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Abstract

We construct a smooth branch of travelling wave solutions for the 2 dimensional Gross-Pitaevskii equations

for small speed. These travelling waves exhibit two vortices far away from each other. We also compute the

leading order term of the derivatives with respect to the speed. We construct these solutions by an implicit

function type argument.

1 Introduction and statement of the result

We consider the Gross-Pitaevskii equation

0 = (GP)(u) := i∂tu + ∆u− (|u|2 − 1)u

in dimension 2 for u : Rt×R2
x 7→ C. The Gross-Pitaevskii equation is a physical model for Bose-Einstein condensates

[11], [19], and is associated with the Ginzburg-Landau energy

E(v) :=
1

2

∫

R

2

|∇v|2 +
1

4

∫

R

2

(1 − |v|2)2.

The condition at infinity for (GP) will be

|u| → 1 as |x| → +∞.

We look for travelling wave solutions of (GP):

u(t, x) = v(x1, x2 + ct)

where x = (x1, x2) and c > 0 is the speed of the travelling wave, which moves along the direction −−→e2 . The equation
on v is

0 = (TWc)(v) := −ic∂x2v − ∆v − (1 − |v|2)v.

We want to construct travelling waves for small speed that look like the product of two well-separated vortices.
Vortices are stationary solutions of (GP) of degrees n ∈ Z∗ (see [5] and [15]):

Vn(x) = ρn(r)einθ ,

where x = reiθ, solving {
∆Vn − (|Vn|2 − 1)Vn = 0
|Vn| → 1 as |x| → ∞.

A vortex alone in the plane is a stationnary solution of (GP), and vortices might interact when there are several of
them. It is expected that if they are far away from each other, their dynamic is governed, at least at first order, by
the point vortex system (see [2] and references therein). In particular, a vortex V1 of degree 1 with a vortex V−1 of
degree −1 should move at constant speed in the direction orthogonal to the line that connects their centers.

The main result of this paper is the construction of a branch of solution by perturbation of the product of two
vortices at any small speed c > 0, and the fact that this branch of solution is C1 with respect to the speed.
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Theorem 1.1 There exists c0 > 0 a small constant such that, for any 0 < c 6 c0, there exists a solution of (TWc)
of the form

Qc = V1(.− dc
−→e1)V−1(.+ dc

−→e1) + Γc,dc ,

where dc = 1+oc→0(1)
c is a continuous function of c. This solution has finite energy (E(Qc) < +∞) and Qc → 1

when |x| → +∞.
Furthermore, for all +∞ > p > 2, there exists c0(p) > 0 such that if c < c0(p), for the norm

‖h‖Xp := ‖h‖Lp(R2) + ‖∇h‖Lp−1(R2)

and the space Xp := {f ∈ Lp(R2),∇f ∈ Lp−1(R2)}, one has

‖Γc,dc‖Xp = oc→0(1).

In addition,
c 7→ Qc − 1 ∈ C1(]0, c0(p)[, Xp),

with the estimate (for ν(c) = 1+oc→0(1)
c2 )

‖∂cQc + ν(c)∂d(V1(.− d−→e1)V−1(.+ d−→e1))|d=dc
‖p = oc→0

(
1

c2

)
.

Existence of travelling waves solutions for this equation with finite energy has already been proven for small
speeds in [3] (see also [4] and [6] for results in dimension 2 and 3). Moreover, the decay at infinity conjectured in [16]
has been established in [14]. Here, we use an implicit function argument to construct the solution, using techniques
developed in [8] or [17] for instance, displaying a clear understanding of the shape of the solution (see Lemma 3.8
for instance). We show in addition that the constructed branch is C1, which is, to the best of our knowledge, the
first result of this kind in dimension larger than one.

In the Gross-Pitaevskii equation, vortices play the role of solitons (as we can see in NLS or other such equations).
In particular here we show that two vortices interact at long range since the speed c is of order 1

dc
, the half distance

between the vortices. This is due to the slow decay of the vortex: ∇V1 is of order 1
r at infinity due to the phase.

The formal method for this kind of construction is well known. It has been done rigorously in a bounded domain
for the Ginzburg Landau equation with no speed ([8]). One of the difficulties here is to find the right functional
setting to construct the C1 branch, in particular with regards to the transport term ic∂x2v. On the contrary of
what is claim in [17], the transport term can not be treated perturbatively. This is why we use another functional
setting than [17] or [18] (see Remark 2.11 for more details)

In this paper, we start by doing the construction of the solution to fill these gaps in the case of two vortices in
(GP). This construction is also a good introduction to the proof of the differentiability of the branch, which uses
many of the same ideas, but with a more technical setting.

We start by reducing the problem to a one dimensional one in section 2. The construction of the travelling wave
Qc is completed in section 3. Furthermore, in subsection 3.2, we show that Qc has finite energy and we compute
some estimates particular to the branch of solutions. Finally section 4 is devoted to the proof of the differentiability
of the branch.

We use the scalar product for f, g ∈ L2(R2),

〈f, g〉 := Re

∫

R

2

f ḡ,

For X = (X1, X2), Y = (Y1, Y2) ∈ C2, we define

X.Y := X1Y1 +X2Y2,

which is the scalar product if X,Y ∈ R2. We use the notation B(x, r) to define the closed ball in R2 of center
x ∈ R2 and radius r > 0 for the Euclidean norm. In the estimates, a constant K > 0 is a universal constant
independent of any parameter of the problem.
Acknowledgments . The authors would like to thank Pierre Raphaël for helpful discussions. E.P. is supported
by the ERC-2014-CoG 646650 SingWave.
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2 Lyapunov-Schmidt reduction

The proof of Theorem 1.1 follows closely the construction done in [8] or [17]. The main idea is to use perturbation
methods on an approximate solution.

In subsection 2.1 we define this approximate solution V which consists in two vortices at distance 2d from
each other. We then look for a solution of (TWc) as a perturbation of V , with an additive perturbation close
to the vortices and a multiplicative one far from them. This is computed in subsection 2.2. We define suitable
spaces in subsection 2.3 that we will use to invert the linear part and use a contraction argument. We ask for an
orthogonality on the perturbation, and the norms are a little better but more technical than the ones in Theorem
1.1. In particular Γc,dc in Theorem 1.1 verifies better estimates which are discussed for instance in Corollary 2.25
and in Lemma 3.8. We invert the linearized operator in Proposition 2.17 and show that the perturbation is a fixed
point of a contracting functional in Proposition 2.21. The orthogonality condition create a Lagragian multiplier
(see subsection 2.6), which left us with a problem in one dimension. This multiplier will be cancelled for a good
choice of the parameter d in section 3.

2.1 Estimates on vortices

From [15], we can find stationary solution of (GP):

Vn(x) = ρn(r)einθ

where x = reiθ, n ∈ Z∗, solving {
∆Vn − (|Vn|2 − 1)Vn = 0
|Vn| → 1 as |x| → ∞.

These solutions are well understood and, in particular, we have some estimates (see [15] for instance) that we will
use. We also know the kernel of the linearized operator around V±1 ([7]), which we will need for inverting the
linearized operator around the approximate solution V defined using these vortices

V (x) := V1(x− d~e1)V−1(x + d−→e1)

where d > 0, x = (x1, x2). The function V is the product of two vortices with opposite degrees at a distance 2d
from each other. One vortex alone in R2 is a stationary solution, and it is expected that two vortices interact and
translate at a constant speed of order c ≃ 1

d , see [2]. Hence for the two parameters of this problem c, d > 0, we let
them be free from each other, but with the condition c is of order 1/d by imposing that 1

2c < d < 2
c .

We will study in particular areas near the center of each vortices. We will use coordinates adapted to this
problem:

x = (x1, x2) = reiθ,

y = (y1, y2) := x− d−→e1 = r1e
iθ1 ,

z = (z1, z2) := y + 2d−→e1 = x+ d−→e1 = r−1e
iθ−1 ,

r̃ := min(r1, r−1). (2.1)

Using y coordinate mean that we are centered around V1, and z coordinate for around V−1. Note that we have

V (x) = V1(y)V−1(z)

using these notations. If it is not precised, V will be taken in x, V1 in y and V−1 in z. If we compute (TWc) for V ,
i.e. −ic∂x2V − ∆V − (1 − |V |2)V , we get

(TWc)(V ) = E − ic∂x2V,

where we defined
E := −∆V − (1 − |V |2)V.

We have V = V1V−1 and, by using −∆Vε = (1 − |Vε|2)Vε for ε = ±1, we compute

E = −2∇V1.∇V−1 + V1V−1(1 − |V1|2 + 1 − |V−1|2 − 1 + |V1V−1|2).
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Hence
E = −2∇V1.∇V−1 + (1 − |V1|2)(1 − |V−1|2)V1V−1. (2.2)

The rest of this subsection is devoted to the computation of estimates on V,E, ∂dV and ic∂x2V using estimates on
V1 and V−1. Let us start with the properties on V±1 we need.

Lemma 2.1 ([15]) V1(x) = ρ1(r)eiθ verifies V1(0) = 0, and there exists a constant κ > 0 such that, for all r > 0,
0 < ρ1(r) < 1, ρ′1(r) > 0, and

ρ1(r) ∼r→0 κr,

ρ′1(r) = Or→∞

(
1

r3

)
,

ρ′′1 (r) = or→∞

(
1

r3

)
,

1 − |V1(x)| =
1

2r2
+Or→∞

(
1

r3

)
,

∇V1(x) = iV1(x)
x⊥

r2
+Or→∞

(
1

r3

)

where x⊥ = (−x2, x1), x = reiθ. Furthermore we have similar properties for V−1 since

V−1(x) = V1(x).

We will use the O notation for convergence independent of any other quantity. Now let us write all the derivatives
of a vortex in polar coordinate, which will be useful all along the proof of the results.

Lemma 2.2 We define u :=
ρ′
1(r1)

ρ1(r1)
. Then,

∂x1V1(y) =

(
cos(θ1)u− i

r1
sin(θ1)

)
V1,

∂x2V1(y) =

(
sin(θ1)u+

i

r1
cos(θ1)

)
V1,

∂x1x1V1(y) =

(
cos2(θ1)(u2 + u′) + sin2(θ1)

(
u

r1
− 1

r21

)
+ 2i sin(θ1) cos(θ1)

(
1

r21
− u

r1

))
V1,

∂x1x2V1(y) =

(
sin(θ1) cos(θ1)

(
u2 + u′ +

1

r21
− u

r1

)
− i cos(2θ1)

(
1

r21
− u

r1

))
V1.

We obtain the derivatives of V−1 by changing i → −i, y → z, θ1 → θ−1, r1 → r−1 and V1 → V−1. We remark
in particular that the first derivatives are of first order 1

r1
and the second derivatives are of first order 1

r21
for large

values of r1. From [15], we can check that, more generally, we have

|D(n)V1(y)| 6 K(n)

(1 + r1)n
. (2.3)

Proof With the notation of (2.1) in radial coordinate around d−→e1 , the center of V1:

∂x1 = cos(θ1)∂r1 −
sin(θ1)

r1
∂θ1

∂x2 = sin(θ1)∂r1 +
cos(θ1)

r1
∂θ1 ,

we compute directly the first two equalities of the lemma. Now, we compute

∂x1x1V1 = cos(θ1)∂r1(∂x1V1) − sin(θ1)

r1
∂θ1(∂x1V1)
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with

∂r1(∂x1V1) =

(
u

(
cos(θ1)u− i

r1
sin(θ1)

)
+ cos(θ1)u′ +

i

r21
sin(θ)

)
V1

and

∂θ1(∂x1V1) =

(
i cos(θ1)u+

1

r1
sin(θ1) − sin(θ1)u − i

r1
cos(θ1)

)
V1

for the third inequality. We use them also in

∂x1x2V1 = sin(θ1)∂r1(∂x1V1) +
cos(θ1)

r1
∂θ1(∂x1V1)

for the fourth relation, with cos2(θ1) − sin2(θ1) = cos(2θ1). ✷

Now, we compute some basic estimates on V .

Lemma 2.3 There exists a universal constant K > 0 and a constant K(d) > 0 depending only on d > 1 such that

|1 − V |2 6
K(d)

(1 + r)2
,

0 6 1 − |V |2 6
K

(1 + r̃)2
,

|∇(|V |)| 6 K

(1 + r̃)3
,

and we have

|∇V | 6 K

(1 + r̃)
,

as well as

|∇V | 6 Kd

(1 + r̃)2
,

where r̃ = min(r1, r−1). Furthermore,

|∇2V | 6 K

(1 + r̃)2

and

|∇2V | 6 Kd

(1 + r̃)3
.

Proof For the first inequality, we are at fixed d. Since V = |V1V−1|ei(θ1−θ−1) and θ1, θ−1 are angles from points
separated by 2d, we infer

ei(θ1−θ−1) = 1 +Od
r→∞

(
1

r

)
,

and |V1V−1| = 1 + Od
r→∞

(
1
r2

)
from Lemma 2.1 where Od

r→∞

(
1
r

)
is a quantity that decay in 1

r is at fixed d.

Therefore,

|1 − V |2 = |1 − |V1V−1|ei(θ1−θ−1)|2 =

∣∣∣∣K(d)Or→∞

(
1

r

)∣∣∣∣
2

6
K(d)

(1 + r)2
.

From Lemma 2.1, we compute

1 − |V |2 = 1 − |V1|2 + |V1|2(1 − |V−1|2) 6 K

(
1

(1 + r1)2
+

1

(1 + r−1)2

)
6

K

(1 + r̃)2
,

and

|∇(|V |)| 6 |∇(|V1|)|V−1|| + |∇(|V−1|)|V1|| 6 K

(
1

(1 + r1)3
+

1

(1 + r−1)3

)
6

K

(1 + r̃)3
.

5



We check that ∇V = ∇V1V−1 + ∇V−1V1, and therefore, with Lemma 2.2, we have

|∇V | 6 K

(1 + r1)
+

K

(1 + r−1)
6

K

(1 + r̃)
.

Furthermore, by Lemma 2.1,

∇V±1 =
±i
r±1

−→e θ±1 +Or±1→∞

(
1

r3±1

)
.

For r̃ > 1 (the last estimate on |∇V | for r̃ 6 1 is a consequence of |∇V | 6 K
(1+r̃) ), since r±1e

iθ±1 = x∓ d~e1,

cos(θ1)

r1
− cos(θ−1)

r−1
=

x1 − d

(x1 − d)2 + x22
− x1 + d

(x1 + d)2 + x22

=
x1

r21r
2
−1

((x1 + d)2 + x22 − ((x1 − d)2 + x22)) − d

(
1

r21
+

1

r2−1

)

=
d

r21r
2
−1

(2x21 − r21 − r2−1),

therefore ∣∣∣∣
cos(θ1)

r1
− cos(θ−1)

r−1

∣∣∣∣ 6
Kd

(1 + r̃)2

since x1

r1r−1
6

1
r̃ if r̃ > 1. With a similar estimation for sin(θ1)

r1
− sin(θ−1)

r−1
, we infer

|∇V | 6

∣∣∣∣
~eθ1
r1

− ~eθ−1

r−1

∣∣∣∣+
K

(1 + r̃)3

6
Kd

(1 + r̃)2
+

K

(1 + r̃)3

6
Kd

(1 + r̃)2
.

Finally, for the second derivatives, we have for j, k ∈ {1, 2}

∂xjxk
V = ∂xjxk

V1V−1 + ∂xjV1∂xk
V−1 + ∂xk

V1∂xjV−1 + ∂xjxk
V−1V1,

therefore, with (2.3),

|∇2V | 6 K

(1 + r1)2
+

K

(1 + r−1)(1 + r1)
+

K

(1 + r−1)2
6

K

(1 + r̃)2
.

We check that x1

r1r−1
6 1

r̃ and
∣∣∣∇
(

1
r±1

)∣∣∣ 6 K
r2±1

if r̃ > 1, hence

∣∣∣∣∇
(

cos(θ1)

r1
− cos(θ−1)

r−1

)∣∣∣∣ 6
Kd

(1 + r̃)3
.

With a similar estimation for ∇
(

sin(θ1)
r1

− sin(θ−1)
r−1

)
and Lemma 2.1, we conclude with

|∇2V | 6
∣∣∣∣∇
(
~eθ1
r1

− ~eθ−1

r−1

)∣∣∣∣+
K

(1 + r̃)3
6

Kd

(1 + r̃)3
.

✷

Now we look at the convergence of some quantities when we are near the center of V1 and d → ∞. When we
are close to the center of V1 and d goes to infinity, we expect that the second vortex as no influence.
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Lemma 2.4 As d→ ∞, we have, locally uniformly in R2,

V (.+ d~e1) = V1(.)V−1(.+ 2d~e1) → V1(.),

E(.+ d~e1) → 0

and
∂dV (.+ d−→e1) → −∂x1V1(.).

Proof In the limit d→ ∞, for y ∈ R2,

V (y + d~e1) = V1(y)e−iθ−1

(
1 +O

(
1

r2−1

))

by Lemma 2.1, hence
V (.) → V1(.)

locally uniformly since θ−1 → 0, r−1 → +∞ when d → ∞ locally uniformly. On the other hand, since V (x) =
V1(y)V−1(y + 2d~e1), we have

(∂dV )(y + d~e1) = −∂x1V1(y)V−1(y + 2d~e1) + V1(y)∂x1V−1(y + 2d~e1).

Since ∂x1V−1(y + 2d~e1) = ∇V−1(y + 2d~e1). ~e1 → 0 locally uniformly as d→ ∞, we have

∂dV (.) → −∂x1V1(.)

locally uniformly. Finally, from (2.2), we have that

E(x) = −2∇V1(y).∇V−1(z) + (1 − |V1(y)|2)(1 − |V−1(z)|2)V1(y)V−1(z)

with the notations from (2.1), therefore, locally uniformly,

E(.+ d~e1) → 0

as ∇V−1 → 0 and |V−1| → 1 locally uniformly when d→ ∞. ✷

We now do a precise computation on the term ic∂x2V , which appears in (TWc)(V ).

Lemma 2.5 There exists a universal constant C > 0 (independent of d) such that if r1, r−1 > 1,
∣∣∣∣i
∂x2V

V
− 2d

x21 − d2 − x22
r21r

2
−1

∣∣∣∣ 6 C

(
1

r31
+

1

r3−1

)
.

Remark that this shows that the first order term of i
∂x2V

V is real-valued and the dependence on d of this term
is explicit.
Proof Recall from Lemma 2.2 that for ε = ±1,

∂x2Vε =
iε

rε
cos(θε)Vε +Or1→∞

(
1

r31

)
.

We have
∂x2V

V
=
∂x2V1
V1

+
∂x2V−1

V−1

and

cos(θε) =
x1 − εd

rε
,

yielding

∂x2V

V
= i

(
x1 − d

r21
− x1 + d

r2−1

)

= i

(
x1

(
1

r21
− 1

r2−1

)
− d

(
1

r21
+

1

r2−1

))
+Or1→∞

(
1

r31

)
+Or−1→∞

(
1

r3−1

)
.
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We compute with (2.1) that

1

r21
− 1

r2−1

=
(x1 + d)2 + x22 − (x1 − d)2 − x22

r21r
2
−1

=
4dx1
r21r

2
−1

and
1

r21
+

1

r2−1

=
(x1 + d)2 + x22 + (x1 − d)2 + x22

r21r
2
−1

= 2
x21 + d2 + x22

r21r
2
−1

,

yielding the estimate. ✷

Finally, we show an estimate on ∂dV = ∂d(V1(x− d−→e1)V−1(x+ d−→e1)) = −∂x1V1V−1 + ∂x1V−1V1.

Lemma 2.6 There exists a constant K > 0 such that

|∂dV | 6 K

(1 + r̃)
,

|∇∂dV | 6 K

(1 + r̃)2

and

|Re(V̄ ∂dV )| 6 K

(1 + r̃)3
.

Furthermore,

|∂2dV | 6 K

(1 + r̃)2

and

|∂2d∇V | 6 K

(1 + r̃)3
.

Proof We have that ∂dV = −∂x1V1V−1 + ∂x1V−1V1 and from Lemma 2.2,

|∂x1V1| 6
K

(1 + r1)
6

K

(1 + r̃)
.

Similarly, |∂x1V−1| 6
K

(1+r̃) and this proves the first inequality. Furthemore, for ∇∂dV , every terms has two

derivatives, each one bringing a 1
(1+r̃) by (2.3), this shows the second inequality. Finally, we compute

Re(V̄ ∂dV ) = −|V−1|2Re(V1∂x1V1) + |V1|2Re(V−1∂x1V−1).

From Lemma 2.1, |Re(V1∂x1V1)| 6 K
(1+r1)3

6
K

(1+r̃)3 and |V−1|2 6 1. Similarly we have

||V1|2Re(V−1∂x1V−1)| 6 K

(1 + r̃)3
.

Furthermore, since ∂2dV = ∂2x1
V1V−1−2∂x1V1∂x1V−1+∂2x1

V−1V1, with equation (2.3), we check easily the estimations
on ∂2dV and ∂2d∇V . ✷

2.2 Setup of the proof

In the same way as in [8] (see also [17]), we will look at a solution of (TWc) as a perturbation of V of the form

v := ηV (1 + Ψ) + (1 − η)V eΨ

where η(x) = η̃(r1) + η̃(r−1) and η̃ is a C∞ positive cutoff with η̃(r) = 1 if r 6 1 and 0 if r > 2. The perturbation
is Ψ and we will also use

Φ := VΨ.
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We use such a perturbation because we want it to be additive (in Φ) near the center of the vortices (where v = V +Φ),
and multiplicative (in Ψ) far from them (where v = V eΨ). We shall require Φ to be bounded (and small) near the
vortices. The problem becomes an equation on Ψ, with the following Lemma 2.7, we shall write

ηL(Φ) + (1 − η)V L′(Ψ) + F (Ψ) = 0

where L and L′ are linear. The main part of the proof of the construction consists of inverting the linearized
operator ηL(Φ)+(1−η)V L′(Ψ) in suitable spaces, and then use a contraction argument by showing that F is small
and conclude on the existence of a solution Ψ by a fixed point theorem.

