = 1− (b/r)2 − 2v(r)/mu2. (71)

We consider the pure power-law pair potential,

v(r) =
g

rγ
, γ > 0, (72)

with g 6= 0, where g > 0 corresponds to a repulsive interaction and g < 0 to an attractive one. We introduce
the characteristic scale

b0 =

(
2|g|
mu2

)1/γ

, (73)

which allows us to rewrite Eq. (??) as

φ(b) =

∫ ∞
rmin

(b/r2)dr√
1− (b/r)2 ∓ (b0/r)γ

. (74)

Now, the “minus” sign in the denominator corresponds to a repulsive interaction while the “plus” sign to an
attractive one. By using the change of variables r = b/x it is possible to rewrite Eq. (??) in the following
form:

φ(b/b0) =

∫ xmax

0

dx√
1− x2 ∓ (b0/b)γxγ

, (75)

where xmax is the smallest positive root of the denominator. Since xmax is a function of b/b0 depending
only on γ, Eq. (??) shows explicitly that φ is also a function of b/b0 depending only on γ. Equation (??)
can be solved explicitly only in few cases (e.g. gravity in d = 3 which is given by γ = 1), for the general case
approximations or numerical computation of the integral should be used.

B Some technical mathematical details

In this appendix we give mathematical details of some derivations given in the paper.
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B.1 Justification of the leading order expansion Eq. (??)

To completely justify the expansion Eq. (??), we have to pay attention to the z’s close to zmax. Notice first
that

dr/dz =
√
−2Wb(r∗)/W ′′b (r∗)(1 +O(z/zmax))

and that
r(z)−2 = (r∗ +O(z/zmax))−2,

hence the asymptotics r(z) ≈ r∗ ≈ r∗(βb0) and dr/dz ≈
√
−2Wb(r∗)/W ′′b (r∗) are not completely true for

z ∼ zmax. We therefore split the right-hand side of Eq. (??) as

I1 + I2 =
b√

−Wb(r∗)

∫ zmax/ ln(zmax)

1

r(z)−2 dr/dz√
z2 − 1

dz +
b√

−Wb(r∗)

∫ zmax

zmax/ ln(zmax)

r(z)−2 dr/dz√
z2 − 1

dz.

In I1, we have 0 6 z/zmax 6 1/|ln zmax| = o(1), thus

dr/dz =
√
−2Wb(r∗)/W ′′b (r∗)(1 + o(1))

and
r(z)−2 = (r∗ + o(1))−2 = r∗(βb0)−2 + o(1),

which yields

I1 ≈ b
√

2

W ′′b (r∗(βb0))

∫ zmax/ ln(zmax)

1

r∗(βb0)−2 dz√
z2 − 1

≈
√

2

r∗(βb0)4W ′′b (r∗(βb0))
ln(zmax).

Turning back to I2, where 1 � zmax/ ln(zmax) 6 z 6 zmax, we simply use that r(z)−2 = O(1) and that
dr/dz =

√
−2Wb(r∗)O(1), thus

I2 = O
(∫ zmax

zmax/ ln(zmax)

dz

z

)
= O(ln(ln zmax))� ln(zmax).

This concludes the justification of Eq. (??).

B.2 Bounding the function 1−x2
F (x,rmin/ε)

We prove here that the function x 7→ 1−x2

F (x,rmin/ε)
is bounded on [0, 1], independently of b� b0 (for the Plum-

mer softening). We recall that for the regime (ε < b0 and b� b0) we are studying, rmin ≈ b0
√

1− (ε/b0)2,

thus rmin/ε ≈ (ε/b0)−1
√

1− (ε/b0)2.
Let us first work on the interval [0, 1/2]. Then, F (x, rmin/ε) = 1 − VPl(rmin/(εx))/VPl(rmin/ε) is

decreasing with respect to x since VPl(R) = (1 +R2)−γ/2 is decreasing on [0,+∞), hence, for 0 6 x 6 1/2,

0 6
1− x2

F (x, rmin/ε)
6

1

F (x, rmin/ε)
6

1

F (1/2, rmin/ε)
.

The right-hand side does not depend on x and is equal to(
1− V

Pl(2rmin/ε)

VPl(rmin/ε)

)−1

≈
(

1− V
Pl(2(ε/b0)−1

√
1− (ε/b0)2)

VPl((ε/b0)−1
√

1− (ε/b0)2)

)−1

,

which gives the desired upper bound on [0, 1/2].
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We now work on [1/2, 1], and use that d
dxVPl(rmin/(εx)) = −(rmin/(εx

2))(VPl)′(rmin/(εx)) > m for some
positive constant m = m(ε/b0) independent of b, since VPl is decreasing on [0,+∞). As a consequence of
the mean value theorem we get

0 6
1− x2

F (x, rmin/ε)
=

(1 + x)(1− x)

F (x, rmin/ε)− F (1, rmin/ε)
6

2

m
.

This concludes the proof of the upper bound on [0, 1/2].

B.3 Justification of the relation Eq. (??)

If ε/b0 � 1, we may use for instance the Taylor expansion of the square root to deduce

B̃ε/b0(γ) ≈
∫ +∞

0

1− 1√
1 + 1

(ε/b0)γ−1 (VPl(0)− VPl(y))

 dy

y2
≈ 1

(ε/b0)γ − 1

∫ +∞

0

VPl(0)− VPl(y)

2y2
dy

≈ 1

(ε/b0)γ

∫ +∞

0

1− (1 + y2)−γ/2

2y2
dy =

γ

4(ε/b0)γ

∫ +∞

0

(1 + y2)−γ/2−1 dy

=
γ

4(ε/b0)γ

∫ π/2

0

cosγ(ϑ) dϑ =

√
π

4(ε/b0)γ
Γ
(
γ+1

2

)
Γ
(
γ
2

) ,

by first integration by parts and then the use of the substitution y = tanϑ.
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