Lemma 2.7 The function v = ηV (1 + Ψ) + (1 − η)V eΨ is solution of (TWc) if and only if

ηL(Φ) + (1 − η)V L′(Ψ) + F (Ψ) = 0,

where Φ = VΨ,

L′(Ψ) := −∆Ψ − 2
∇V
V

.∇Ψ + 2|V |2Re(Ψ) − ic∂x2Ψ,

L(Φ) := −∆Φ − (1 − |V |2)Φ + 2Re(V̄ Φ)V − ic∂x2Φ,

F (Ψ) := E − ic∂x2V + V (1 − η)(−∇Ψ.∇Ψ + |V |2S(Ψ)) + R(Ψ),

with
E = −∆V − (1 − |V |2)V,

S(Ψ) := e2Re(Ψ) − 1 − 2Re(Ψ)

and R(Ψ) is a sum of terms at least quadratic in Ψ or Φ localized in the area where η 6= 0. Furthermore, there
exists C,C0 > 0 such that the estimate

|R(Ψ)| + |∇R(Ψ)| 6 C‖Φ‖2C2({r̃62})

holds if ‖Φ‖C2(R2) 6 C0 (a constant independent of c), where r̃ = min(|x−d~e1|, |x+d−→e1 |) for x ∈ R2. Additionally,
L(Φ) and L′(Ψ) are related by

L(Φ) = (E − ic∂x2V )Ψ + V L′(Ψ).

See Appendix A for the proof of this result.

The main reason for such a perturbation ansatz is because V (d−→e1) = V (−d−→e1) = 0, so we can not divide by V
as done in L′ for instance when we look near the vortices, therefore an additive perturbation is more suitable. But
far from the vortices, the perturbation is easier to compute when written multiplicatively with a factorisation by
V . Remark also that this allows us to take Ψ to explode at d~e1 and −d~e1 as long as Φ = VΨ does not. This is
needed for the norm we use in subsection 2.3.

As we look for Φ small (it is a perturbation), the conditions ‖Φ‖C2(R2) 6 C0 will always be true. We need them
because some of the error terms have an exponential contribution in Ψ, and not only quadratic. We recall that,
with our notations, ∇Ψ.∇Ψ is complex-valued.

Remark that the quantity F contains only nonlinear terms and the source term, which is E − ic∂x2V . Further-
more, contrary to the work [17], the transport term is in the linearized operator, and not considered as an error
term in F .
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2.3 Setup of the norms

For a given σ ∈ R, we define, similarly as in [8] and [17], for Ψ = Ψ1 + iΨ2 and h = h1 + ih2, the norms

‖Ψ‖∗,σ,d := ‖VΨ‖C2({r̃63})

+ ‖r̃1+σΨ1‖L∞({r̃>2}) + ‖r̃2+σ∇Ψ1‖L∞({r̃>2}) + ‖r̃2+σ∇2Ψ1‖L∞({r̃>2})

+ ‖r̃σΨ2‖L∞({r̃>2}) + ‖r̃1+σ∇Ψ2‖L∞({r̃>2}) + ‖r̃2+σ∇2Ψ2‖L∞({r̃>2}),

‖h‖∗∗,σ,d := ‖V h‖C1({r̃63})

+ ‖r̃1+σh1‖L∞({r̃>2}) + ‖r̃2+σ∇h1‖L∞({r̃>2})

+ ‖r̃2+σh2‖L∞({r̃>2}) + ‖r̃2+σ∇h2‖L∞({r̃>2}),

where r̃ = min(r1, r−1) (which depends on d). These are the spaces we shall use for the inversion of the linear
operator for suitable values of σ.

This norm is not the “natural” energy norm that we could expect, for instance:

‖Φ‖2HV
:=

∫

R

2

|∇Φ|2 + (1 − |V|2)|Φ|2 + Re(V̄ Φ)2.

In particular, we require different conditions on the decay at infinity (with, in a way, less decay). As a consequence,
the decay we have in Theorem 1.1 is not optimal (see [14]). This decay will be recovered later on by showing that
the solution has finite energy. The main advantage of the norms ‖.‖∗,σ,d and ‖.‖∗∗,σ,d is that they will allow us to
have uniform estimates on the error, without constants depending on c or d.

We are looking for a solution Ψ on a space of symmetric functions: we suppose that

∀x = (x1, x2) ∈ R2,Ψ(x1, x2) = Ψ(x1,−x2) = Ψ(−x1, x2)

because V and the equation has the same symmetries. With only those symmetries we will not be able to invert
the linearized operator because it has a kernel, we also need an orthogonal condition. We define

Zd(x) := ∂dV (x)(η̃(4r1) + η̃(4r−1)),

where η̃ is the same function as the one used for v: it is a C∞ non negative smooth cutoff with η̃(r) = 1 if r 6 1
and 0 if r > 2. In particular Zd(x) = 0 if r̃ > 1/2, which will make some computations easier. The other interest
of the cutoff function is that without it

∂dV (x) = −∂x1V1V−1 + ∂x1V−1V1

is not integrable in all R2. We define the Banach spaces we shall use for inverting the linear part:

E∗,σ,d :=

{Φ = VΨ ∈ C2(R2,C), ‖Ψ‖∗,σ,d < +∞; 〈Φ, Zd〉 = 0; ∀x ∈ R2,Ψ(x1, x2) = Ψ(x1,−x2) = Ψ(−x1, x2)},
E∗∗,σ′,d := {V h ∈ C1(R2,C), ‖h‖∗∗,σ′,d < +∞}

for σ, σ′ ∈ R. We shall omit the subscript d in the construction and use only E∗,σ, E∗∗,σ′ . Remark that E∗,σ contains
an orthogonality condition as well as the symmetries.

Our first goal is to invert the linearized operator. This is a difficult part, which requires a lot of computations
and critical elliptic estimates. The next subsection is devoted to the proof of the elliptic tools use in the proof of
the inversion. In particular, our paper diverges here from [17] (see Remark 2.11 thereafter).

2.4 Some elliptic estimates

In this subsection, we provide some tools for elliptic estimate adapted to L∞ norms.
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2.4.1 Weighted L∞ estimates on a Laplacian problem

Lemma 2.8 For d > 5, 0 < α < 1, there exists a constant K(σ) > 0 such that, for f ∈ C0(R2,C) such that

∀(x1, x2) ∈ R2, f(x1, x2) = −f(x1,−x2)

and with
εf,α := ‖f(x)(1 + r̃)2+α‖L∞(R2) < +∞,

there exists a unique C1(R2) function ζ such that

∆ζ = f

in the distribution sense,
∀(x1, x2) ∈ R2, ζ(x1, x2) = −ζ(x1,−x2)

and ζ satisfies the following two estimates:

∀x ∈ R2, |ζ(x)| 6 K(σ)εf,α
(1 + r̃)α

and

∀x ∈ R2, |∇ζ(x)| 6 K(σ)εf,α
(1 + r̃)1+α

.

See Appendix B.1 for the proof of this result.

Remark here that for a given function f , if it satisfies two inequalities with different values of (εf,α, α), then
the associated function ζ satisfies the estimates with both sets of values by uniqueness. Furthermore, with only the
hypothesis f ∈ C0(R2), we do not have ζ ∈ C2

loc(R
2) a priori.

2.4.2 Fundamental solution for −∆ + 2

We will use the fundamental solution of −∆ + 2. It can be deduce from the fundamental solution of −∆ + 1, which
has the following properties.

Lemma 2.9 ([1]) The fundamental solution of −∆+1 in R2 is 1
2πK0(|.|), where K0 is the modified Bessel function

of second kind. It satifies K0 ∈ C∞(R+∗) and

K0(r) ∼r→∞

√
π

2r
e−r,

K0(r) ∼r→0 − ln(r),

K ′
0(r) ∼r→∞ −

√
π

2r
e−r,

K ′
0(r) ∼r→0

−1

r
,

∀r > 0,K0(r) > 0,K ′
0(r) < 0 and K ′′

0 (r) > 0.

Proof The first three equivalents are respectively equations 9.7.2, 9.6.8 and 9.7.4 of [1]. The fourth one can be
deduced from equations 9.6.27 and 9.6.9 of [1]. For ν ∈ N, Kν is C∞(R,R) since it solves 9.6.1 of [1] and from
the end of 9.6 of [1], we have that Kν has no zeros. In particular with the asymptotics of 9.6.8, this implies that
Kν(r) > 0. Furthermore, from 9.6.27 of [1], we have K ′

0 = −K1 < 0 and K ′′
0 = −K ′

1 = K0+K2

2 > 0. ✷

We end this subsection by the proof an elliptic estimate that will be used in the proof of Proposition 2.17.
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Lemma 2.10 For any α > 0, there exists a constant C(α) > 0 such that, for any d > 1, if two real-valued functions
Ψ ∈ H1(R2), h ∈ C0(R2) satisfy in the distribution sense

(−∆ + 2)Ψ = h,

and
‖(1 + r̃)αh‖L∞(R2) < +∞,

then Ψ ∈ C1(R2) with

|Ψ| + |∇Ψ| 6 C(α)‖(1 + r̃)αh‖L∞(R2)

(1 + r̃)α
.

See Appendix B.2 for the proof of this result.

Remark 2.11 Lemma 2.10 is different from the equivalent one of [17] for the gradient, which is equation (5.21)
there. They claim that:

for any 0 < σ < 1, there exists C > 0 such that, if two real-valued functions Ψ ∈ C1(R2), h ∈ C0(R2) satisfy

(−∆ + 2)Ψ = h

in the distribution sense, and

‖Ψ(1 + r̃)1+σ‖L∞(R2) + ‖∇Ψ(1 + r̃)2+σ‖L∞(R2) + ‖(1 + r̃)1+σh‖L∞(R2) < +∞,

then

|Ψ| 6 C‖(1 + r̃)1+σh‖L∞(R2)

(1 + r̃)1+σ

and

|∇Ψ| 6 C‖(1 + r̃)1+σh‖L∞(R2)

(1 + r̃)2+σ
.

The main difference they claim would be a stronger decay for the gradient. However, such a result can not hold,
because of the following counterexample:

Ψε(x) =

{
0 if |x| 6 1/ε
sin2(r)

(1+r)2+σ if |x| > 1/ε.

For ε > 0 small enough (in particular such that 1
ε ≫ 1

c , and such that 1
ε is an integer multiple of π, so that Ψε is

C2), we have
‖(1 + r̃)1+σh(x)‖L∞(R2) = ‖(1 + r̃)1+σ((−∆ + 2)Ψ)(x)‖L∞(R2) 6 Kε

and
‖(1 + r̃)2+σ |∇Ψ(x)|‖L∞(R2) > 1/2.

Therefore, taking ε→ 0, we see that the estimate |∇Ψ(x)| 6 C‖(1+r̃)1+σh‖L∞(R2)

(1+r̃)2+σ can not hold.

For our proof of the inversion of the linearized operator (Proposition 2.17 below), we did not choose the same
norms ‖.‖∗,σ,d and ‖.‖∗∗,σ′,d as in [17] (at the beginning of subsection 2.3). In particular, we require decays on the
second derivatives for ‖.‖∗∗,σ′,d. Our proof of the inversion of the linearized operator (the equivalent of Lemma 5.1
of [17]) will be different, and will follow more closely the proof of [8].
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2.4.3 Estimates for the Gross-Pitaevskii kernels

We are interested here in solving the following equation on ψ, given a source term h and c ∈
]
0,
√

2
[
:

−ic∂x2ψ − ∆ψ + 2Re(ψ) = h.

It will appear in the inversion of the linearized operator around V . See Lemma 2.15 for the exact result. We
give here a way to construct a solution formally. We will highlight all the important quantities, as well as all the
difficulties that arise when trying to solve this equation rigorously.

In this subsection, we want to check that a solution of this equation, with ψ = ψ1 + iψ2 and h = h1 + ih2 (where
ψ1, ψ2, h1, h2 are real valued) can be written

ψ1 = K0 ∗ h1 + cH, (2.4)

with H a function that satisfies
∂xjH := Kj ∗ h2,

and
∂xjψ2 = Gj − cKj ∗ h1, (2.5)

where similarly Gj satisfies
∂xk

Gj := (c2Lj,k −Rj,k) ∗ h2,
where, for j, k ∈ {1, 2}, ξ = (ξ1, ξ2) ∈ R2,

K̂0(ξ) :=
|ξ|2

|ξ|4 + 2|ξ|2 − c2ξ22
,

K̂j(ξ) :=
ξ2ξj

|ξ|4 + 2|ξ|2 − c2ξ22
,

L̂j,k(ξ) :=
ξ22ξjξk

|ξ|2(|ξ|4 + 2|ξ|2 − c2ξ22)
,

and

R̂j,k(ξ) :=
ξjξk
|ξ|2 .

We will check later on that, for continuous and sufficiently decaying functions h, these quantities are well defined,
and that H,Gj , ψ2 can be defined from there derivatives. The Gross-Pitaevskii kernels, K0,Kj , Lj,k, and the Riesz
kernels Rj,k have been studied in [12], and we will recall some of the results obtained there.

We write the system in real and imaginary part:
{
c∂x2ψ2 − ∆ψ1 + 2ψ1 = h1
−c∂x2ψ1 − ∆ψ2 = h2.

Now, taking the Fourier transform of the system, we have
{
iξ2cψ̂2 + (|ξ|2 + 2)ψ̂1 = ĥ1
−iξ2cψ̂1 + |ξ|2ψ̂2 = ĥ2,

and we write it (
|ξ|2 + 2 icξ2
−icξ2 |ξ|2

)(
ψ̂1

ψ̂2

)
=

(
ĥ1
ĥ2

)
.

Here, we suppose that ψ is a tempered distributions and h ∈ Lp(R2,C) for some p > 1.
Now, we want to invert the matrix, and for that, we have to divide by its determinant, |ξ|4 + 2|ξ|2 − c2ξ22 . For

0 < c <
√

2, this quantity is zero only for ξ = 0. Thus, for ξ 6= 0,
(
ψ̂1

ψ̂2

)
=

1

|ξ|4 + 2|ξ|2 − c2ξ22

(
|ξ|2ĥ1 − icξ2ĥ2

(|ξ|2 + 2)ĥ2 + icξ2ĥ1

)
,
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which implies that

ψ̂1 =
|ξ|2ĥ1

|ξ|4 + 2|ξ|2 − c2ξ22
+

−icξ2ĥ2
|ξ|4 + 2|ξ|2 − c2ξ22

.

With the definition ofK0, we have |ξ|2

|ξ|4+2|ξ|2−c2ξ22
ĥ1 = K̂0ĥ1 and, defining the distributionH by Ĥ = −iξ2

|ξ|4+2|ξ|2−c2ξ22
ĥ2,

we have, for ξ 6= 0,

∂̂xjH =
ξjξ2ĥ2

|ξ|4 + 2|ξ|2 − c2ξ22
= K̂j ĥ2.

Remark that −iξ2
|ξ|4+2|ξ|2−c2ξ22

∈ L3/2(R2,C) and thus is a tempered distribution.

Now, we have

∂̂xjψ2 =
iξj(|ξ|2 + 2)ĥ2

|ξ|4 + 2|ξ|2 − c2ξ22
+

−cξjξ2ĥ1
|ξ|4 + 2|ξ|2 − c2ξ22

.

We check that
−cξjξ2

|ξ|4+2|ξ|2−c2ξ22
ĥ1 = −cK̂jĥ1, and we compute

|ξ|2 + 2

|ξ|4 + 2|ξ|2 − c2ξ22
=

1

|ξ|2
(

1 − c2ξ22
|ξ|4 + 2|ξ|2 − c2ξ22

)
=

1

|ξ|2 − c2
ξ22

|ξ|2(|ξ|4 + 2|ξ|2 − c2ξ22)
,

thus, denoting Ĝj =
iξj(|ξ|

2+2)

|ξ|4+2|ξ|2−c2ξ22
ĥ2, we have

∂̂xk
Gj := (c2L̂j,k − R̂j,k)ĥ2.

We therefore have that, at least formally, for ξ 6= 0, ̂−ic∂x2ψ − ∆ψ + 2Re(ψ) − h(ξ) = 0. We deduce that there
exists P ∈ C[X1, X2] such that −ic∂x2ψ − ∆ψ + 2Re(ψ) − h = P Now, if the function ψ and h are such that the
left hand side is bounded and goes to 0 at infinity, this implies that P = 0. This will hold under a condition on h
(which will be

∫
R

2 h2 = 0 and some decay estimates, that ψ will inherit). Another remark is that ψ is here in part
defined through its derivatives, and we need an argument to construct a primitive. See Lemma 2.15 for a rigorous
proof of this construction. Remark that −ic∂x2ψ − ∆ψ + 2Re(ψ) = 0 has some nonzero or unbounded polynomial
solutions, for instance ψ = i or ψ = ix2 − c

2 .
The kernels K0,Kj and Lj,k have been studied in details in [12], [13] and [14]. In particular, we recall the

following result.

Theorem 2.12 ([12], Theorems 5 and 6) For K ∈ {K0,Kj , Lj,k} and any 0 < c0 <
√

2, there exist a constant
K(c0) > 0 such that, for all 0 < c < c0,

|K(x)| 6 K(c0)

|x|1/2(1 + |x|)3/2

and

|∇K(x)| 6 K(c0)

|x|3/2(1 + |x|)3/2 .

Proof This is the main result of Theorems 5 and 6 of [12]. We added the fact that the constant K is uniform in
c, given that c is small. This can be easily shown by following the proof of Theorem 5 and 6 of [12], and verifying
that the constants depends only on weighed L∞ norms on K̂ and its first derivatives, which are uniforms in c if
c > 0 is small. The condition c < c0 is taken in ordrer to avoid c →

√
2, where this does not hold (the singularity

near ξ = 0 of K̂ changes of order at the limit). Furthermore, the factor 1/2 for the growth near x = 0 is not at all
optimal, but we will not require more here.

Remark that the speed in [12] is in the direction −→e1 , whereas it is in the direction −→e2 in our case, which explains
the swap between ξ2 and ξ1 in the two papers. ✷

We recall that r̃ = min(r1, r−1) with r±1 = |x∓ d−→e1 |. We give some estimates of convolution with these kernels.

Lemma 2.13 Take K ∈ {K0,Kj , Lj,k} and h ∈ C0(R2,R), and suppose that, for some α > 0, ‖h(1+r̃)α‖L∞(R2) <
+∞. Then, for any 0 < α′ < α, there exists C(α, α′) > 0 such that, for 0 < c < 1, if either
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− α < 2

− 2 < α < 3, ∀(x1, x2) ∈ R2, h(−x1, x2) = h(x1, x2) and
∫
R

2 h = 0,

then

|K ∗ h| 6 C(α, α′)‖h(1 + r̃)α‖L∞(R2)

(1 + r̃)α′ .

Furthermore, if α < 3 (without any other conditions), then

|∇K ∗ h| 6 C(α, α′)‖h(1 + r̃)α‖L∞(R2)

(1 + r̃)α′ .

See Appendix B.3 for the proof of this result.

The symmetry and
∫
R

2 h = 0 in the case 2 < α < 3 could be removed, if we suppose instead that
∫
{x1>0} h =∫

{x160} h = 0. In particular, if we suppose that ∀(x1, x2) ∈ R

2, h(x1, x2) = −h(x1,−x2), then the condition∫
R

2 h = 0 is automatically satisfied.

We complete these estimates with some for Rj,k.

Lemma 2.14 Take h ∈ C1(R2,R) with ∀x = (x1, x2) ∈ R2, h(−x1, x2) = h(x1, x2), and suppose that for some
α > 0, ‖h(1 + r̃)α‖L∞(R2) + ‖∇h(1 + r̃)α‖L∞(R2) < +∞. Then, for any 0 < α′ < α, for 0 < c < 1, if either

− α < 2

− 2 < α < 3 and
∫
R

2 h = 0,

then, there exists C(α, α′) > 0 such that

|Rj,k ∗ h| 6 C(α, α′)(‖h(1 + r̃)α‖L∞(R2) + ‖∇h(1 + r̃)α‖L∞(R2))

(1 + r̃)α′ .

See Appendix B.4 for the proof of this result.

We can now solve the problem
−ic∂x2ψ − ∆ψ + 2Re(ψ) = h,

∫

R

2

Im(h) = 0

in some suitable spaces. We define the norms, for σ, σ′ ∈ R,

‖ψ‖⊗,σ,∞ := ‖(1 + r̃)1+σψ1‖L∞(R2) + ‖(1 + r̃)2+σ∇ψ1‖L∞(R2)

+ ‖(1 + r̃)2+σ∇2ψ1‖L∞(R2) + ‖(1 + r̃)σψ2‖L∞(R2)

+ ‖(1 + r̃)1+σ∇ψ2‖L∞(R2) + ‖(1 + r̃)2+σ∇2ψ2‖L∞(R2)

and

‖h‖⊗⊗,σ′,∞ := ‖(1 + r̃)1+σ′

h1‖L∞(R2) + ‖(1 + r̃)2+σ′∇h1‖L∞(R2)

+ ‖(1 + r̃)2+σ′

h2‖L∞(R2) + ‖(1 + r̃)2+σ′∇h2‖L∞(R2),

as well as the spaces

E∞
⊗,σ := {ψ ∈ C2(R2,C), ‖ψ‖⊗,σ,∞ < +∞, ∀(x1, x2) ∈ R2, ψ(x1, x2) = ψ(−x1, x2)},

and
E∞
⊗⊗,σ′ := {h ∈ C1(R2,C), ‖h‖⊗⊗,σ′,∞ < +∞, ∀(x1, x2) ∈ R2, h(x1, x2) = h(−x1, x2)}.

15



The norms ‖.‖⊗,σ,∞ and ‖.‖∗,σ differ only on {r̃ 6 3}, and E∞
⊗,σ has one less symmetry than E∗,σ, but they are

equivalents at infinity in position. Same remarks hold for ‖.‖⊗⊗,σ′,∞ and ‖.‖∗∗,σ′ and their associated spaces.
Remark that if χ > 0 is a smooth cutoff function with value 0 on {r̃ 6 R/2} and 1 on {r̃ > R}, then for any σ ∈ R,

‖ψ‖∗,σ 6 K(R, σ)‖V ψ‖C2({r̃6R}) +K‖χψ‖⊗,σ,∞. (2.6)

Lemma 2.15 Given 1 > σ′ > σ > 0, there exists K1(σ, σ
′) > 0 such that, for any h ∈ E∞

⊗⊗,σ′ with
∫
R

2 Im(h) = 0
and 0 < c < 1, there exists a unique solution to the problem

−ic∂x2ψ − ∆ψ + 2Re(ψ) = h,

in E∞
⊗,σ. This solution ψ ∈ E∞

⊗,σ satisfies

‖ψ‖⊗,σ,∞ 6 K1(σ, σ′)‖h‖⊗⊗,σ′,∞.

Furthermore, if instead σ ∈] − 1, 0[ and 1 > σ′ > σ, there exists then K2(σ, σ′) > 0 such that, for any h ∈ E∞
⊗⊗,σ′

with ∀(x1, x2) ∈ R2, h(x1, x2) = h(x1,−x2), there exists a unique solution to the problem

−ic∂x2ψ − ∆ψ + 2Re(ψ) = h

in {Ψ ∈ E∞
⊗,σ, ∀(x1, x2) ∈ R2,Ψ(x1, x2) = Ψ(x1,−x2)}. This solution ψ ∈ E∞

⊗,σ satisfies

‖ψ‖⊗,σ,∞ 6 K2(σ, σ′)‖h‖⊗⊗,σ′,∞.

The case σ ∈]−1, 0[ is particular and such a norm will be used only in the proof of Lemma 2.18 (if ‖ψ‖⊗,σ,∞ < +∞
for σ < 0, the function ψ is not necessarily bounded for instance). Remark that the condition

∫
R

2 Im(h) = 0 is

automatically satisfied if ∀(x1, x2) ∈ R2, h(x1, x2) = h(x1,−x2).
Proof For 1 > σ′ > σ > −1, we write in real and imaginary parts h = h1 + ih2. We define, for j ∈ {1, 2},

Ψ1,j := K0 ∗ ∂xjh1 + cKj ∗ h2.

If 1 > σ′ > σ > 0, since ∂xjh1, h2 ∈ L1(R2) (because σ′ > 0 and h ∈ E∞
⊗⊗,σ′), and

∫
R

2 h2 =
∫
R

2 ∂x2h1 = 0, by
Lemma 2.13 (applied with 0 < α = 2 + σ′ < 3, 0 < α′ = 2 + σ < α), the function Ψ1,2 is well defined and satisfies

|∇Ψ1,2| + |Ψ1,2| 6
K(σ, σ′)‖h‖⊗⊗,σ′,∞

(1 + r̃)2+σ
.

This result still holds if σ ∈] − 1, 0[ and 1 > σ′ > σ, since 0 < α = 2 + σ′ < 3, 0 < α′ = 2 + σ < α. We check, still
with Lemma 2.13 (applied with 0 < α = 2 + σ′ < 3, 0 < α′ = 2 + σ < α), that Ψ1,1 is well defined and

|∇Ψ1,1| 6
K(σ, σ′)‖h‖⊗⊗,σ′,∞

(1 + r̃)2+σ
.

If σ ∈]− 1, 0[, we have |Ψ1,1| 6 K(σ,σ′)‖h‖⊗⊗,σ′,∞

(1+r̃)2+σ by Lemma 2.13 (2 + σ < 2). But since ∂x1h1 is not even in x1, we

can not apply Lemma 2.13 to estimate Ψ1,1 with the same decay in the case σ > 0. However, following the proof
of Lemma 2.13, we check that the estimate holds if |x+ d~e1| 6 1 or |x− d~e1| 6 1, and that otherwise

|Ψ1,1| 6
K(σ, σ′)‖h‖⊗⊗,σ′,∞

(1 + r̃)2+σ
+

∣∣∣∣∣K(x+ d~e1)

∫

{y160}

∂x1h(y)dy +K(x− d~e1)

∫

{y1>0}

∂x1h(y)dy

∣∣∣∣∣ .

Since ∫

{y160}

∂x1h(y)dy = −
∫

{y1>0}

∂x1h(y)dy =

∫

R

h(0, y2)dy2,

and
∣∣∣∣
∫

R

h(0, y2)dy2

∣∣∣∣ 6
∫

R

‖h‖⊗⊗,σ′,∞

(1 + r̃)1+σ′ dy2 6 cσ‖h‖⊗⊗,σ′,∞

∫

R

dy2
(1 + |y2|)1+σ′−σ

6 K(σ, σ′)cσ‖h‖⊗⊗,σ′,∞,
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we have ∣∣∣∣∣K(x+ d~e1)

∫

{y160}

∂x1h(y)dy +K(x− d~e1)

∫

{y1>0}

∂x1h(y)dy

∣∣∣∣∣
6 K(σ, σ′)|K(x+ d~e1) −K(x− d~e1)|cσ‖h‖⊗⊗,σ′,∞.

By Theorem 2.12, if |x+ d~e1|, |x− d~e1| > 1,

|K(x+ d~e1) −K(x− d~e1)| 6 K

(1 + |x+ d~e1|)2
+

K

(1 + |x− d~e1|)2
6

K

(1 + r̃)2
,

and, if r̃ 6 3d,

|K(x+ d~e1) −K(x− d~e1)| 6 K

(1 + r̃)2
6

Kd

(1 + r̃)3
,

or if r̃ > 3d,

|K(x+ d~e1) −K(x− d~e1)| 6 Kd sup
ν∈[−d,d]

|∇K(x+ ν~e1)| 6 Kd

(1 + r̃)3
,

therefore, by interpolation,

|K(x+ d~e1) −K(x− d~e1)| 6
(

K

(1 + r̃)2

)1−σ

×
(

Kd

(1 + r̃)3

)σ

6
Kdσ

(1 + r̃)2+σ
.

We deduce ∣∣∣∣∣K(x+ d~e1)

∫

{y160}

∂x1h(y)dy +K(x− d~e1)

∫

{y1>0}

∂x1h(y)dy

∣∣∣∣∣
6 K(σ, σ′)|K(x+ d~e1) −K(x− d~e1)|cσ‖h‖⊗⊗,σ′,∞

6
K(σ, σ′)(dc)σ

(1 + r̃)2+σ
‖h‖⊗⊗,σ′,∞

6
K(σ, σ′)

(1 + r̃)2+σ
‖h‖⊗⊗,σ′,∞.

Combining the previous estimates, we conclude that, for j ∈ {1, 2},

|∇Ψ1,j | + |Ψ1,j| 6
K(σ, σ′)‖h‖⊗⊗,σ′,∞

(1 + r̃)2+σ
. (2.7)

Let us show that Ψ1,j ∈ C1(R2,C) by dominated convergence theorem (it is not clear at this point that ∇Ψ1,j

is continuous). For x, ε ∈ R2,

∇Ψ1,j(x+ ε) −∇Ψ1,j(x) =

∫

R

2

∇K0(y)(∂xjh1(x+ ε− y) − ∂xjh1(x− y))dy,

+ c

∫

R

2

∇Kj(y)(h2(x + ε− y) − h2(x− y))dy.

We check that for any y ∈ R2, ∂xjh1(x+ ε− y) − ∂xjh1(x− y) → 0, h2(x+ ε− y) − h2(x− y) → 0 pointwise when
|ε| → 0 (by continuity of ∂xjh1 and h2), and

|∇K0(y)(∂xjh1(x+ ε− y) − ∂xjh1(x− y))|
+ c|∇Kj(y)(h2(x+ ε− y) − h2(x − y))|

6 K(σ)
|∇K0(y)|

(1 + r̃(x− y))2+σ′ ‖∂xjh1(1 + r̃)2+σ′‖L∞(R2)

+ K(σ)
c|∇Kj(y)|

(1 + r̃(x− y))2+σ′ ‖h2(1 + r̃)2+σ′‖L∞(R2)

6 K(σ, x)
|∇K0(y)|

(1 + r̃(y))2+σ′ ‖∂xjh1(1 + r̃)2+σ′‖L∞(R2)

+ K(σ, x)
c|∇Kj(y)|

(1 + r̃(y))2+σ′ ‖h2(1 + r̃)2+σ′‖L∞(R2) ∈ L1(R2)
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for |ε| 6 1 and a constant K(σ, x) > 0, giving the domination.

Now, we check, by taking their Fourier transforms, that ∂x1Ψ1,2 = ∂x2Ψ1,1 ∈ L2(R2,C) (see the computations

at the beginning of subsection 2.4.3), and thus the integral of the vector field

(
Ψ1,1

Ψ1,2

)
on any closed curve of R2

is 0. For a large constant D > 0, taking, for x1 ∈ R, the path

{(x1, y), y ∈ [−D,D]} ∪ {Y = (y1, y2) ∈ R2, |(x1, 0) − Y | = D, y1 > 0},

since |Ψ1,2| 6 K(σ,σ′)‖h‖⊗⊗,σ′,∞

(1+r̃)2+σ and

∫

{Y =(y1,y2)∈R2,|(x1,0)−Y |=D,y1>0}

|Ψ1,2| 6
K(c, σ, σ′, h)

D1+σ
→ 0

when D → ∞ (since 1 + σ > 0), we deduce that

∫ +∞

−∞

Ψ1,2(x1, y2)dy2 = 0. (2.8)

We then define for (x1, x2) ∈ R2,

ψ1(x1, x2) =

∫ x2

+∞

Ψ1,2(x1, y2)dy2,

and thus, if x2 < 0,

ψ1(x1, x2) =

∫ x2

−∞

Ψ1,2(x1, y2)dy2.

With (2.7), we check that ψ1 ∈ C1(R2,C), and by simple integration from infinity using the equations above (with
r̃ = min(|x − dc

−→e1 |, |x+ dc
−→e1 |), and since 1 + σ > 0), that

|ψ1| 6
K(σ, σ′)‖h‖⊗⊗,σ′,∞

(1 + r̃)1+σ
.

Furthermore, we check that
∂x2ψ1 = Ψ1,2 ∈ C1(R2,C),

and (by taking their Fourier transforms)

∂x1ψ1 = Ψ1,1 ∈ C1(R2,C),

therefore ψ1 ∈ C2(R2,C), and by (2.7),

|∇ψ1| 6 |Ψ1,1| + |Ψ1,2| 6
K(σ, σ′)‖h‖⊗⊗,σ′,∞

(1 + r̃)2+σ
.

For j, k ∈ {1, 2}, we have ∂2xjxk
ψ1 = ∂xjΨ1,k, thus, by (2.7),

|∇2ψ1| 6
K(σ, σ′)‖h‖⊗⊗,σ′,∞

(1 + r̃)2+σ
.

Now, we define
Ψ2,j,k := (c2Lj,k −Rj,k) ∗ h2 − cKj ∗ ∂xk

h1.

In the case 1 > σ′ > σ > 0, ∂xk
h1, h2 ∈ L1(R2) and since

∫
R

2 h2 =
∫
R

2 ∂xk
h1 = 0, by Lemmas 2.13 and 2.14 (for

α = 2 + σ′ < 3, α′ = 2 + σ < α, and the same variant for Kj ∗ ∂x1h1 as in the proof of (2.7)), this function is well
defined in L∞(R2,C), and satisfies,

|Ψ2,j,k| 6
K(σ, σ′)‖h‖⊗⊗,σ′,∞

(1 + r̃)2+σ
. (2.9)
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We check, as for the proof of (2.7), that this result holds if σ ∈] − 1, 0[ and 1 > σ′ > σ.
Remark here that we do not have Ψ2,j,k ∈ C1(R2,C), since in Lemma 2.14, the estimate on Rj,k ∗ h2 uses

∇h2 in the norm (showing that Ψ2,j,k ∈ C1(R2,C) would require estimates on ∇2h2). However, we have that
Ψ2,j,k ∈ C0(R2,C) by dominated convergence and continuity of h2 and ∂xk

h1 (as for ∇Ψ1,j). Furthermore, we
check (by taking their Fourier transforms) that ∂x1Ψ2,j,2 = ∂x2Ψ2,j,1 in the distribution sense. We infer that

the integral of

(
Ψ2,j,1

Ψ2,j,2

)
on any bounded closed curve of R2 is 0. Indeed, taking χn a mollifier sequence, then

χn ∗ Ψ2,j,1, χn ∗ Ψ2,j,2 ∈ C1(R2,C),

∂x1(χn ∗ Ψ2,j,2) − ∂x2(χn ∗ Ψ2,j,1) = χn ∗ (∂x1Ψ2,j,2 − ∂x2Ψ2,j,1) = 0,

therefore, for any closed curve C, the integral of the field

(
χn ∗ Ψ2,j,1

χn ∗ Ψ2,j,2

)
is 0. Using χn ∗Ψ2,j,k → Ψ2,j,k pointwise

(by continuity of Ψ2,j,k) and the domination

‖χn ∗ Ψ2,j,1‖L∞(R2) 6 ‖Ψ2,j,1‖L∞(R2) < +∞,

we infer that this result holds for

(
Ψ2,j,1

Ψ2,j,2

)
. We deduce, as for the proof of (2.8), that

∫ +∞

−∞

Ψ2,j,2(x1, y2)dy2 = 0. (2.10)

We then define for (x1, x2) ∈ R2, j ∈ {1, 2},

Ψ2,j(x1, x2) =

∫ x2

+∞

Ψ2,j,2(x1, y2)dy2,

and if x2 < 0, by (2.10),

Ψ2,j(x1, x2) =

∫ x2

−∞

Ψ2,j,2(x1, y2)dy2.

With arguments similar to the proof for Ψ1,j, we check that Ψ2,j ∈ C1(R2,C) with ∂xk
Ψ2,j = Ψ2,j,k,

|Ψ2,j | 6
K(σ, σ′)‖h‖⊗⊗,σ′,∞

(1 + r̃)1+σ
,

as well as

|∇Ψ2,j | 6
K(σ, σ′)‖h‖⊗⊗,σ′,∞

(1 + r̃)2+σ
.

Finally, since ∂x1Ψ2,2 = Ψ2,2,1 = Ψ2,1,2 = ∂x2Ψ2,1 ∈ L2(R2,C) (by taking their Fourier transforms, it follows from

Rj,k = Rk,j , Lj,k = Lk,j and K̂jξk = K̂kξj), we have, as before, that

∫ +∞

−∞

Ψ2,2(x1, y2)dy2 = 0.

We define

ψ2(x1, x2) =

∫ x2

+∞

Ψ2,2(x1, y2)dy2,

and thus, if x2 < 0,

ψ2(x1, x2) =

∫ x2

−∞

Ψ2,2(x1, y2)dy2.

We check, as previously, by integration from infinity, that ψ2 ∈ C2(R2,C), ∂2xjxk
ψ2 = Ψ2,j,k, and

|∇2ψ2| 6
K(σ, σ′)‖h‖⊗⊗,σ′,∞

(1 + r̃)2+σ
,
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|∇ψ2| 6
K(σ, σ′)‖h‖⊗⊗,σ′,∞

(1 + r̃)1+σ
,

as well as (if σ > 0)

|ψ2| 6
K(σ, σ′)‖h‖⊗⊗,σ′,∞

(1 + r̃)σ
.

Remark that if h satisfies ∀(x1, x2) ∈ R2, h(x1, x2) = h(x1,−x2), then by the definition of ψ1 and ψ2 above, for
ψ = ψ1 + iψ2, we have that ∀(x1, x2) ∈ R2, ψ(x1, x2) = ψ(x1,−x2). Therefore, in the case σ ∈] − 1, 0[, since
∀(x1, x2) ∈ R2, ψ2(x1, x2) = −ψ2(x1,−x2), we have ψ2(x1, 0) = 0, and we integrate ∇ψ2 from the line {x2 = 0}
instead of infinity to show that |ψ2| 6 K(σ,σ′)‖h‖⊗⊗,σ′,∞

(1+r̃)σ .

We deduce that, in either cases, ψ = ψ1 + iψ2 ∈ E∞
⊗,σ, and it satisfies

‖ψ‖⊗,σ,∞ 6 K(σ, σ′)‖h‖⊗⊗,σ′,∞.

Now, let us show that −ic∂x2ψ−∆ψ+2Re(ψ) = h. From the computations at the beginning of subsection 2.4.3, we
check that the Fourier transform (in the distribution sense) of both side of the equation are equals on {ξ ∈ R2, ξ 6= 0}
(remark that they are both in Lp(R2,C) for some p > 2 large enough). This implies that

Supp
(

̂−ic∂x2ψ − ∆ψ + 2Re(ψ) − h
)
⊂ {0},

and thus −ic∂x2ψ − ∆ψ+ 2Re(ψ)− h = P ∈ C[X1, X2]. With the decay estimates on ψ and h, we check that P is
bounded and goes to 0 at infinity (since σ, σ′ > −1), thus P = 0.

Finally, if ψ̃ ∈ E∞
⊗,σ satisfies −ic∂x2ψ̃ − ∆ψ̃ + 2Re(ψ̃) = h, then ψ − ψ̃ ∈ C2(R2,C) and

(−ic∂x2 − ∆ + 2Re)(ψ − ψ̃) = 0.

With the computations at the beginning of subsection 2.4.3, since ψ − ψ̃ is a tempered distribution, we check that

Supp ̂ψ − ψ̃ ⊂ {0}, therefore ψ− ψ̃ = P ∈ C[X1, X2]. If σ > 0, since ψ− ψ̃ goes to 0 at infinity, P = 0. If σ ∈]−1, 0[,
then P = iλ for some λ ∈ R (Re(ψ − ψ̃) → 0 at infinity and r̃−σIm(ψ − ψ̃) is bounded), and by the symmetry on
ψ, ψ̃ we have in that case, λ = 0. This shows the uniqueness of a solution in E∞

⊗,σ (with the symmetry if σ ∈]−1, 0[),
and thus concludes the proof of this lemma. ✷

2.5 Reduction of the problem

2.5.1 Inversion of the linearized operator

One of the key element in the inversion of the linearized operator is the computation of the kernel for only one
vortex. The kernel of the linearized operator around one vortex has been studied in [7], with the following result.

Theorem 2.16 (Theorem 1.2 of [7]) Consider the linearized operator around one vortex of degree ε = ±1,

LVε(Φ) := −∆Φ − (1 − |Vε|2)Φ + 2Re(VεΦ)Vε.

Suppose that

‖Φ‖2HVε
:=

∫

R

2

|∇Φ|2 + (1 − |Vε|2)|Φ|2 + Re2(VεΦ) < +∞

and
LVε(Φ) = 0.

Then, there exist two constants c1, c2 ∈ R such that

Φ = c1∂x1Vε + c2∂x2Vε.
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This result describes the kernel of LVε that will appear in the proof of Proposition 2.17. It shows that the kernel
in HVε :=

{
Φ ∈ H1

loc(R
2), ‖Φ‖HVε

< +∞
}

contains only the two elements we expect: ∂x1Vε, ∂x2Vε, which are due
to the invariance by translation of (GP). One of the directions will be killed by the symmetry and the other one
by the orthogonality.

Now, we shall invert the linear part ηL(Φ) + (1 − η)V L′(Ψ). We recall that Φ = VΨ. We first state an a priori
estimate result. We recall the definitions, for σ, σ′ ∈]0, 1[,

E∗,σ,d =

{Φ = VΨ ∈ C2(R2,C), ‖Ψ‖∗,σ,d < +∞; 〈Φ, Zd〉 = 0; ∀x ∈ R2,Ψ(x1, x2) = Ψ(x1,−x2) = Ψ(−x1, x2)}
and

E∗∗,σ′,d = {V h ∈ C1(R2,C), ‖h‖∗∗,σ′,d < +∞},
with

‖Ψ‖∗,σ,d = ‖VΨ‖C2({r̃63})

+ ‖r̃1+σΨ1‖L∞({r̃>2}) + ‖r̃2+σ∇Ψ1‖L∞({r̃>2}) + ‖r̃2+σ∇2Ψ1‖L∞({r̃>2})

+ ‖r̃σΨ2‖L∞({r̃>2}) + ‖r̃1+σ∇Ψ2‖L∞({r̃>2}) + ‖r̃2+σ∇2Ψ2‖L∞({r̃>2}),

‖h‖∗∗,σ′,d = ‖V h‖C1({r̃63})

+ ‖r̃1+σ′

h1‖L∞({r̃>2}) + ‖r̃2+σ′∇h1‖L∞({r̃>2})

+ ‖r̃2+σ′

h2‖L∞({r̃>2}) + ‖r̃2+σ′∇h2‖L∞({r̃>2}).

Proposition 2.17 For 1 > σ′ > σ > 0, consider the problem, in the distribution sense
{
ηL(Φ) + (1 − η)V L′(Ψ) = V h
Φ = VΨ ∈ E∗,σ, V h ∈ E∗∗,σ′ .

Then, there exist constants c0(σ, σ′) > 0 small and C(σ, σ′) > 0 depending only on σ and σ′, such that, for any
solution of this problem with 0 < c 6 c0(σ, σ′), 1

2 < cd < 2, it holds

‖Ψ‖∗,σ,d 6 C(σ, σ′)‖h‖∗∗,σ′,d.

Proof This proof is similar to the ones done in [8] for the inversion of their linearized operator. The main difference
is that we have a transport term. Fix 1 > σ′ > σ > 0. We argue by contradiction. Suppose that for given 1 > σ′ >
σ > 0, there is no threshold c0(σ, σ′) > 0 such that, if 0 < c 6 c0(σ, σ′) we have ‖Ψ‖∗,σ,d 6 C(σ, σ′)‖h‖∗∗,σ′,d. We
can then find a sequence of cn → 0 (and so dn → ∞), functions Φn = VΨn ∈ E∗,σ and V hn ∈ E∗∗,σ′ solutions of
the problem and such that

‖Ψn‖∗,σ,dn = 1

and
‖hn‖∗∗,σ′,dn → 0.

We look in the region Σ := {x1 > 0} thanks to the symetry Ψ(x1,x2) = Ψ(−x1, x2). The orthogonality condition
of E∗,σ becomes 2Re

∫
Σ ΦnZdn = 0.

Step 1. Inner estimates.

The problem can be written (using V L′(Ψn) = −(E − icn∂x2V )Ψn + L(Φn) from Lemma 2.7) as

V hn = L(Φn) − (1 − η)(E − icn∂x2V )Ψn.

First, we recall that V and E are depending on n. The sequence (Φn(.+ dn
−→e1))n∈N is equicontinuous and bounded

(1 = ‖Ψn‖∗,σ,d controls Φn and its derivatives in L∞(R2) uniformly in n).
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Such a function Φn, as a solution of

∆Φn = −(1 − |V |2)Φn + 2Re(V̄ Φn)V − ic∂x2Φn − (1 − η)(E − icn∂x2V )Ψn − V hn (2.11)

in the distribution sense, by Theorem 8.8 of [10] is H2
loc(R

2) (since the right hand side is C0(R2)). Furthermore,
still by Theorem 8.8 of [10], we have, for x ∈ R2,

‖Φn‖H2(B(x,1)) 6 K(‖Φn‖H1(B(x,2)) + ‖∆Φn‖L2(B(x,2))).

By ‖Ψn‖∗,σ,d = 1, the quantities ‖Φn‖L∞(B(x,2)), ‖∇Φn‖L∞(B(x,2)) and ‖∆Φn‖L∞(B(x,2)) are bounded by a constant
independent of n. Therefore, (Φn)n∈N is bounded in H2

loc(R
2).

We deduce, by compact embedding, that there exists a function Φ such that Φn(.+ dn
−→e1) → Φ in H1

loc(R
2) (up

to a subsequence).

Now, since L(Φn) = −∆Φn − (1 − |V |2)Φn + 2Re(V̄ Φn)V − ic∂x2Φn, we have, in the weak sense,

∆Φn + V hn = −(1 − |V |2)Φn + 2Re(V̄ Φn)V − icn∂x2Φn − (1 − η)(E − icn∂x2V )Ψn,

therefore ∆Φn(.+ dn
−→e1) +V hn(.+ dn

−→e1) is equicontinuous and bounded uniformly and then, by Ascoli’s Theorem,
up to a subsequence converges to a limit l in C0

loc(R
2). Since V hn(.+ dn

−→e1) → 0 in C0
loc(R

2) by ‖hn‖∗∗,σ′,d → 0 and
∆Φn(.+ dn

−→e1) → ∆Φ in the distribution sense, this limit must be ∆Φ (in the H−1
loc (R2) sense).

We have locally uniformly that V hn(. + dn
−→e1) → 0 because ‖hn‖∗∗,σ′,d → 0 and |V | 6 1, and we have, from

Lemma 2.4, that E(y + dn
−→e1) → 0 and V (y + dn

−→e1) → V1(y) when n → ∞ locally uniformly. Lastly, ∂x2Φn and
(1− η)∂x2VΨn are uniformly bounded in R2 independently of n. Therefore when we take the locally uniform limit
when dn → ∞ in

(V hn)(y + dn
−→e1) = (L(Φn))(y + dn

−→e1) − ((1 − η)(E − icn∂x2V )Ψn)(y + dn
−→e1),

we have (in the distribution sense)
LV1(Φ) = 0.

Using ∂dV (.+ d−→e1) → −∂x1V1(.) locally uniformly from Lemma 2.4, we show that

0 = 2Re

∫

Σ

ΦnZd → 2〈Φ|η̃(./4)∂x1V1〉

since Zd is compactly supported around 0 when we take the equation in y+dn
−→e1 . The problem at the limit n→ ∞

becomes (in the H−1
loc (R2) sense) {

LV1(Φ) = 0
〈Φ
∣∣η̃
(
.
4

)
∂x1V1〉 = 0 ,

with Φ = V1Ψ (since V (y + d−→e1) → V1(y) from Lemma 2.4).
Let us show that ‖Φ‖HV1

< +∞. For that, we will show that

∫

B(dn
−→e1,d

1/2
n )

|∇Φn|2 +
|Φn|2

(1 + r1)2
+ Re2(V1(.− dn

−→e1)Φn) 6 K(σ),

where K(σ) > 0 is independent of n, which shall imply (by Lemma 2.3)

‖Φ‖2HV1
6 lim sup

n→∞

∫

B(dn
−→e1,d

1/2
n )

|∇Φn|2 +
|Φn|2

(1 + r1)2
+ Re(V1(.− dn

−→e1)Φn)2 6 K(σ) < +∞.

First, Φn ∈ C2(R2) hence Φn ∈ H1
loc(R

2). We have

|∇Φn|2 6 2|∇V1|2|Ψn|2 + 2|∇Ψn|2|V1|2,
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with |∇V1|2 = Or1→∞

(
1
r21

)
by Lemma 2.2, and, inB(dn

−→e1 , d1/2n ), |Ψn|2 6
C

(1+r1)2σ
‖Ψn‖2∗,σ,d, |∇Ψn|2 6

C
(1+r1)2+2σ ‖Ψn‖2∗,σ,d.

Therefore since ‖Ψn‖∗,σ,d 6 1,

∫

B(dn
−→e1,d

1/2
n )

|∇Φn|2 6

∫

B(dn
−→e1,d

1/2
n )

K

(1 + r1)2+2σ
6 K(σ).

In addition, in B(dn
−→e1 , d1/2n ), |Φn|2 = |V1|2|Ψn|2 6 K

(1+r1)2σ
‖Ψn‖2∗,σ,dn

hence |Φn|
2

(1+r1)2
6 K

(1+r1)2+2σ and

∫

B(dn
−→e1,d

1/2
n )

|Φn|2
(1 + r1)2

6

∫

B(dn
−→e1,d

1/2
n )

K

(1 + r1)2+2σ
6 K(σ).

Lastly, still in B(dn
−→e1 , d1/2n ), by Lemma 2.3,

Re(V1Φn)2 = |V1|4Re(V−1Ψn)2 6 |V1|4(Re(Ψn)2 + (1 − |V−1|2)|Ψn|2) 6
K

(1 + r1)2+2σ
,

giving the same result. We then have ‖Φ‖HV1
< +∞, therefore, we can apply Theorem 2.16. We deduce that

Φ = c1∂x1V1 + c2∂x2V1

for some constants c1, c2 ∈ R.

Since ∀x ∈ R2,Ψn(x1,x2) = Ψn(x1,−x2), we have ∀y ∈ R2,Φ(y1, y2) = Φ(y1,−y2). The function ∂x1V1 enjoys
also this symmetry, therefore so does c2∂x2V1. It is possible only if c2 = 0. The orthogonality condition then
imposes

c1

∫

Σ

|∂x1V1(y)|2η̃
(y

4

)
dy = 0,

implying that c1 = 0. Hence
Φn(.+ dn

−→e1) → 0

in C1
loc(R

2). By equation (2.11) and standard elliptic estimates, this convergence also hold in C2
loc(R

2). The same
proof works for the z coordinate (around the center of the −1 vortex). As a consequence, for any R > 0, we have

‖Φn‖L∞({r̃6R}) + ‖∇Φn‖L∞({r̃6R}) + ‖∇2Φn‖L∞({r̃6R}) → 0 (2.12)

as n→ ∞. With this result, to obtain a contradiction (which will be ‖Ψn‖∗,σ,d → 0) we still need to have estimates
near the infinity in space.

Step 2. Outer computations.

Thanks to the previous step, we can take a cutoff to look only at the infinity in space. For R > 4, we define χR

a smooth cutoff function with value χR(x) = 1 if r̃ > R and χR(x) = 0 if r̃ 6 R
2 , with |∇χR| 6 4

R . We then define

Ψ̃n := χRΨn,

h̃n := χRhn

and we choose χR such that Ψ̃n and h̃n enjoy the same symmetries than Ψn and hn respectively. We compute on
R

2\(B(dn
−→e1 , R) ∪B(−dn−→e1 , R)):

∇Ψ̃n = ∇χRΨn + χR∇Ψn = ∇Ψn,

∆Ψ̃n = ∆χRΨn + 2∇χR∇Ψn + χR∆Ψn = ∆Ψn.

We deduce that Ψ̃n ∈ E∞
⊗,σ and h̃n ∈ E∞

⊗⊗,σ′ by (2.6), since Ψ̃n ∈ C2(B(dn
−→e1 , R) ∪ B(−dn−→e1 , R),C), h̃n ∈

C1(B(dn
−→e1 , R) ∪ B(−dn−→e1 , R),C) and, outside of B(dn

−→e1 , R) ∪ B(−dn−→e1 , R), Ψ̃n = Ψn with ‖Ψn‖∗,σ,dn = 1,

as well as h̃n = hn, with ‖hn‖∗∗,σ′,dn → 0 when n→ ∞. In particular,

‖h̃n‖⊗⊗,σ′,∞ = oRn→∞(1),
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where oRn→∞(1) is a sequence that, for fixed R > 4, goes to 0 when n→ ∞ (it also depends on σ and σ′).

Since χR = 1 on R2\(B(dn
−→e1 , R) ∪B(−dn−→e1 , R)), we have there L′(Ψ̃n) = h̃n. Therefore, we can write that in

R

2 that L′(Ψ̃n) = h̃n + Loc(Ψn), with

Loc(Ψn) := −χRη

V
L(VΨn) + (1 − η)(L′(χRΨn) − χRL

′(Ψn)),

a term that is supported in R2\(B(dn
−→e1 , R) ∪ B(−dn−→e1 , R)). By (2.12) and ‖hn‖∗∗,σ′,dn → 0 when n → ∞, it

satisfies

‖Loc(Ψn)‖⊗⊗,σ′,∞

6 K(R)‖Loc(Ψn)‖C1(R2\(B(dn
−→e1,R)∪B(−dn

−→e1,R)))

6 K(R)‖Φn‖C2(R2\(B(dn
−→e1,R)∪B(−dn

−→e1,R)))

= oRn→∞(1).

We recall that L′(Ψ) = −∆Ψ − 2∇V
V .∇Ψ + 2|V |2Re(Ψ) − ic∂x2Ψ, therefore

− ∆Ψ̃n − ic∂x2Ψ̃n + 2Re(Ψ̃n) = h̃n + Loc(Ψn) + 2
∇V
V

.∇Ψ̃n + 2(1 − |V |2)Re(Ψ̃n). (2.13)

We define

h̃′n := h̃n + Loc(Ψn) + 2
∇V
V

.∇Ψ̃n + 2(1 − |V |2)Re(Ψ̃n).

Let us show that h̃′n ∈ E∞
⊗⊗,σ′ with

‖h̃′n‖⊗⊗,σ′,∞ 6 oRn→∞(1) + oR→∞(1),

where oR→∞(1) is a quantity that goes to 0 when R → ∞ (in particular, independently of n). By Lemma 2.15,
(the condition

∫
R

2 Im(h̃′n) = 0 is a consequence of the symmetries on h̃n and Ψ̃n), this would imply, with equation

(2.13) (and since Ψ̃n ∈ E∞
⊗,σ), that

‖Ψ̃‖⊗,σ,∞ 6 oRn→∞(1) + oR→∞(1). (2.14)

This estimate has already been done for the terms Loc(Ψn) and h̃n. Therefore, we only have to check that
∥∥∥∥2

∇V
V

.∇Ψ̃n + 2(1 − |V |2)Re(Ψ̃n)

∥∥∥∥
⊗⊗,σ′,∞

6 oRn→∞(1) + oR→∞(1).

First, remark that the term (1 − |V |2)Re(Ψ̃n) is real-valued. By Lemma 2.3,

|1 − |V |2| + ∇(|V |2) 6
K

(1 + r̃)2
,

and with (2.12), Ψ̃n = Ψn in {r̃ > R}, ‖Ψn‖∗,σ = 1, 0 < σ < σ′ < 1,

‖(1 + r̃)1+σ′

(1 − |V |2)Re(Ψ̃n)‖L∞(R2)

6 oRn→∞(1) +K

∥∥∥∥∥
(1 + r̃)1+σ′

(1 + r̃)3+σ

∥∥∥∥∥
L∞({r̃>R})

6 oRn→∞(1) + oR→∞(1)

and

‖(1 + r̃)2+σ′∇((1 − |V |2)Re(Ψ̃))‖L∞(R2)

6 ‖(1 + r̃)2+σ′∇(|V |2)Re(Ψ̃)‖L∞(R2) + ‖(1 + r̃)2+σ′

(1 − |V |2)Re(∇Ψ̃)‖L∞(R2)

6 oRn→∞(1) +K



∥∥∥∥∥

(1 + r̃)2+σ′

(1 + r̃)3+σ

∥∥∥∥∥
L∞({r̃>R})




6 oRn→∞(1) + oR→∞(1).
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This concludes the proof of

‖2(1 − |V |2)Re(Ψ̃n)‖⊗⊗,σ′,∞ 6 oRn→∞(1) + oR→∞(1).

Now, we compute
∇V
V

(x) =
∇V1
V1

(y) +
∇V−1

V−1
(z),

and recall, by Lemma 2.1, that ∇Vε(x) = iεVε(x) x⊥

|x|2 + O
(

1
r3

)
for ε = ±1. We deduce that, far from the vortices

(for instance on R2\(B(d−→e1 , 4) ∪B(−d−→e1 , 4))), we have

∇V
V

(x) = i

(
y⊥

r21
− z⊥

r2−1

)
+Or1→∞

(
1

r31

)
+Or−1→∞

(
1

r3−1

)
.

In particular, the first order of ∇V
V is purely imaginary, and the next term is of order 1

r31
+ 1

r3−1
. We check in

particular, using Lemma 2.3, that on R2\(B(d−→e1 , 4) ∪B(−d−→e1 , 4)),
∣∣∣∣(1 + r̃)Im

(∇V
V

)∣∣∣∣ +

∣∣∣∣(1 + r̃)3Re

(∇V
V

)∣∣∣∣

+

∣∣∣∣(1 + r̃)2∇Im

(∇V
V

)∣∣∣∣+

∣∣∣∣(1 + r̃)3∇Re

(∇V
V

)∣∣∣∣
6 K.

Therefore, with R > 4, equation (2.12), Ψ̃n = Ψn in {r̃ > R}, ‖Ψn‖∗,σ = 1 and 0 < σ < σ′ < 1,
∥∥∥∥(1 + r̃)1+σ′

Re

(∇V
V

.∇Ψ̃

)∥∥∥∥
L∞(R2)

6 oRn→∞(1) +K

∥∥∥∥∥
(1 + r̃)1+σ′

(1 + r̃)2+σ

∥∥∥∥∥
L∞({r̃>R})

6 oRn→∞(1) + oR→∞(1),

∥∥∥∥(1 + r̃)2+σ′∇Re

(∇V
V

.∇Ψ̃

)∥∥∥∥
L∞(R2)

6 oRn→∞(1) +K

∥∥∥∥∥
(1 + r̃)2+σ′

(1 + r̃)3+σ

∥∥∥∥∥
L∞({r̃>R})

6 oRn→∞(1) + oR→∞(1),

∥∥∥∥(1 + r̃)2+σ′

Im

(∇V
V

.∇Ψ̃

)∥∥∥∥
L∞(R2)

6

∥∥∥∥(1 + r̃)2+σ′

Im

(∇V
V

)
.Re(∇Ψ̃)

∥∥∥∥
L∞(R2)

+

∥∥∥∥(1 + r̃)2+σ′

Re

(∇V
V

)
.Im(∇Ψ̃)

∥∥∥∥
L∞(R2)

6 oRn→∞(1) +K

∥∥∥∥∥
(1 + r̃)2+σ′

(1 + r̃)3+σ

∥∥∥∥∥
L∞({r̃>R})

+K

∥∥∥∥∥
(1 + r̃)2+σ′

(1 + r̃)3+σ

∥∥∥∥∥
L∞({r̃>R})

6 oRn→∞(1) + oR→∞(1),

and, with a similar decomposition,
∥∥∥∥(1 + r̃)2+σ′∇Im

(∇V
V

.∇Ψ̃

)∥∥∥∥
L∞(R2)

6 oRn→∞(1) + oR→∞(1).

This conclude the proof of
∥∥∥2∇V

V .∇Ψ̃
∥∥∥
⊗⊗,σ′,∞

6 oRn→∞(1) + oR→∞(1), and thus of (2.14).
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Step 3. Conclusion.

We have ‖Ψn‖∗,σ,dn 6 K(R)‖Φn‖C2({r̃6R}) +K‖Ψ̃n‖∗,σ,dn by (2.6), therefore, with equations (2.12) and (2.14),

‖Ψn‖∗,σ,dn 6 oRn→∞(1) + oR→∞(1).

If we take R large enough (depending on σ, σ′) so that oR→∞(1) 6 1/10 and then n large enough (depending on
R, σ and σ′) so that oRn→∞(1) 6 1/10, we have, for n large, ‖Ψn‖∗,σ,dn 6 1/5, which is in contradiction with

‖Ψn‖∗,σ,dn = 1.

✷

2.5.2 Existence of a solution

At this point, we do not have existence of a solution to the linear problem

{
ηL(Φ) + (1 − η)V L′(Ψ) = V h
Φ ∈ E∗,σ, V h ∈ E∗∗,σ′ ,

only an a priori estimate. The existence of a solution is done in Proposition 2.20, its proof being the purpose of
this subsection. In [8], the existence proof is done using mainly the fact that the domain is bounded. We provide
here a proof of existence by approximation on balls of large radii for a particular Hilbertian norm. Given c > 0 and
a > 10/c2, we define

Ha :=
{

Φ = QcΨ ∈ H1
loc(B(0, a)), ‖Φ‖2Ha

:= ‖Φ‖2H1({r̃63}) +

∫

{r̃>2}∩{r6a}

|∇Ψ|2 + Re2(Ψ) +
Im2(Ψ)

(1 + r)5/2

}
,

and we also allow a = +∞. We first state a result on functions in H∞.

Lemma 2.18 There exists c0 > 0 such that, for 0 < c < c0, 0 < σ < σ′ < 1, V h ∈ E∗∗,σ′ , if a function
Φ ∈ H∞ ∩C1(R2) satisfies, in the weak sense,

ηL(Φ) + (1 − η)V L′(Ψ) = V h,

and Φ = VΨ, 〈VΨ, Zd〉 = 0; ∀x ∈ R2,Ψ(x1, x2) = Ψ(x1,−x2) = Ψ(−x1, x2), then

Φ ∈ E∗,σ.

See Appendix B.5 for the proof of this result.

The next step is to construct a solution on a large ball in the space Ha.

Lemma 2.19 For 0 < σ′ < 1, there exists c0(σ′) > 0 such that, for 0 < c < c0(σ′), there exists a0(c, σ′) > 10
c2 such

that, for V h ∈ E∗∗,σ′ , a > a0(c, σ′), the problem





ηL(Φ) + (1 − η)V L′(Ψ) = V h inB(0, a)

Φ ∈ Ha,Φ = VΨ, 〈VΨ, Zd〉 = 0; ∀x ∈ B(0, a),Ψ(x1, x2) = Ψ(x1,−x2) = Ψ(−x1, x2)
Φ = 0 on ∂B(0, a)
〈V h, Zd〉 = 0

admits a unique solution, and furthermore, there exists K(σ′, c) > 0 independent of a such that

‖Φ‖Ha 6 K(σ′, c)‖h‖∗∗,σ′.
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Here, a > 10/c2 is not necessary, the condition a > 10/c should be enough. However, this simplifies some
estimates in the proof, and it will be enough for us here. Here, we require 〈V h, Zd〉 = 0 in order to apply the
Fredholm alternative in {ϕ ∈ H1

0 (B(0, a)), 〈ϕ,Zd〉 = 0} to show the existence of a solution.

Proof We argue by contradiction on the estimation. Assuming the existence, take any 0 < σ′ < 1, and choose
c0(σ′) > 0 smaller than the one from Proposition 2.17, and 0 < c < c0(σ′). Suppose that there exists a sequence
an > 10

c2 , an → ∞, functions Φn ∈ Han , Φn = 0 on ∂B(0, an) and V hn ∈ E∗∗,σ′ such that ‖Φn‖Han
= 1,

‖hn‖∗∗,σ′ → 0 and ηL(Φn) + (1 − η)V L′(Ψn) = V hn on B(0, an). In particular, remark here that c is independent
of n, only the size of the ball grows. Our goal is to show that ‖Φn‖Han

= ocn→∞(1), where ocn→∞(1) is a quantity
going to 0 when n→ ∞ at fixed c, which leads to the contradiction.

Following the same arguments as in step 1 of the proof of Proposition 2.17, we check that Φn → Φ in C2
loc(R

2)
and ηL(Φ) + (1 − η)V L′(Ψ) = 0 in R2. Furthermore, it is easy to check that, since ‖Φn‖Han

= 1, we have
‖Φ‖H∞ 6 1. Then, by Lemma 2.18, since the orthogonality and the symmetries pass at the limit, this implies that
Φ ∈ E∗,σ for any 0 < σ < σ′, and therefore, by Proposition 2.17, Φ = 0.

We deduce that ‖Φn‖C2(B(0,10/c2)) = ocn→∞(1). Now, we use the same cutoff as in the proof of Lemma 2.18,

and we have the system on Ψ̃n = Ψ̃1 + iΨ̃2, with h̃n = h̃1 + ih̃2 (see equation (B.8)):





∆Ψ̃1 − 2Ψ̃1 − c∂x2Ψ̃2 = −h̃1 − 2Re

(
∇V
V .∇Ψ̃n

)
+ Loc1(Ψn) − 2(1 − |V |2)Ψ̃1

∆Ψ̃2 + c∂x2Ψ̃1 = −h̃2 − 2Im
(
∇V
V .∇Ψ̃n

)
+ Loc2(Ψn).

Now, multiplying the first equation by Ψ̃1 and integrating on Ω = B(0, a)\B(0, 5/c2), we have

∫

Ω

(∆Ψ̃1 − 2Ψ̃1)Ψ̃1 =

∫

Ω

(
c∂x2Ψ̃2 − h̃1 − 2Re

(∇V
V

.∇Ψ̃n

)
+ Loc1(Ψn) − 2(1 − |V |2)Ψ̃1

)
Ψ̃1.

We integrate by parts. Recall that ‖Φn‖C2(B(0,10/c2)) = ocn→∞(1) and Φn = VΨn = 0 on ∂B(0, an), thus

∫

Ω

∆Ψ̃1Ψ̃1 = −
∫

Ω

|∇Ψ̃1|2 + ocn→∞(1).

Furthermore, since V hn ∈ E∗∗,σ′ , we check easily that ‖h̃1‖L2(Ω) 6 oσ
′

c→0(1), and we compute with Lemma 2.3 and
‖Φn‖C2(B(0,10/c2)) = ocn→∞(1) that, since for x ∈ Ω, r > 5/c2,

∥∥∥∥
∇V
V

∥∥∥∥
L∞(Ω)

+ ‖Loc1(Ψn)‖L∞(Ω) + ‖Loc2(Ψn)‖L∞(Ω) + ‖(1 − |V |2)‖L∞(Ω) 6 oc→0(1) + ocn→∞(1).

This allows us to estimate the right hand side: by Cauchy-Schwarz,

‖∇Ψ̃1‖2L2(Ω) + 2‖Ψ̃1‖2L2(Ω) 6

c‖∇Ψ̃2‖L2(Ω)‖Ψ̃1‖L2(Ω) + (oc→0(1) + ocn→∞(1))(‖∇Ψ̃n‖L2(Ω) + ‖Ψ̃1‖L2(Ω)) + ocn→∞(1).

Now, we multiply the second equation by Ψ̃2, and we integrate on Ω. By integration by parts, we check

‖∇Ψ̃2‖2L2(Ω) 6

c

∣∣∣∣
∫

Ω

∂x2Ψ̃1Ψ̃2

∣∣∣∣+

∣∣∣∣
∫

Ω

h̃2Ψ̃2

∣∣∣∣+ 2

∫

Ω

∣∣∣∣Im
(∇V
V

.∇Ψ̃n

)
Ψ̃2

∣∣∣∣+

∫

Ω

|Loc2(Ψn)Ψ̃2| + ocn→∞(1).

By integration by parts, since ‖Φn‖C2(B(0,10/c2)) = ocn→∞(1) and Φn = 0 on ∂B(0, an), we have

c

∣∣∣∣
∫

Ω

∂x2Ψ̃1Ψ̃2

∣∣∣∣ 6 ocn→∞(1) + c

∣∣∣∣
∫

Ω

Ψ̃1∂x2Ψ̃2

∣∣∣∣ 6 ocn→∞(1) + c‖Ψ̃1‖L2(Ω)‖∇Ψ̃2‖L2(Ω).
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We recall that |Ψ̃2| = ocn→∞(1) on ∂B(0, 5/c2), therefore

∫ a

r=5/c2

|Ψ̃2|2
r2+σ′ rdr =

−1

σ′

∫ a

r=5/c2
∂r

(
1

rσ′

)
|Ψ̃2|2dr

6
K(c)

σ′
|Ψ̃2|2(5/c2) +

2

σ′

∫ a

r=5/c2

1

rσ′ |∇Ψ̃2||Ψ̃2|dr

6 oc,σ
′

n→∞(1) +
2

σ′

√∫ a

r=5/c2
|∇Ψ̃2|2rdr

∫ a

r=5/c2

|Ψ̃2|2
r2+σ′ rdr.

We deduce that ∫ a

r=5/c2

|Ψ̃2|2
r2+σ′ rdr 6 oc,σ

′

n→∞(1) +
K

σ′

∫ a

r=5/c2
|∇Ψ̃2|2rdr,

and therefore ∣∣∣∣∣

∫

Ω

|Ψ̃2|2
(1 + |x|)2+σ′

∣∣∣∣∣ 6 oc,σ
′

n→∞(1) +
K

σ′
‖∇Ψ̃2‖2L2(Ω).

Since V hn ∈ E∗∗,σ′ , we estimate, by Cauchy-Schwarz, that

∣∣∣∣
∫

Ω

h̃2Ψ̃2

∣∣∣∣ 6 oc→0(1)

√∫

Ω

|Ψ̃2|2
(1 + |x|)2+σ′ 6 oσ

′

c→0(1)‖∇Ψ̃2‖L2(Ω) + oc,σn→∞(1).

Furthermore, since Loc2(Ψn) is supported in B(0, 10/c2) and ‖Φn‖C1(B(0,10/c2)) = ocn→∞(1), we check that

∫

Ω

|Loc2(Ψn)Ψ̃2| 6 ocn→∞(1).

Finally, from Lemma 2.2, we check that, in R2,

∣∣∣∣
∇V
V

∣∣∣∣ 6 K

∣∣∣∣i
(
y⊥

|y|2 − z⊥

|z|2
)∣∣∣∣+

K

c(1 + |x|)2 6
K

c(1 + |x|)2 ,

and thus, by Cauchy-Schwarz,

∫

Ω

∣∣∣∣Im
(∇V
V

.∇Ψ̃n

)
Ψ̃2

∣∣∣∣ 6 ‖∇Ψ̃n‖L2(Ω)

√∫

Ω

∣∣∣∣
∇V
V

∣∣∣∣
2

|Ψ̃2|2

6
K‖∇Ψ̃n‖L2(Ω)

c

√∫

Ω

|Ψ̃2|2
(1 + |x|)4 .

In Ω, |x| > 5/c2, thus

∫

Ω

|Ψ̃2|2
(1 + |x|)4 6 c2(2−σ′)

∫

Ω

|Ψ̃2|2
(1 + |x|)2+σ′ 6 c2(2−σ′)K(σ′)‖∇Ψ̃2‖2L2(Ω) + ocn→∞(1),

hence ∫

Ω

∣∣∣∣Im
(∇V
V

.∇Ψ̃n

)
Ψ̃2

∣∣∣∣ 6 oσ
′

c→0(1)‖∇Ψ̃2‖L2(Ω) + ocn→∞(1).

We conclude that

‖∇Ψ̃1‖2L2(Ω) + 2‖Ψ̃1‖2L2(Ω)

6 c‖∇Ψ̃2‖L2(Ω)‖Ψ̃1‖L2(Ω) + (oc→0(1) + ocn→∞(1))(‖∇Ψ̃n‖L2(Ω) + ‖Ψ̃1‖L2(Ω)) + ocn→∞(1),

and
‖∇Ψ̃2‖2L2(Ω) 6 ocn→∞(1) + c‖Ψ̃1‖L2(Ω)‖∇Ψ̃2‖L2(Ω) + oσ

′

c→0(1)‖∇Ψ̃2‖L2(Ω),
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therefore
‖∇Ψ̃1‖L2(Ω) + ‖Ψ̃1‖L2(Ω) + ‖∇Ψ̃2‖L2(Ω) 6 ocn→∞(1) + oσ

′

c→0(1).

We have shown that for any σ′ > 0,

∣∣∣∣∣

∫

Ω

|Ψ̃2|2
(1 + |x|)2+σ′

∣∣∣∣∣ 6
(
oc,σ

′

n→∞(1) +
K

σ′
‖∇Ψ̃2‖2L2(Ω)

)
,

thus ∣∣∣∣∣

∫

Ω

|Ψ̃2|2
(1 + |x|)5/2

∣∣∣∣∣ 6 ocn→∞(1) + oc→0(1).

Together with ‖Φn‖C2(B(0,10/c2)) = ocn→∞(1), this is in contradiction with ‖Φn‖Han
= 1.

This concludes the proof of the estimation. Now, for the existence, we argue by Fredholm’s alternative in
{ϕ ∈ H1

0 (B(0, a)), 〈ϕ,Zd〉 = 0}, and we remark that the norms ‖.‖Ha and ‖.‖H1 are equivalent on B(0, a). By
Riesz’s representation theorem, the elliptic equation ηL(Φ)+(1−η)V L′(Ψ) = V h can be rewritten in the operational
form Φ + K(Φ) = S(h) where K is a compact operator in H1

0 (B(0, a)), and it has no kernel in Ha (i.e. in
{ϕ ∈ H1

0 (B(0, a)), 〈ϕ,Zd〉 = 0}) by the estimation we just showed. Therefore, there exists a unique solution
Φ ∈ Ha, and it then satisfies

‖Φ‖Ha 6 K(σ′, c)‖h‖∗∗,σ′.

✷

Proposition 2.20 Consider the problem, for 0 < σ < σ′ < 1,

{
ηL(Φ) + (1 − η)V L′(Ψ) = V h
V h ∈ E∗∗,σ′ , 〈V h, Zd〉 = 0.

Then, there exist constants c0(σ, σ′) > 0 small and C(σ, σ′) > 0 depending only on σ, σ′, such that, for 0 < c 6

c0(σ, σ′) and V h ∈ E∗∗,σ′ with 〈V h, Zd〉 = 0, there exists Φ ∈ E∗,σ, Φ = VΨ solution of this problem, with

‖Ψ‖∗,σ,d 6 C(σ, σ′)‖h‖∗∗,σ′,d.

Proof By Lemma 2.19, For a > a0(c, σ′), there exists a solution to the problem





ηL(Φa) + (1 − η)V L′(Ψa) = V h onB(0, a)

Φa ∈ Ha,Φa = VΨa, 〈VΨa, Zd〉 = 0; ∀x ∈ B(0, a),Ψa(x1, x2) = Ψa(x1,−x2) = Ψa(−x1, x2)
Φa = 0 on ∂B(0, a)
〈h, Zd〉 = 0

with ‖Φa‖Ha 6 K(σ′, c)‖h‖∗∗,σ′ . Taking a sequence of values an > a0 going to infinity, we can construct by a
diagonal argument a function Φ ∈ H1

loc(R
2) which satisfies in the distribution sense

ηL(Φ) + (1 − η)V L′(Φ) = V h

(hence Φ ∈ C2(R2) by standard elliptic arguments), such that

‖Φ‖H∞ 6 lim sup
n→∞

‖Φn‖Han
6 K(σ′, c)‖h‖∗∗,σ′ ,

thus Φ ∈ H∞, and Φ = VΨ, 〈VΨ, Zd〉 = 0; ∀x ∈ R2,Ψ(x1, x2) = Ψ(x1,−x2) = Ψ(−x1, x2). From Lemma 2.18,
we deduce that Φ ∈ E∗,σ, and is thus a solution to the problem. Furthermore, by Proposition 2.17, ‖Ψ‖∗,σ,d 6

C(σ, σ′)‖h‖∗∗,σ′,d. Still by Proposition 2.17, this solution is unique in E∗,σ′ . ✷
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2.5.3 Estimates for the contraction in the orthogonal space

We showed in Proposition 2.20 that the operator ηL(.)+(1−η)V L′(./V ) is invertible from E∗∗,σ′,d∩{〈., Zd〉 = 0} to
E∗,σ,d. The operator (ηL(.) + (1 − η)V L′(./V ))−1 is the one that, for a given V h ∈ E∗∗,σ′,d such that 〈V h, Zd〉 = 0,
returns the unique function Φ = VΨ ∈ E∗,σ,d such that ηL(Φ) + (1 − η)V L′(Ψ) = V h, and this function satisfies
the estimate ‖Ψ‖∗,σ,d 6 C(σ, σ′)‖h‖∗∗,σ′,d.

Now, we define (for any Φ ∈ C0(R2,C))

Π⊥
d (Φ) := Φ − 〈Φ, Zd〉

Zd

‖Zd‖2L2(R2)

,

the projection on the orthogonal of Zd. We want to apply a fixed-point theorem on the functional

(ηL(.) + (1 − η)V L′(./V ))−1(Π⊥
d (−F (./V ))) : E∗,σ → E∗,σ,

and for that we need some estimates on the function Π⊥
d oF (./V ) : E∗,σ → {V h ∈ E∗∗,σ′ , 〈V h, Zd〉 = 0}. The function

F contains the source term E − ic∂x2V and nonlinear terms. The source term requires a precise computation (see
Lemma 2.22) to show its smallness in the spaces of invertibility. The nonlinear terms will be small if we do the
contraction in an area with small Ψ (which is the case since we will do it in the space of function Φ = VΨ ∈ E∗,σ
such that ‖Ψ‖∗,σ,d 6 K0(σ, σ′)c1−σ′

for a well chosen constant K0(σ, σ′) > 0). This subsection is devoted to the
proof of the following result.

Proposition 2.21 For 0 < σ < σ′ < 1, there exist constants K0(σ, σ′), c0(σ, σ′) > 0 depending only on σ, σ′ such
that for 0 < c < c0(σ, σ′), the function (from E∗,σ,d to E∗,σ,d)

Φ 7→ (ηL(.) + (1 − η)V L′(./V ))−1(Π⊥
d (−F (Φ/V )))

is a contraction in the space of functions Φ = VΨ ∈ E∗,σ,d such that ‖Ψ‖∗,σ,d 6 K0(σ, σ′)c1−σ′

. As such, by the

contraction mapping theorem, it admits a unique fixed point Φ ∈ E∗,σ,d in {Φ ∈ E∗,σ,d, ‖Ψ‖∗,σ,d 6 K0(σ, σ′)c1−σ′},
and there exists λ(c, d) ∈ R such that

ηL(Φ) + (1 − η)V L′(Ψ) + F (Ψ) = λ(c, d)Zd

in the distribution sense.

We recall that, from the definition of E∗,σ,d in subsection 2.3, Φ ∈ E∗,σ,d implies that 〈Φ, Zd〉 = 0, which is the
origin of the fact that ηL(Φ) + (1 − η)V L′(Ψ) + F (Ψ) is not zero, but only proportional to Zd.

We start with some estimates on the terms contained in F (Ψ). These are done in the following three lemmas.

Lemma 2.22 For any 0 < σ′ < 1, there exists a constant C1(σ′) > 0 depending only on σ′ such that
∥∥∥∥
ic∂x2V

V

∥∥∥∥
∗∗,σ′,d

+

∥∥∥∥
E

V

∥∥∥∥
∗∗,σ′,d

6 C1(σ′)c1−σ′

.

Proof We have defined the norm

‖h‖∗∗,σ′,d = ‖V h‖C1({r̃63}) + ‖r̃1+σ′

h1‖L∞({r̃>2}) + ‖r̃2+σ′

h2‖L∞({r̃>2}) + ‖r̃2+σ′∇h‖L∞({r̃>2}),

thus we separate two areas for the computation: the first one is where r̃ 6 3 which will be easy and then far from
the vortices, i.e. in {r̃ > 2}, where the division by V is not a problem.

Step 1. Estimates for E.

In (2.2), we showed that
E = (1 − |V1|2)(1 − |V−1|2)V1V−1 − 2∇V1.∇V−1.

Near V1, i.e. in B(d−→e1 , 3), we have from Lemma 2.1,

‖(1 − |V−1|2)‖C1({r163}) 6 Kc2 and ‖∇V−1‖C1({r163}) 6 Kc,
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hence ∥∥∥∥
E

V
V

∥∥∥∥
C1({r163})

6 Kc 6 oσ
′

c→0(1)c1−σ′

, (2.15)

where oσ
′

c→0(1) is a quantity that for a fixed σ′ > 0, goes to 0 when c → 0. By symmetry, the result holds in the
area where r̃ 6 3.

We now turn to the estimates for r̃ > 2. The first term (1 − |V1|2)(1 − |V−1|2) of E
V is real valued. Using the

definition of r1 and r−1 from (2.1), in the right half-plane, where r1 6 r−1 and r−1 > d >
K
c , we have from Lemma

2.1

‖r1+σ′

1 (1 − |V1|2)(1 − |V−1|2)‖L∞({26r16r−1}) 6 K

∥∥∥∥∥
1

r1−σ′

1 r2−1

∥∥∥∥∥
L∞({26r16r−1})

and
‖r21(1 − |V1|2)(1 − |V−1|2)‖L∞({26r16r−1}) 6 K.

In this area, 1
r2−1

6 Kc2 and 1

r1−σ′

1

6
1

21−σ′ , thus

‖r1+σ′

1 (1 − |V1|2)(1 − |V−1|2)‖L∞({26r16r−1}) 6 K(σ′)c2 6 oσ
′

c→0(1)c1−σ′

.

By symmetry, the same result holds for the other half-plane, hence

‖r̃1+σ′

(1 − |V1|2)(1 − |V−1|2)‖L∞({r̃>2}) 6 oσ
′

c→0(1)c1−σ′

. (2.16)

From Lemma 2.1, we have

∇Vε(x) = iεVε(x)
x⊥

r2
+O

(
1

r3

)
,

hence
∇V1.∇V−1

V1V−1
=
y⊥.z⊥

r21r
2
−1

+O

(
1

r31r−1

)
+O

(
1

r3−1r1

)
.

Remark that the first term is real-valued. We compute first in the right half-plane, where r1 6 r−1 and r−1 > d > K
c ,

∥∥∥∥r
1+σ′

1

y⊥.z⊥

r21r
2
−1

∥∥∥∥
L∞({26r16r−1})

6

∥∥∥∥∥
r1+σ′

1

r1r−1

∥∥∥∥∥
L∞({26r16r−1})

.

Since
r1+σ′

1

r1r−1
=

(
r1
r−1

)σ′

1

r1−σ′

−1

6 K(σ′)c1−σ′

,

we deduce ∥∥∥∥r
1+σ′

1

y⊥.z⊥

r21r
2
−1

∥∥∥∥
L∞({26r16r−1})

6 K(σ′)c1−σ′

and by symmetry, ∥∥∥∥r̃1+σ′ y⊥.z⊥

r21r
2
−1

∥∥∥∥
L∞({r̃>2})

6 K(σ′)c1−σ′

. (2.17)

For the last two terms O
(

1
r31r−1

)
+O

(
1

r3−1r1

)
,we will show that in the right half-plane

∥∥∥∥r
2+σ′

1

1

r31r−1

∥∥∥∥
L∞({26r16r−1})

+

∥∥∥∥r
2+σ′

1

1

r3−1r1

∥∥∥∥
L∞({26r16r−1})

6 oσ
′

c→0(1)c1−σ′

. (2.18)

This immediately implies
∥∥∥∥r

1+σ′

1

1

r31r−1

∥∥∥∥
L∞({26r16r−1})

+

∥∥∥∥r
1+σ′

1

1

r3−1r1

∥∥∥∥
L∞({26r16r−1})

6 oσ
′

c→0(1)c1−σ′

. (2.19)
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We compute in the right half-plane where r1 6 r−1 and r−1 > d >
K
c , 1

r−1
6 Kc and 1

r1−σ′

1

6 K(σ′), thus

r2+σ′

1

1

r31r−1
=

1

r1−σ′

1 r−1

6 Kc 6 oσ
′

c→0(1)c1−σ′

.

Furthermore, still in the right half-plane,

r2+σ′

1

1

r3−1r1
=

(
r1
r−1

)1+σ′

1

r2−σ′

−1

6 K(σ′)c2−σ′

6 oσ
′

c→0(1)c1−σ′

.

Gathering (2.18) to (2.19) and using the symmetry for the left half-plane, we deduce with the previous esimates
(2.15), (2.16), (2.17) that

∥∥∥∥V
(
E

V

)∥∥∥∥
C1({r̃63})

+

∥∥∥∥r̃1+σ′

Re

(
E

V

)∥∥∥∥
L∞({r̃>2})

+

∥∥∥∥r̃2+σ′

Im

(
E

V

)∥∥∥∥
L∞({r̃>2})

6 K(σ′)c1−σ′

.

Now, for the estimate on ∇
(
E
V

)
in {r̃ > 2}, we have from Lemma 2.1, for r̃ > 2,

|∇((1 − |V1|2)(1 − |V−1|2))| 6 |∇|V1|2(1 − |V−1|2)| + |(1 − |V1|2)∇|V−1|2| 6
K

r31r
2
−1

+
K

r21r
3
−1

,

and ∣∣∣∣∇
(∇V1.∇V−1

V1V−1

)∣∣∣∣ 6
∣∣∣∣∇
(∇V1
V1

)
.
∇V−1

V−1

∣∣∣∣ +

∣∣∣∣
∇V1
V1

.∇
(∇V−1

V−1

)∣∣∣∣ 6
K

r21r−1
+

K

r1r2−1

,

thus, with similar estimates as previously, we deduce

∥∥∥∥r̃2+σ′∇
(
E

V

)∥∥∥∥
L∞({r̃>2})

6 K(σ′)c1−σ′

. (2.20)

This concludes the proof of ∥∥∥∥
E

V

∥∥∥∥
∗∗,σ′,d

6 C′
1(σ′)c1−σ′

for some constant C′
1(σ′) > 0 depending only on σ′.

Step 2. Estimates for ic
∂x2V

V .

First, near the vortices, we have |∂x2V | + |∇∂x2V | 6 K a universal constant, therefore

∥∥∥∥ic
∂x2V

V
V

∥∥∥∥
C1({r̃63})

6 Kc 6 oσ
′

c→0(1)c1−σ′

.

We now turn to the estimate for r̃ > 2. Recall Lemma 2.5, stating that for a universal constant C > 0, since
r1, r−1 > 2, ∣∣∣∣ic

∂x2V

V
− 2cd

x21 − d2 − x22
r21r

2
−1

∣∣∣∣ 6 C

(
c

r31
+

c

r3−1

)
.

Remark that 2cd
x2
1−d2−x2

2

r21r
2
−1

is real-valued. Using that cd 6 2, that

|x21 − d2| = |(x1 − d)(x1 + d)| 6 r1r−1

and also that x22 6 r1r−1, we deduce that in the right half-plane, where r1 6 r−1 and r−1 > d > K
c ,

∥∥∥∥r
1+σ′

1 2cd
x21 − d2 − x22

r21r
2
−1

∥∥∥∥
L∞({26r16r−1})

6 K

∥∥∥∥∥
r1+σ′

1

r1r−1

∥∥∥∥∥
L∞({26r16r−1})

,
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and since we have
r1+σ′

1

r1r−1
=

(
r1
r−1

)σ′

1

r1−σ′

−1

6 K(σ′)c1−σ′,

we infer ∥∥∥∥2r1+σ′

1 cd
x21 − d2 − x22

r21r
2
−1

∥∥∥∥
L∞({26r16r−1})

6 K(σ′)c1−σ′

.

It is easy to check that in the right half-plane

r2+σ′

1

(
c

r31
+

c

r3−1

)
6 Kc 6 oσ

′

c→0(1)c1−σ,

and therefore by symmetry for the left half-plane,

∥∥∥∥V
(
ic
∂x2V

V

)∥∥∥∥
C1({r̃63})

+

∥∥∥∥r̃1+σ′

Re

(
ic
∂x2V

V

)∥∥∥∥
L∞({r̃>2})

+

∥∥∥∥r̃2+σ′

Im

(
ic
∂x2V

V

)∥∥∥∥
L∞({r̃>2})

6 K(σ′)c1−σ′

.

From the proof of Lemma 2.5, we check (using Lemma 2.3) that, if r̃ > 1,

∣∣∣∣∇
(
ic
∂x2V

V
− 2cd

x21 − d2 − x22
r21r

2
−1

)∣∣∣∣ 6 K

(
c

r31
+

c

r3−1

)
.

With
∣∣∣∇
(

1
r±1

)∣∣∣ 6 K
r2±1

if r̃ > 1 and similar computations as previously, we check that

∣∣∣∣∇
(

2cd
x21 − d2 − x22

r21r
2
−1

)∣∣∣∣ 6 K(σ′)c1−σ′

.

Therefore, there exists C′′
1 (σ′) > 0 such that

∥∥∥∥ic
∂x2V

V

∥∥∥∥
∗∗,σ′,d

6 C′′
1 (σ′)c1−σ′

.

We conclude by taking C1(σ′) = max(C′
1(σ′), C′′

1 (σ′)). ✷

Lemma 2.23 For 0 < σ < σ′ < 1, for Φ = VΨ,Φ′ = VΨ′ ∈ E∗,σ,d such that ‖Ψ‖∗,σ,d, ‖Ψ′‖∗,σ,d 6 C0 with C0

defined in Lemma 2.7, if there exists K(σ, σ′) > 0 such that ‖Ψ‖∗,σ,d, ‖Ψ′‖∗,σ,d 6 K(σ, σ′)c1−σ′

, then

∥∥∥∥
R(Ψ)

V

∥∥∥∥
∗∗,σ′,d

6 oσ
′

c→0(1)c1−σ′

and ∥∥∥∥
R(Ψ′) −R(Ψ)

V

∥∥∥∥
∗∗,σ′,d

6 oσ
′

c→0(1)‖Ψ′ − Ψ‖∗,σ,d,

where the oσ,σ
′

c→0(1) is a quantity that, for fixed σ and σ′, goes to 0 when c→ 0.

Proof Since η 6= 0 only in the domain where ‖.‖∗∗,σ′,d = ‖V.‖C1({r̃63}) and ‖.‖∗,σ,d = ‖V.‖C2({r̃63}), we will work
only with these two norms. Recall from Lemma 2.7 that R(Ψ) is supported in {η 6= 0} and

|R(Ψ)| + |∇R(Ψ)| 6 C‖Φ‖2C2({r̃62})
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since ‖Ψ‖∗,σ,d 6 C0. We deduce

∥∥∥∥
R(Ψ)

V

∥∥∥∥
∗∗,σ′,d

= ‖R(Ψ)‖C1({r̃63}) 6 K(σ′)c2−2σ′

6 oσ
′

c→0(1)c1−σ′

.

Furthermore, using the definition of R(Ψ) in the proof of Lemma 2.7 we check that every term is at least quadratic
in Ψ (or its real or imaginary part), therefore, with ‖Ψ‖∗,σ,d, ‖Ψ′‖∗,σ,d 6 C0, R(Ψ′) −R(Ψ) can be estimated by

∥∥∥∥
R(Ψ′) −R(Ψ)

V

∥∥∥∥
∗∗,σ′,d

= ‖R(Ψ′) −R(Ψ)‖C1({r̃63})

6 K(‖Ψ‖∗,σ,d + ‖Ψ′‖∗,σ,d)‖Ψ′ − Ψ‖∗,σ,d
6 oc→0(1)‖Ψ′ − Ψ‖∗,σ,d.

✷

Lemma 2.24 For 0 < σ < σ′ < 1, for Φ = VΨ,Φ′ = VΨ′ ∈ E∗,σ,d such that ‖Ψ‖∗,σ,d, ‖Ψ′‖∗,σ,d 6 C0 with C0

defined in Lemma 2.7, if there exists K(σ, σ′) > 0 such that ‖Ψ‖∗,σ,d, ‖Ψ′‖∗,σ,d 6 K(σ, σ′)c1−σ′

, then

‖(1 − η)(−∇Ψ.∇Ψ + |V |2S(Ψ))‖∗∗,σ′,d 6 oσ,σ
′

c→0(1)c1−σ′

,

‖(1 − η)(−∇Ψ′.∇Ψ′ + ∇Ψ.∇Ψ + |V |2(S(Ψ′) − S(Ψ)))‖∗∗,σ′,d 6 oσ,σ
′

c→0(1)‖Ψ′ − Ψ‖∗,σ,d.

Proof As done in Lemma 2.23, we check easily that

‖(1 − η)(∇Ψ.∇Ψ + |V |2S(Ψ))V ‖C1({r̃63}) 6 K(σ, σ′)c1−σ′‖Φ‖C2({r̃63}),

since in the area where (1 − η) 6= 0, C1 6 |V | 6 1 for a universal constant C1 > 0, Φ = VΨ and using
‖VΨ‖C1({r̃63}) 6 K(σ, σ′)c1−σ′

.

We then estimate (with η = 0 in {r̃ > 2})

‖r̃1+σ′

Re(∇Ψ.∇Ψ)‖L∞({r̃>2}) 6 K‖Ψ‖2∗,σ,d

∥∥∥∥∥
r̃1+σ′

r̃2+2σ

∥∥∥∥∥
L∞({r̃>2})

6 K(σ, σ′)c2−2σ′

6 oσ,σ
′

c→0(1)c1−σ′

,

and

‖r̃2+σ′

Im(∇Ψ.∇Ψ)‖L∞({r̃>2}) 6 2‖r̃2+σ′

Im(∇Ψ).Re(∇Ψ)‖L∞({r̃>2})

6 K‖Ψ‖2∗,σ,d

∥∥∥∥∥
r̃2+σ′

r̃3+2σ

∥∥∥∥∥
L∞({r̃>2})

6 oσ,σ
′

c→0(1)c1−σ′

,

and we check that with similar computations, that

‖r̃2+σ′∇(∇Ψ.∇Ψ)‖L∞({r̃>2}) 6 oσ,σ
′

c→0(1)c1−σ′

,

thus
‖(1 − η)(−∇Ψ.∇Ψ)‖∗∗,σ′,d 6 oσ,σ

′

c→0(1)c1−σ′

.

Now, since (1 − η)(−∇Ψ′.∇Ψ′ + ∇Ψ.∇Ψ) = −(1 − η)(∇(Ψ′ − Ψ).∇(Ψ′ + Ψ)), with similar computations (and
‖Ψ′ + Ψ‖∗,σ,d 6 2K(σ, σ′)c1−σ′

), we have

‖(1 − η)(−∇Ψ′.∇Ψ′ + ∇Ψ.∇Ψ)‖∗∗,σ′,d 6 oσ,σ
′

c→0(1)‖Ψ′ − Ψ‖∗,σ,d.

Finally, recall that
S(Ψ) = e2Re(Ψ) − 1 − 2Re(Ψ).
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Moreover, e2Re(Ψ) − 1 − 2Re(Ψ) is real-valued and for r̃ > 2, if ‖Ψ‖∗,σ,d 6 C0,

|r̃1+σ′ |V |2(e2Re(Ψ) − 1 − 2Re(Ψ))| 6 K|r̃1+σ′

Re2(Ψ)| 6 K(σ, σ′)‖Ψ‖2∗,σ,d 6 oσ,σ
′

c→0(1)c1−σ′

,

and with Lemma 2.3,

|r̃2+σ′∇(|V |2(e2Re(Ψ) − 1 − 2Re(Ψ)))|
6 2|r̃2+σ′∇Re(Ψ)(e2Re(Ψ) − 1)| + 2|r̃2+σ′∇(|V |2)(e2Re(Ψ) − 1 − 2Re(Ψ))|

6 K

(
|r̃2+σ′∇Re(Ψ)Re(Ψ)| +

∣∣∣∣∣
r̃2+σ′

r̃3
Re2(Ψ)

∣∣∣∣∣

)

6 K(σ, σ′)‖Ψ‖2∗,σ,d

∥∥∥∥∥
r̃2+σ′

r̃3+2σ

∥∥∥∥∥
L∞({r̃>2})

6 oσ,σ
′

c→0(1)c1−σ′

,

hence
‖(1 − η)|V |2S(Ψ)‖∗∗,σ′,d 6 oσ,σ

′

c→0(1)c1−σ′

.

With similar comutations on

|V |2(S(Ψ′) − S(Ψ)) = 2|V |2(Re(Ψ′) −Re(Ψ))

+∞∑

n=2

2n−1
n−1∑

k=0

Re(Ψ)n−1−kRe(Ψ′)k

n!
,

we conclude with
‖(1 − η)(|V |2(S(Ψ′) − S(Ψ)))‖∗∗,σ′,d 6 oσ,σ

′

c→0(1)‖Ψ′ − Ψ‖∗,σ,d.
✷

Now, we end the proof of Proposition 2.21

Proof [of Proposition 2.21] We take the constants C(σ, σ′) defined in Proposition 2.17 and C1(σ′) from Lemma
2.22. We then define K0(σ, σ′) := C(σ, σ′)(C1(σ′) + 1).

To apply the contraction mapping theorem, we need to show that for Φ = VΨ,Φ′ = VΨ′ ∈ E∗,σ,d with

‖Ψ‖∗,σ,d, ‖Ψ′‖∗,σ,d 6 K0(σ, σ′)c1−σ′

,

we have for small c > 0, ∥∥∥∥
F (Ψ)

V

∥∥∥∥
∗∗,σ′,d

6
K0(σ, σ

′)

C(σ, σ′)
c1−σ′

(2.21)

and ∥∥∥∥
F (Ψ′) − F (Ψ)

V

∥∥∥∥
∗∗,σ′,d

6 oσ,σ
′

c→0(1)‖Ψ′ − Ψ‖∗,σ,d. (2.22)

If these estimates hold, using Proposition 2.17, we have that the closed ball B‖.‖∗,σ,d
(0,K0(σ, σ′)c1−σ′

) is stable by

Φ 7→ V (ηL(V.)+(1−η)V L′(.))−1(Π⊥
d (−F (Φ/V ))) and this operator is a contraction in the ball (for c small enough,

depending on σ, σ′), hence we can apply the contraction mapping theorem.
From Lemma 2.7, we have

F (Ψ) = E − ic∂x2V + V (1 − η)(−∇Ψ.∇Ψ + |V |2S(Ψ)) +R(Ψ).

By Lemmas 2.22 to 2.24, we have, given that c is small enough (depending only on σ, σ′), that both (2.21) and
(2.22) hold. Therefore, defining c0(σ, σ′) > 0 small enough such that all the required conditions on c are satisfied if
c < c0(σ, σ′), we end the proof of Proposition 2.21.

We have therefore constructed a function Φ = VΨ ∈ E∗,σ,d such that

Φ = (ηL(.) + (1 − η)V L′(./V ))−1(Π⊥
d (−F (Φ/V ))).
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Therefore, by definition of the operator (ηL(.) + (1 − η)V L′(./V ))−1, we have, in the distribution sense,

ηL(Φ) + (1 − η)V L′(Ψ) = Π⊥
d (−F (Φ/V )),

and thus, there exists λ(c, d) ∈ R such that

ηL(Φ) + (1 − η)V L′(Ψ) + F (Ψ) = λ(c, d)Zd.

✷

At this point, we have the existence of a function Φ = VΨ ∈ E∗,σ,d depending on c, d and a priori σ, σ′, such

that ‖Ψ‖∗,σ,d 6 K(σ, σ′)c1−σ′

and

ηL(Φ) + (1 − η)V L′(Ψ) + F (Ψ) = λ(c, d)Zd (2.23)

in the distribution sense for some λ(c, d) ∈ R. By using elliptic regularity, we show easily that Φ ∈ C∞(R2,C) and
that (2.23) is verified in the strong sense. The goal is now to show that we can take λ(c, d) = 0 for a good choice
of d, but first we need a better estimate on Φ using the parameters σ and σ′. We denote by Φσ,σ′ = VΨσ,σ′ the
solution obtained by Proposition 2.21 for the values σ < σ′.

Corollary 2.25 For 0 < σ1 < σ′
1 < 1, 0 < σ2 < σ′

2 < 1, there exists c0(σ1, σ
′
1, σ2, σ

′
2) > 0 such that for

0 < c < c0(σ1, σ
′
1, σ2, σ

′
2), Φσ1,σ′

1
= VΨσ1,σ′

1
= VΨσ2,σ′

2
= Φσ2,σ′

2
. We can thus take any values of σ, σ′ with σ < σ′

and the estimate
‖Ψ‖∗,σ,d 6 K(σ, σ′)c1−σ′

holds for 0 < c < c0(σ, σ′). In particular, for c small enough,

‖Φ‖C2({r̃63}) 6 Kc3/4.

Proof This is because for σ1 < σ2, E∗,σ2 ⊂ E∗,σ1 hence the fixed point for σ2 (for any σ′
2 > σ2) yields the same

value of Ψ as the fixed point for σ1 for c small enough (for any σ′
1 > σ1). In particular, this implies also that λ(c, d)

is independent of σ, σ′ (for c small enough). ✷

2.6 Estimation on the Lagrange multiplier λ(c, d)

To finish the construction of a solution of (TWc), we need to find a link between d and c such that λ(c, d) = 0 in
(2.23). Here, we give an estimate of λ(c, d) for small values of c.

Proposition 2.26 For λ(c, d),Φ = VΨ defined in the equation of Proposition 2.21, namely

ηL(Φ) + (1 − η)V L′(Ψ) + F (Ψ) = λ(c, d)Zd,

we have, for any 0 < σ < 1,

λ(c, d)

∫

R

2

|∂dV |2η = π

(
1

d
− c

)
+Oσ

c→0(c2−σ).

We will take the scalar product of ηL(Φ) + (1 − η)V L′(Ψ) + F (Ψ) − λ(c, d)Zd with ∂dV . We will show in the
proof that in the term 〈ηL(Φ) + (1 − η)V L′(Ψ) + F (Ψ), ∂dV 〉, the largest contribution come from the source term
E − ic∂x2V in F (Ψ). We will show that 〈E, ∂dV 〉 ≃ π

d and 〈−ic∂x2V, ∂dV 〉 ≃ −πc, so that, at the leading order,
λ(c, d) ∼ K

(
1
d − c

)
. In the proof, steps 1, 2 and 7 show that the terms other than E − ic∂x2V are of lower order,

and steps 3-6 compute exactly the contribution of these leading order terms.

Proof Recall from Lemma 2.7 that L(Φ) = (E− ic∂x2V )Ψ +V L′(Ψ), hence we write the equation under the form

L(Φ) − (1 − η)(E − ic∂x2V )Ψ + F (Ψ) = λ(c, d)Zd.

We want to take the scalar product with ∂dV . We will compute the terms (1 − η)EΨ (step 1), F (Ψ) (steps 2 to 6)
and in step 7 we will show that we can do an integration by parts for 〈L(Φ), Zd〉 and compute its contribution.
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We have by definition Zd = η∂dV , hence

〈Zd, ∂dV 〉 =

∫

R

2

|∂dV |2η

which is finite and independent of d since η = 0 outside {r̃ 6 2}. Recall that ‖Ψ‖∗,σ 6 K(σ, σ′)c1−σ′

where

‖Ψ‖∗,σ = ‖VΨ‖C2({r̃63}) + ‖r̃1+σΨ1‖L∞({r̃>2}) + ‖r̃2+σ∇Ψ1‖L∞({r̃>2})

+ ‖r̃σΨ2‖L∞({r̃>2}) + ‖r̃1+σ∇Ψ2‖L∞({r̃>2}) + ‖r̃2+σ∇2Ψ‖L∞({r̃>2}),

which we will heavily use with several values of σ, σ′ in the following computations, in particular for σ ∈]0, 1[, the
estimate

‖Ψ‖∗,σ/2,d 6 K(σ)c1−σ.

Step 1. We have 〈(1 − η)(E − ic∂x2V )Ψ, ∂dV 〉 = Oσ
c→0(c2−σ).

From Lemma 2.6, we have

|∂dV | 6 K

1 + r̃
. (2.24)

In (2.2), we showed that
E = −2∇V1.∇V−1 + (1 − |V1|2)(1 − |V−1|2)V1V−1,

hence, with Lemmas 2.1 and 2.5 (estimating ic∂x2V as in step 2 of the proof of Lemma 2.22), we have

|E − ic∂x2V | 6 Kc

1 + r̃

by using |∇V1| 6 K
1+r̃ , |∇V−1| 6 K

d 6 Kc and |1−|V−1|2| 6 Kc2 in the right half-plane and the symmetric estimate
in the other one. We also have, in {1 − η 6= 0},

|Ψ| 6 K
‖Ψ‖∗,σ/2,d
(1 + r̃)σ/2

6
K(σ)c1−σ

(1 + r̃)σ/2
,

hence

|〈(1 − η)(E − ic∂x2V )Ψ, ∂dV 〉| 6 K(σ)

∫

R

2

c2−σ

(1 + r̃)2+σ/2
= Oσ

c→0(c2−σ).

Step 2. We have 〈F (Ψ), ∂dV 〉 = 〈E − ic∂x2V, ∂dV 〉 +Oσ
c→0(c2−σ).

In this step, we want to show that the nonlinear terms in F (Ψ) are negligible. Recall that

F (Ψ) = E − ic∂x2V +R(Ψ) + V (1 − η)(−∇Ψ.∇Ψ + |V |2S(Ψ)).

We first show that
〈R(Ψ), ∂dV 〉 = Oσ

c→0(c2−σ).

Indeed, R(Ψ) is localized in {r̃ 6 2} and |R(Ψ)| 6 C‖Φ‖2C1({r̃63}) (since ‖Ψ‖∗,σ,d 6 C0, see Lemma 2.7), and using

that in {r̃ 6 3}, |Φ| + |∇Φ| 6 K(σ)c1−σ/2 yields

|R(Ψ)| 6 c‖∂x2Φ‖C0({r̃63}) + C‖Φ‖2C1({r̃63}) = Oσ
c→0(c2−σ).

Now, we use ‖Ψ‖∗,σ/2,d 6 K(σ)c1−σ to estimate, in {1 − η 6= 0},

|∇Ψ.∇Ψ| 6
K‖Ψ‖2∗,σ,d
(1 + r̃)2+σ

6
K(σ)c2−σ

(1 + r̃)2+σ
,
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therefore

|〈−∇Ψ.∇ΨV (1 − η), ∂dV 〉| 6 Kc2−σ

∫

R

2

1

(1 + r̃)3+σ
= Oσ

c→0(c2−σ).

The same argument can be made for

|〈−|V |2S(Ψ)V (1 − η), ∂dV 〉| = Oσ
c→0(c2−σ)

by using S(Ψ) = e2Re(Ψ) − 1 − 2Re(Ψ) and the fact that it is real-valued.

Step 3. We have 〈E − ic∂x2V, ∂dV 〉 = −2
∫
{x1>0} Re

(
(E − ic∂x2V )∂x1V1V−1

)
+Oσ

c→0(c2−σ).

The goal of this step is to simplify the computation by using the symmetry. By symmetry, we can only look in
the right half-plane:

〈E − ic∂x2V, ∂dV 〉 = 2

∫

{x1>0}

Re((E − ic∂x2V )∂dV ).

Recall that ∂dV = −∂x1V1V−1 + ∂x1V−1V1, hence we need to show that

∫

{x1>0}

Re
(
(E − ic∂x2V )∂x1V−1V1

)
= Oσ

c→0(c2−σ).

We compute

∫

{x1>0}

Re
(
(E − ic∂x2V )∂x1V−1V1

)
=

∫

{x1>0}

Re

((
E − ic∂x2V

V
|V |2

)
∂x1V−1

V−1

)

=

∫

{x1>0}

Re

(
E − ic∂x2V

V
|V |2

)
Re

(
∂x1V−1

V−1

)

+

∫

{x1>0}

Im

(
E − ic∂x2V

V
|V |2

)
Im

(
∂x1V−1

V−1

)
.

In the right half-plane, we have d 6 r−1 and r̃ 6 r1, hence

∣∣∣∣Re

(
∂x1V−1

V−1

)∣∣∣∣ 6
K

r3−1

6
Kc1−σ/2

(1 + r̃)2+σ/2
,

∣∣∣∣Im
(
∂x1V−1

V−1

)∣∣∣∣ 6
K

r−1
6

Kc1−σ/2

(1 + r̃)σ/2
,

from Lemma 2.1. Moreover, ∣∣∣∣Re

(
E − ic∂x2V

V
|V |2

)∣∣∣∣ 6
Kc1−σ/2

(1 + r̃)1+σ/2
,

∣∣∣∣Im
(
E − ic∂x2V

V
|V |2

)∣∣∣∣ 6
Kc1−σ/2

(1 + r̃)2+σ/2
,

from Lemma 2.22. We thus deduce that
∣∣∣∣∣

∫

{x1>0}

Re
(
(E − ic∂x2V )∂x1V−1V1

)
∣∣∣∣∣ 6 Kc1−σ/2

∫

R

2

c1−σ/2

(1 + r̃)2+σ
= Oσ

c→0(c2−σ).

Step 4. We have

∫

{x1>0}

Re
(
E∂x1V1V−1

)
= −2

∫

{x1>0}

Re
(
∂x2V1∂x1V1∂x2V−1V−1

)
+Oσ

c→0(c2−σ).
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The goal of this step is to compute the part of E that produces the higher order term. Recall from (2.2) that

E = −2∇V1.∇V−1 + (1 − |V1|2)(1 − |V−1|2)V1V−1

and since

|(1 − |V1|2)(1 − |V−1|2)| 6 Kc2

(1 + r̃)2

by Lemma 2.1, we deduce
∫

{x1>0}

Re
(
(1 − |V1|2)(1 − |V−1|2)V1V−1∂x1V1V−1

)
= Oσ

c→0(c2−σ).

Now we compute the first contribution from −2∇V1.∇V−1 = −2∂x1V1∂x1V−1 − 2∂x2V1∂x2V−1,

∫

{x1>0}

Re
(
(−2∂x1V1∂x1V−1)∂x1V1V−1

)
= −2

∫

{x1>0}

|∂x1V1|2Re(∂x1V−1V−1).

From Lemma 2.1 we have

Re(∂x1V−1V−1) = O

(
1

r3−1

)

since the main part in ∂x1V−1V−1 is purely imaginary. Using r1 6 r−1 and r−1 > d > K
c in the right half-plane, we

have 1
r3−1

6
Kc2−σ

(1+r̃)1+σ and, noting that |∂x1V1|2 6
K

(1+r̃)2 , we obtain

∫

{x1>0}

|∂x1V1|2|Re(∂x1V−1V−1)| 6 Kc2−σ

∫

{x1>0}

1

(1 + r̃)3+σ
= Oc→0(c5/4).

Finally, the second contribution from −2∇V1.∇V−1 is

∫

{x1>0}

Re
(
(−2∂x2V1∂x2V−1)∂x1V1V−1

)
= −2

∫

{x1>0}

Re
(
∂x2V1∂x1V1∂x2V−1V−1

)

which concludes the proof of this step.

Step 5. We have
∫
{x1>0} Re

(
E∂x1V1V−1

)
= π

d +Oσ
c→0(c2−σ).

By Lemma 2.1, we have

∂x2V−1V−1 = −i|V−1|2
y1 + 2d

r2−1

+O

(
1

r3−1

)
.

The O
(

1
r3−1

)
yielding a term which is a Oσ

c→0(c2−σ) as in step 4, therefore

∫

{x1>0}

Re
(
(−2∂x2V1∂x2V−1)∂x1V1V−1

)
= 2

∫

{x1>0}

Re
(
i∂x2V1∂x1V1

)
|V−1|2

y1 + 2d

r2−1

+Oσ
c→0(c2−σ).

Now we compute in polar coordinate around d−→e1 , writing V1 = ρ1(r1)eiθ1 . From Lemma 2.2, we have

∂x1V1 =

(
cos(θ1)

ρ′1(r1)

ρ1(r1)
− i

r1
sin(θ1)

)
V1,

∂x2V1 =

(
sin(θ1)

ρ′1(r1)

ρ1(r1)
+

i

r1
cos(θ1)

)
V1.

We then compute

Re
(
i∂x2V1∂x1V1

)
= −|V1|2

(
cos2(θ1)

ρ′1
r1ρ1

+ sin2(θ1)
ρ′1
r1ρ1

)
= −|V1|2

ρ′1
r1ρ1

.
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From Lemma 2.1, we have ρ′1(r1) = Or1→∞

(
1
r31

)
. As a consequence

∣∣∣∣∣

∫

{x1>0}

|V1|2
ρ′1
r1ρ1

|V−1|2
y1 + 2d

r2−1

−
∫

{r16d1/2}

|V1|2
ρ′1
r1ρ1

|V−1|2
y1 + 2d

r2−1

∣∣∣∣∣

6 Kc2−σ

∫

{r1>d1/2}

1

(1 + r̃)2+2σ

because when x1 > 0 and r1 > d1/2, we have
∣∣∣|V1|2 ρ′

1

r1ρ1
|V−1|2 y1+2d

r2−1

∣∣∣ 6 Kc2−σ

(1+r̃)2+2σ . We deduce that

∫

{x1>0}

|V1|2
ρ′1
r1ρ1

|V−1|2
y1 + 2d

r2−1

=

∫

{r16d1/2}

|V1|2
ρ′1
r1ρ1

|V−1|2
y1 + 2d

r2−1

+Oσ
c→0(c2−σ).

In the ball {r1 6 d1/2}, we have

r2−1 = 4d2
(

1 +Od→∞

(
1

d

))
and |V−1|2 = 1 +O

(
1

d2

)

therefore ∫

{x1>0}

|V1|2
ρ′1
r1ρ1

|V−1|2
y1 + 2d

r2−1

=
1

4d2

∫

{r16d1/2}

|V1|2
ρ′1
r1ρ1

(y1 + 2d) +Oσ
c→0(c2−σ).

Since y1 = r1 cos(θ1), by integration in polar coordinates we have

∫

{r16d1/2}

|V1|2
ρ′1
r1ρ1

y1 = 0

hence ∫

{x1>0}

Re
(
E∂x1V1V−1

)
=

1

d

∫

{r16d1/2}

|V1|2
ρ′1
r1ρ1

+ Oσ
c→0(c2−σ).

Remark that |V1|2 = ρ21 hence

∫

{r16d1/2}

|V1|2
ρ′1
r1ρ1

= 2π

∫ d1/2

0

ρ1ρ
′
1dr1 = π[ρ21]d

1/2

0 = π +Od→∞

(
1

d

)

Since ρ1 = 1 +O
(

1
r21

)
when r1 → ∞ and ρ1(0) = 0 by Lemma 2.1. Therefore, as claimed,

∫

{x1>0}

Re
(
E∂x1V1V−1

)
=
π

d
+Oσ

c→0(c2−σ).

Notice that we have shown in particular that

∫

R

2

Re
(
i∂x2V1∂x1V1

)
|V−1|2 = −π +Oσ

c→0(c1−σ). (2.25)

Step 6. We have
∫
{x1>0}

Re
(
−ic∂x2V ∂x1V1V−1

)
= −πc+Oσ

c→0(c2−σ).

We are left with the computation of

∫

{x1>0}

Re
(
−ic∂x2V ∂x1V1V−1

)
=

∫

{x1>0}

Re
(
−ic∂x2V1∂x1V1

)
|V−1|2 +

∫

{x1>0}

Re
(
−ic∂x2V−1V1∂x1V1V−1

)
(2.26)
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since ∂x2V = ∂x2V1V−1 + ∂x2V−1V1. For the second term in (2.26), we compute

−c
∫

{x1>0}

Re
(
i∂x2V−1V1∂x1V1V−1

)
= c

∫

{x1>0}

Re
(
∂x1V1V1

)
|V−1|2

y1 + 2d

r2−1

+Oσ
c→0(c2−s)

in view of the relation

i∂x2V−1V−1 = −|V−1|2
y1 + 2d

r2−1

+O

(
1

r3−1

)

from Lemma 2.1 and the fact that
∫
{x1>0} cO

(
1

r3−1

)
= Oσ

c→0(c2−σ) (as in step 4). Now recall from Lemma 2.2 that

∂x1V1 =

(
cos(θ1)

ρ′1(r1)

ρ1(r1)
− i

r1
sin(θ1)

)
V1

therefore

Re
(
∂x1V1V1

)
= cos(θ1)

ρ′1
ρ1

|V1|2.

In particular,
∣∣Re

(
∂x1V1V1

)∣∣ 6 K
1+r31

is integrable. Furthermore,
∣∣∣|V−1|2 y1+2d

r2−1

∣∣∣ = Oc→0(c) in the right half-plane,

therefore

−c
∫

{x1>0}

Re
(
i∂x2V−1V1∂x1V1V−1

)
= Oc→0(c2) = Oσ

c→0(c2−σ).

The first contribution in (2.26) is

c

∫

{x1>0}

Re
(
i∂x2V1∂x1V1

)
|V−1|2 = c

∫

{x1>0}

Re
(
i∂x2V1∂x1V1

)
+Oσ

c→0(c2−σ)

using that |V−1|2 = 1 +O
(

1
r2−1

)
. From (2.25), we have

∫

{x1>0}

Re
(
i∂x2V1∂x1V1

)
= −π +Oσ

c→0(c1−σ).

This conclude the proof of step 6, and combining step 4, 5 and 6 we deduce

∫

{x1>0}

Re
(
(E − ic∂x2V )∂x1V1V−1

)
= π

(
1

d
− c

)
+Oσ

c→0(c2−σ).

Step 7. We have 〈L(Φ), ∂dV 〉 = Oσ
c→0(c2−σ).

We want to compute, by integration by parts, that

〈L(Φ), ∂dV 〉 = 〈Φ, L(∂dV )〉.

First, we recall that the left hand side is well defined, because we showed in the previous steps that all the other
terms are bounded, therefore this one is also bounded. We have

∫

B(0,R)

Re(∆Φ∂dV ) =

∫

∂B(0,R)

Re(∇Φ∂dV ).~n−Re(Φ∇∂dV ).~n+

∫

B(0,R)

Re(Φ∆∂dV ),

and

|Re(∇Φ∂dV )| + |Re(Φ∇∂dV )| 6 K

(1 + r̃)2+1/2
,

therefore ∫

∂B(0,R)

Re(∇Φ∂dV ).~n−Re(Φ∇∂dV ).~n = oR→∞(1)

and the integration by parts holds.
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Recall that
L(h) = −∆h− (1 − |V |2)h+ 2Re(V̄ h)V − ic∂x2h

and
LV1(h) = −∆h− (1 − |V1|2)h+ 2Re(V1h)V1.

From Lemma 2.6 and ‖Ψ‖∗,σ/2 6 K(σ)c1−σ, we check easily that

|〈Φ,−ic∂x2∂dV 〉| 6
∫

R

2

K(σ)c2−σ

(1 + r̃)2+σ/2
= Oσ

c→0(c2−σ).

We therefore focus on the remaining part, with the operator

L̃(h) := −∆h− (1 − |V |2)h+ 2Re(V̄ h)V − ic∂x2h.

We remark that we have LV1(∂x1V1) = 0, since ∂x1(−∆V1 − (1 − |V1|2)V1) = 0. Recall that ∂dV = −∂x1V1V−1 +
∂x1V−1V1 and let us compute

L̃(V−1h) = LV1(h)V−1 − ∆(V−1h) + ∆hV−1 + (|V |2 − |V1|2)hV−1 + 2Re(V1h)(1 − |V−1|2)V,

therefore, using the equation or V−1,

L̃(V−1h) = LV1(h)V−1 − 2∇V−1.∇h+ (1 − |V−1|2)(1 − |V1|2)V−1h+ 2Re(V1h)(1 − |V−1|2)V.

Taking h = ∂x1V1 then yields

L̃(V−1∂x1V1) = −2∇V−1.∇∂x1V1 + (1 − |V−1|2)(1 − |V1|2)V−1∂x1V1 + 2Re(V1∂x1V1)(1 − |V−1|2)V.

Remark that |∇V−1.∇∂x1V1| 6 K
(1+r1)(1+r−1)2

, |(1−|V−1|2)(1−|V1|2)V−1∂x1V1| 6 K
(1+r1)3(1+r−1)2

and |2Re(V1∂x1V1)(1−
|V−1|2)V | 6 K

(1+r1)3(1+r−1)2
for a universal constant K > 0 by Lemma 2.1, therefore

〈Φ, L̃(∂x1V1V−1)〉 = Oσ
c→0(c2−σ).

Exchanging the roles of V1 and V−1, we have similarly

L̃(V1∂x1V−1) = −2∇V1.∇∂x1V−1 + (1 − |V−1|2)(1 − |V1|2)V1∂x1V−1.

We then conclude that
〈L̃(Φ), ∂dV 〉 = Oσ

c→0(c2−σ),

which end the proof of this step. Notice that we have shown

|L(∂dV )| 6 Kc

(1 + r̃)2
(2.27)

because 1
(1+r1)(1+r−1)

6
Kc

(1+r̃) in the whole space.

Step 8. Conclusion.

Adding all the results obtained in steps 1 to 7, we deduce

λ(c, d)

∫

R

2

|∂dV |2η = π

(
1

d
− c

)
+Oσ

c→0(c2−σ).

✷

At this point, we cannot conclude that there exists d such that λ(c, d) = 0. For that, we need to show that the
Oσ

c→0(c2−σ) is continuous with respect to c and d. This will be shown in section 3.
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3 Construction and properties of the travelling wave

Given 0 < σ < σ′ < 1, d, c > 0 satisfying 1
2c < d < 2

c and c < c0(σ, σ′) defined in Proposition 2.21, we define
Φc,d = VΨc,d ∈ E∗,σ,d the fonction constructed by the contraction mapping theorem in Proposition 2.21. From
Corollary 2.25, for any 0 < σ < σ′ < 1, this function satisfies, for c < c0(σ, σ′), that

‖Ψc,d‖∗,σ1,d 6 K(σ, σ′)c1−σ′

.

With equation (2.23) and Proposition 2.26, if we show that Φc,d is a continuous function of c and d, then there exists
c0 > 0 such that, for any 0 < c < c0, by the intermediate value theorem, there exists dc > 0 such that λ(c, dc) = 0.
This would conclude the construction of the travelling wave, and is done in subsection 3.1. In subsection 3.2, we
compute some estimates on Qc which will be usefull for understanding the linearized operator around Qc. We also
show there that Qc is a travelling wave solution with finite energy.

3.1 Proof that Φc,d is a C1 function of c and d

To end the construction of the travelling wave, we only need the continuity of Φc,d with respect to c and d. But for
the construction of the C1 branch of travelling wave in section 4, we need its differentiability.

3.1.1 Setup of the problem

From Proposition 2.21, the function Φc,d is defined by the implicit equation on E∗,σ,d

(ηL(.) + (1 − η)V L′(./V ))−1(Π⊥
d (−F (Φc,d/V ))) + Φc,d = 0,

where (ηL(.) + (1 − η)V L′(./V ))−1 is the linear operator from E∗∗,σ′,d ∩ {〈., Zd〉 = 0} to E∗,σ,d, that, for a function
V h ∈ E∗∗,σ′,d with 〈V h, Zd〉 = 0, yields the unique function Φ = VΨ ∈ E∗,σ,d such that

ηL(Φ) + (1 − η)V L′(Ψ) = V h

in the distribution sense. We recall the quantity Zd(x) = ∂dV (x)(η̃(4r1) + η̃(4r−1)) defined in subsection 2.3 and
we have defined the projection

Π⊥
d (Φ) = Φ − 〈Φ, Zd〉

Zd

‖Zd‖2L2(R2)

.

We want to show that (c, d) 7→ Φc,d is of class C1 from values of c, d such that 0 < c < c0(σ) and 1
2d < c < 2

d
to E∗,σ,d. The first obstacle is that E∗,σ,d depends on d (through r̃), both in the weights in ‖.‖∗,σ,d and in the
orthogonality required: 〈Φ, Zd〉 = 0. To be able to use the implicit function theorem, we first need to write an
equation on Φ in a space that does not depend on d. The norm ‖.‖∗,σ,d depends on d (through r̃):

‖Ψ‖∗,σ,d = ‖VΨ‖C2({r̃63}) + ‖r̃1+σΨ1‖L∞({r̃>2}) + ‖r̃2+σ∇Ψ1‖L∞({r̃>2})

+ ‖r̃σΨ2‖L∞({r̃>2}) + ‖r̃1+σ∇Ψ2‖L∞({r̃>2}) + ‖r̃2+σ∇2Ψ‖L∞({r̃>2}).

For d⊛ ∈ R, d⊛ > 10 and d ∈ R such that |d− d⊛| < δ for some small δ > 0 (that we will fix later on), we define

‖Φ‖⊛,σ,d⊛
:= ‖Φ‖C2({r̃⊛63}) +

∥∥∥∥r̃1+σ
⊛ Re

(
Φ

V⊛

)∥∥∥∥
L∞({r̃⊛>2})

+

∥∥∥∥r̃2+σ
⊛ ∇Re

(
Φ

V⊛

)∥∥∥∥
L∞({r̃⊛>2})

+

∥∥∥∥r̃σ⊛Im
(

Φ

V⊛

)∥∥∥∥
L∞({r̃⊛>2})

+

∥∥∥∥r̃
1+σ
⊛ ∇Im

(
Φ

V⊛

)∥∥∥∥
L∞({r̃⊛>2})

+

∥∥∥∥r̃
2+σ
⊛ ∇2

(
Φ

V⊛

)∥∥∥∥
L∞({r̃⊛>2})

,

where V⊛ = V1(x − d⊛
−→e1)V−1(x + d⊛

−→e1) and r̃⊛ = min(r1,⊛, r−1,⊛) with r1,⊛ = |x − d⊛
−→e1 |, r−1,⊛ = |x + d⊛

−→e1 |.
Then, for Φ = VΨ ∈ E∗,σ,d (V taken in d),

K1‖Ψ‖∗,σ,d 6 ‖Φ‖⊛,σ,d⊛
6 K2‖Ψ‖∗,σ,d (3.1)
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where K1,2 > 0 are absolute when |d− d⊛| < δ. Indeed, we check with simple geometric arguments that if r̃⊛ > 1,
V taken in d, then r̃ > 1/2 and we have

∣∣∣∣
V

V⊛
− 1

∣∣∣∣ 6
K

(1 + r̃)
and

∣∣∣∣∇
(
V

V⊛

)∣∣∣∣ 6
K

(1 + r̃)2
(3.2)

for a universal constant K > 0. Moreover, we have, for instance, if r̃⊛ > 2 (hence r̃⊛ 6 2r̃),

∣∣∣∣r̃
1+σ
⊛ Re

(
Φ

V⊛

)∣∣∣∣ 6

∣∣∣∣r̃
1+σ
⊛ Re

(
Φ

V

)∣∣∣∣ +

∣∣∣∣r̃
1+σ
⊛ Re

(
Φ

V

(
V

V⊛
− 1

))∣∣∣∣

6 K‖Ψ‖∗,σ,d +K

∣∣∣∣rσ⊛
Φ

V

∣∣∣∣ 6 K‖Ψ‖∗,σ,d.

Using (3.2), we can estimate similarly all the terms in (3.1).
We define similarly, for g = V⊛(g1 + ig2) ∈ C1(R2), σ′ > 0

‖g‖⊛⊛,σ′,d⊛
:= ‖g‖C1({r̃⊛63}) + ‖r̃1+σ′

⊛ g1‖L∞({r̃⊛>2}) + ‖r̃2+σ′

⊛ g2‖L∞({r̃⊛>2}) + ‖r̃2+σ′

⊛ ∇g‖L∞({r̃⊛>2}).

We have that there exist C1, C2 > 0 universal constants such that, for 0 < σ′ < 1 and any d, d⊛ > 10 with
|d− d⊛| < δ, for any V h ∈ E∗∗,σ′,d, g = V h,

C1‖h‖∗∗,σ′,d 6 ‖g‖⊛⊛,σ′,d⊛
6 C2‖h‖∗∗,σ′,d.

We define the spaces, for σ, σ′ > 0,
E⊛,σ,d⊛

:=

{Φ ∈ C2(R2,C), ‖Φ‖⊛,σ,d⊛
< +∞, 〈Φ, Zd⊛

〉 = 0, ∀x ∈ R2,Φ(x1, x2) = Φ(x1,−x2) = Φ(−x1, x2)}
and

E⊛⊛,σ′,d⊛
:= {g ∈ C1(R2,C), ‖g‖⊛⊛,σ′,d⊛

< +∞}.
We infer that, from Proposition 2.17, that the operator

(ηL(.) + (1 − η)V L′(./V ))−1oΠ⊥
d

goes from E⊛⊛,σ′,d⊛
to E⊛,σ,d⊛

, and that (for 0 < σ < σ′ < 1)

9(ηL(.) + (1 − η)V L′(./V ))−1oΠ⊥
d 9E⊛⊛,σ′,d⊛

→E⊛,σ,d⊛

is bounded independently of c, d and d⊛ if |d − d⊛| < δ. Indeed, the norms ‖.‖∗,σ,d and ‖.‖⊛,σ,d⊛
are equivalent,

as well as the norms ‖.‖∗∗,σ′,d and ‖.‖⊛⊛,σ′,d⊛
for any σ, σ′ > 0. About the orthogonality, we replaced 〈Φ, Zd〉 = 0

by 〈Φ, Zd⊛
〉 = 0. This does not change the proof of Proposition 2.17, since when we argue by contradiction, if for

a universal constant |λ| 6 δ we took the orthogonality 〈Φ, Zd+λ〉 = 0 instead of 〈Φ, Zd〉 = 0, the proof does not
change, given that δ is small enough (independently of d). To be specific, we have to take δ small enough such that
〈∂x1V1, ∂x1V1(.+ λ)〉 > 0 for all λ ∈] − δ, δ[.

Therefore, we take a sequence D(n) > 0 going to infinity such that |D(n+1) − D(n)| < δ/2, and for any given d
large enough, there exists k(d) such that d ∈]D(k(d)) − δ/2, D(k(d)) + δ/2[, and the proof of Proposition 2.17 holds
with the orthogonality 〈Φ, ZD(k(d))〉 = 0 for any value of d in ]D(k(d)) − δ/2, D(k(d)) + δ/2[. We denote D(k(d)) = d⊛.
The inversion of the linearized operator then holds for d ∈]D(n) − δ/2, D(n) + δ/2[ with D(n) = d⊛, for all n ∈ N
large enough.

Furthermore, the contraction arguments given in the proof of Proposition 2.21 still hold (because the norms are
equivalent), hence we can define Φc,d by a fixed point argument if 1

2d 6 c 6 2
d and |d− d⊛| < δ in the space E⊛,σ,d⊛

that does not depend on d.
We want to emphasize the fact that we change a little the definition of the spaces compared to section 2. In

particular, for Φ = VΨ, the norm ‖.‖⊛,σ,d⊛
is on the function Φ, and before, for ‖.‖∗,σ,d, it was on Ψ. This is

because V depends on d, and we want to remove any dependence on d. The same remark holds for ‖.‖⊛⊛,σ′,d⊛
and

‖.‖⊛⊛,σ′,d (with g = V h).
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We continue, and we define

H(Φ, c, d) := (ηL(.) + (1 − η)V L′(./V ))−1(−Π⊥
d (F (Φ/V ))) + Φ.

The function Φc,d ∈ E⊛,σ,d⊛
is defined, for 1

2d < c < 2
d and |d − d⊛| < δ, by being the only solution in a ball of

E⊛,σ,d⊛
(with a radius depending on σ, σ′, d⊛ and c but not d) to the implicit equation on Φ: H(Φ, c, d) = 0. This

means that we shall be able to use the implicit function theorem in the space E⊛,σ,d⊛
on the equation H(Φ, c, d) = 0

to show that Φc,d is a C1 function of d in E⊛,σ,d⊛
(for values of d such that 1

2d < c < 2
d and |d − d⊛| < δ). We

want to differentiate this equation with respect to Φ at a fixed c and d, and show that we can invert the operator
obtained when we take Φ close to Φc,d. Since (ηL(.) + (1− η)V L′(./V ))−1 and Π⊥

d are linear operators that do not
depend on Φ, it is easy to check that H(Φ, c, d) is differentiable with respect to Φ, and we compute

dΦH(Φ, c, d)(ϕ) = (ηL(.) + (1 − η)V L′(./V ))−1(Π⊥
d (−dΨF (ϕ/V ))) + ϕ.

To show that dΦH(Φ, c, d) : E⊛,σ,d⊛
→ E⊛,σ,d⊛

and that it is invertible, it is enough to check that

9 (ηL(.) + (1 − η)V L′(./V ))−1(Π⊥
d (dΨF (./V )))9E⊛,σ,d⊛

→E⊛,σ,d⊛
= oσc→0(1), (3.3)

which implies that dΦH(Φ, c, d) is a small perturbation of Id for small values of c (at fixed σ). From Proposition
2.17, we have that 9(ηL(.) + (1 − η)V L′(./V ))−1oΠ⊥

d 9E⊛⊛,σ′,d⊛
→E⊛,σ,d⊛

is bounded independently of d and d⊛ if

|d− d⊛| < δ, thus it is enough to check that, for some σ′ > σ (we will take σ′ = 1+σ
2 > σ),

9dΨF (.)9E⊛,σ,d⊛
→E⊛⊛,σ′,d⊛

= oσ,σ
′

c→0(1).

This is a consequence of the following lemma (for functions Φ = VΨ such that ‖Ψ‖∗,σ,d = oσc→0(1), which is the

case if Φ is near Φc,d since ‖Ψc,d‖∗,σ,d 6 K(σ, σ′)c1−σ′

), where we do the computations with the ∗−norms since
they are equivalent, with uniform constants, to the ⊛-norms. We define

γ(σ) :=
1 + σ

2
> σ.

Lemma 3.1 There exists C > 0 such that, for 0 < σ < 1 and functions Φ = VΨ, ϕ = V ψ ∈ E∗,σ,d, if 1
2d < c < 2

d
and ‖Ψ‖∗,σ,d 6 1, then

‖dΨF (ψ)‖∗∗,γ(σ),d 6 C‖Ψ‖∗,σ,d‖ψ‖∗,σ,d.

Proof Recall from Lemma 2.7 that

F (Ψ) = E − ic∂x2V + V (1 − η)(−∇Ψ.∇Ψ + |V |2S(Ψ)) + R(Ψ)

with S(Ψ) = e2Re(Ψ) − 1 − 2Re(Ψ) and R(Ψ) at least quadratic in Φ and supported in {r̃ 6 2}. We compute

dΨF (ψ) = V (1 − η)(−2∇Ψ.∇ψ + |V |2dS(ψ)) + dΨR(ψ).

We recall the condition 1
2d < c < 2

d . For the term dΨR(ψ), since R is a sum of terms at least quadratic in Φ and
is supported in {r̃ 6 2} (see the proof of Lemma 2.7), when we differentiate, every term has Ψ or ∇Ψ as a factor.
Therefore,

‖dΨR(ψ)‖∗∗,γ(σ),d 6 K‖Φ‖C2({r̃62})‖V ψ‖C2({r̃62})

6 K‖Ψ‖∗,σ,d‖ψ‖∗,σ,d.

Now, for Re(∇Ψ.∇ψ), since σ > 0, γ(σ) < 1, we estimate

‖r̃1+γ(σ)Re(∇Ψ.∇ψ)‖L∞({r̃>2}) 6 ‖r̃1+γ(σ)|∇Ψ| × |∇ψ|‖L∞({r̃>2})

6 K‖Ψ‖∗,σ,d‖ψ‖∗,σ,d
∥∥∥∥
r̃1+γ(σ)

r̃2+2σ

∥∥∥∥
L∞({r̃>2})

6 K‖Ψ‖∗,σ,d‖ψ‖∗,σ,d.
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Similarly,

‖r̃2+γ(σ)Im(∇Ψ.∇ψ)‖L∞({r̃>2}) 6 ‖r̃2+γ(σ)∇ReΨ.∇Imψ‖L∞({r̃>2})

+ ‖r̃2+γ(σ)∇ImΨ.∇Reψ‖L∞({r̃>2})

6 K‖Ψ‖∗,σ,d‖ψ‖∗,σ,d
∥∥∥∥
r̃2+γ(σ)

r̃3+2σ

∥∥∥∥
L∞({r̃>2})

6 K‖Ψ‖∗,σ,d‖ψ‖∗,σ,d.

With similar computation, we check that

‖r̃2+γ(σ)∇(∇Ψ.∇ψ)‖L∞({r̃>2}) 6 K‖Ψ‖∗,σ,d‖ψ‖∗,σ,d.

Finally, we have
dΨS(ψ) = 2Re(ψ)(e2Re(Ψ) − 1),

a real-valued term, and since ‖Ψ‖∗,σ,d 6 1, we estimate

‖r̃1+γ(σ)Re(ψ)(e2Re(Ψ) − 1)‖L∞({r̃>2}) 6 K‖r̃1+γ(σ)Re(ψ)Re(Ψ)‖L∞({r̃>2})

6 K‖ψ‖∗,σ,d‖Ψ‖∗,σ,d
∥∥∥∥
r̃1+γ(σ)

r̃2+2σ

∥∥∥∥
L∞({r̃>2})

6 K‖Ψc,d‖∗,σ,d‖ψ‖∗,σ,d,

as well as

‖r̃2+γ(σ)∇(Re(ψ)(e2Re(Ψ) − 1))‖L∞({r̃>2}) 6 K‖r̃2+γ(σ)Re(∇ψ)Re(Ψ)‖L∞({r̃>2})

+ K‖r̃2+γ(σ)Re(ψ)Re(∇Ψ)‖L∞({r̃>2})

6 K‖Ψc,d‖∗,σ,d‖ψ‖∗,σ,d
∥∥∥∥
r̃2+γ(σ)

r̃3+2σ

∥∥∥∥
L∞({r̃>2})

6 K‖Ψc,d‖∗,σ,d‖ψ‖∗,σ,d.

These estimates imply
‖dΨF (ψ)‖∗∗,γ(σ),d 6 C‖Ψc,d‖∗,σ,d‖ψ‖∗,σ,d.

✷

3.1.2 Proof of the differentiabilities of Φc,d with respect of c and d

We shall now show that c 7→ Φc,d is C1 and compute estimates on ∂cΨc,d at fixed d, and then show that d 7→ Φc,d

is C1 at fixed c and estimate ∂dΦc,d. These estimates will be usefull in subsection 4.6. For d 7→ Φc,d, we will use
the implicit function theorem (see Lemma 3.3), but we start here with the derivation with respect to c.

Lemma 3.2 For 0 < σ < 1, there exists c0(σ) > 0 such that, at fixed d > 1
2c0(σ)

,

c 7→ Φc,d ∈ C1

(]
1

2d
,

2

d

[
∩]0, c0(σ)[, E∗,σ,d

)
.

Remark that, at fixed d, ∂cΦc,d = V ∂cΨc,d.
Proof In this proof, we consider a fixed d > 1

2c0(σ)
. We define, for c ∈ R such that 1

2d < c < 2
d and 0 < c < c0(σ),

the operator
Hc : Φ 7→ (ηL(.) + (1 − η)V L′(./V ))−1(Π⊥

d (F (Φ/V )))

from E⊛,σ,d⊛
to E⊛,σ,d⊛

. The dependency on c is coming from both F and (ηL(.) + (1− η)V L′(./V ))−1, and in this
proof, we will add a subscript on these functions giving the value of c where it is taken. Take c′ ∈ R such that
1
2d < c′ < 2

d and 0 < c′ < c0(σ), and let us show that

‖Hc+ε(Φc′,d) −Hc(Φc′,d)‖⊛,σ,d⊛
= oσ,cε→0(1).
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In particular, remark that we look for a convergence uniform in c′. By definition of the operator (ηL(.) + (1 −
η)V L′(./V ))−1, the function Hc+ε(Φc′,d) (in E⊛,σ,d⊛

) is such that, in the distribution sense,

(
ηL(.) + (1 − η)V L′

( .
V

))
c+ε

(Hc+ε(Φc′,d)) = Π⊥
d (Fc+ε(Φc′,d/V )).

Since Φc′,d ∈ C∞(R2), we have thatHc+ε(Φc′,d) ∈ C∞(R2) and the equation is satisfied in the strong sense. Further-
emore, since Π⊥

d (Fc+ε(Φc′,d/V )) ∈ E⊛⊛, 2+σ
3 ,d⊛

by Lemmas 2.22 to 2.24 with ‖Π⊥
d (Fc+ε(Φc′,d/V ))‖⊛⊛, 2+σ

3 ,d⊛
6 K(σ)

(since Φc′,d ∈ E⊛, 2+σ
3 ,d⊛

with ‖Φc′,d‖⊛, 2+σ
3 ,d⊛

6 K(σ)), we have, by Lemma 2.18, that Hc+ε(Φc′,d) ∈ E⊛,γ(σ),d⊛

(since γ(σ) < 2+σ
3 ) with, fom Proposition 2.17, ‖Hc+ε(Φc′,d)‖⊛,γ(σ),d⊛

6 K(σ). We check similarly that

(
ηL(.) + (1 − η)V L′

( .
V

))
c

(Hc(Φc′,d)) = Π⊥
d (Fc(Φc′,d/V )).

Now, from the definitions of L and L′ from Lemma 2.7, we have

(
ηL(.) + (1 − η)V L′

( .
V

))
c+ε

(Hc+ε(Φc′,d)) =
(
ηL(.) + (1 − η)V L′

( .
V

))
c

(Hc+ε(Φc′,d))

− iεη∂x2Hc+ε(Φc′,d)

− iε(1 − η)V ∂x2

(
Hc+ε(Φc′,d)

V

)
,

and therefore
(
ηL(.) + (1 − η)V L′

( .
V

))
c

(Hc+ε(Φc′,d) −Hc(Φc′,d))

= −(Π⊥
d (Fc+ε(Φc′,d/V ) − Fc(Φc′,d/V )))

− iε

(
η∂x2Hc+ε(Φc′,d) + (1 − η)V ∂x2

(
Hc+ε(Φc′,d)

V

))
.

We check, using Hc+ε(Φc′,d) ∈ E⊛,γ(σ),d⊛
, ‖Hc+ε(Φc′,d)‖⊛,γ(σ),d⊛

6 K(σ) that

iε

(
η∂x2Hc+ε(Φc′,d) + (1 − η)V ∂x2

(
Hc+ε(Φc′,d)

V

))
∈ E⊛⊛,γ(σ),d⊛

,

with ∥∥∥∥iε
(
η∂x2Hc+ε(Φc′,d) + (1 − η)V ∂x2

(
Hc+ε(Φc′,d)

V

))∥∥∥∥
⊛⊛,γ(σ),d⊛

6 K(σ)ε.

In particular, by Proposition 2.17 (from E⊛⊛,γ(σ),d⊛
to E⊛,σ,d⊛

), we have

‖Hc+ε(Φc′,d) −Hc(Φc′,d)‖⊛,σ,d⊛

6 K(σ)‖Π⊥
d (Fc+ε(Φc′,d/V ) − Fc(Φc′,d/V ))‖⊛⊛,γ(σ),d⊛

+ K(σ)ε.

We recall that
Fc(Ψ) = E − ic∂x2V + V (1 − η)(−∇Ψ.∇Ψ + |V |2S(Ψ)) +Rc(Ψ),

therefore
Fc+ε(Φc′,d/V ) − Fc(Φc′,d/V ) = −iε∂x2V +Rc+ε(Φc′,d/V ) −Rc(Φc′,d/V ).

By Lemma 2.5 (for i∂x2V ) and the definition of Rc (in the proof of Lemma 2.7), we check that, for any 0 < σ < 1,
since ‖Ψc′,d‖∗,σ,d 6 K(σ)c0(σ)1−γ(σ) 6 K(σ),

‖Π⊥
d (Fc+ε(Φc′,d/V ) − Fc(Φc′,d/V ))‖⊛⊛,σ,d⊛

6 K(σ)
ε

c
.

We conclude that
‖Hc+ε(Φc′,d) −Hc(Φc′,d)‖⊛,σ,d⊛

= oσ,cε→0(1),
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thus Hc+ε(Φc′,d) → Hc(Φc′,d) when ε→ 0 in E⊛,σ,d⊛
uniformly in c′. We remark that it is also uniform in d in any

compact set of ]0, c0(σ)[.
The next step is to show that c 7→ Φc,d is a continuous function in E∗,σ,d. Take εn a sequence such that εn → 0

when n→ ∞, then ‖Φc+εn,d‖∗,σ,d 6 K0(σ, σ
′)(c+ εn)1−σ′

(for K0(σ, σ′) the constant in Proposition 2.21), and (in
the strong sense)

(
ηL(.) + (1 − η)V L′

( .
V

))
c+εn

(Φc+εn,d) + Π⊥
d (Fc+εn(Φc+εn,d/V )) = 0.

With the same arguments as in step 1 of the proof of Proposition 2.17, we check that, up to a subsequence,
Φc+εn → Φ locally uniformly in R2 for some function Φ ∈ E∗,σ,d such that ‖Φ‖∗,σ,d 6 K0(σ, σ′)c1−σ′

. Then, since

Hc+εn(Φc+εn,d) + Φc+εn,d = 0,

by taking the limit when n → ∞, up to a subsequence, since Hc+ε(Φc′,d) → Hc(Φc′,d) when ε → 0 in E∗,σ,d (the
norm is equivalent to the one of E⊛,σ,d⊛

) uniformly in c′, we have

Hc(Φ) + Φ = 0.

But then, Φ ∈ E∗,σ,d, ‖Φ‖∗,σ,d 6 K0(σ, σ
′)c1−σ′

and Hc(Φ) + Φ = H(Φ, c, d) = 0. By Proposition 2.21, this implies
that Φ = Φc,d, therefore Φc,d is an accumulation point of Φc+εn,d. It is the only accumulation point, since any other

will also satisfy Φ ∈ E∗,σ,d, ‖Φ‖∗,σ,d 6 K0(σ, σ′)c1−σ′

and H(Φ, c, d) = 0. Therefore, Φc+εn,d → Φc,d in E∗,σ,d, hence
c 7→ Φc,d is a continuous function in E∗,σ,d.

Now, let us show that it is a C1 function in E∗,σ,d. Since Hc(Φc,d) + Φc,d = 0, we have

(
ηL(.) + (1 − η)V L′

(
.
V

))
c

(Φc+ε,d − Φc,d)
= −(Π⊥

d (Fc+ε(Φc+ε,d/V ) − Fc(Φc,d/V )))

− iε
(
η∂x2Φc+ε,d + (1 − η)V ∂x2

(
Φc+ε,d

V

))
.

Furthermore, from ‖Π⊥
d (Fc+ε(Φc′,d/V ) − Fc(Φc′,d/V ))‖⊛⊛,σ,d⊛

6 K(σ, c)ε and

∥∥∥∥iε
(
η∂x2Φc+ε,d + (1 − η)V ∂x2

(
Φc+ε,d

V

))∥∥∥∥
⊛⊛,σ,d⊛

6 K(σ, c)ε,

we deduce that ‖Φc+ε,d − Φc,d‖⊛,σ,d⊛
6 K(σ, c)ε.

From the definition of F , we infer that

Fc+ε(Φc+ε,d/V ) − Fc(Φc,d/V ) = −iε∂x2V

+ V (1 − η)(−∇Ψc+ε,d.∇Ψc+ε,d + ∇Ψc,d.∇Ψc,d)

+ V (1 − η)|V |2(S(Ψc+ε,d) − S(Ψc,d))

+ Rc+ε(Ψc+ε,d) −Rc(Ψc,d).

Now, regrouping the terms of Π⊥
d (dΨFc((Φc+ε,d − Φc,d)/V )) and using ‖Φc+ε,d − Φc,d‖⊛,σ,d⊛

6 K(σ, c)ε for the
remaining nonlinear terms (which will be at least quadratic in Φc+ε,d − Φc,d, since F is C∞ with respect to Ψ), as
well as the fact that c 7→ Rc ∈ C∞(]0, c0(σ)[, C1(R2)), for any 0 < σ < 1,

Π⊥
d (Fc+ε(Φc+ε,d/V ) − Fc(Φc,d/V )) = Π⊥

d (dΨFc((Φc+ε,d − Φc,d)/V ))

+ εΠ⊥
d (−i∂x2V )

+ Oσ,c
‖.‖∗∗,σ,d

(ε2),

where Oσ,c
‖.‖∗∗,σ,d

(ε2) is a quantity going to 0 as ε2 when ε→ 0 in the norm ‖.‖∗∗,σ,d at fixed σ, c. We deduce that

(
Id +

(
ηL(.) + (1 − η)V L′

(
.
V

))−1

c
(Π⊥

d (dΨFc(./V )))
)

((Φc+ε,d − Φc,d))

=
(
ηL(.) + (1 − η)V L′

(
.
V

))−1

c

(
−εΠ⊥

d (−i∂x2V ) − iε
(
η∂x2Φc+ε,d + (1 − η)V ∂x2

(
Φc+ε,d

V

)))

+
(
ηL(.) + (1 − η)V L′

(
.
V

))−1

c
(Oσ,c

‖.‖∗∗,σ,d
(ε2)),
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and we have shown that
(

Id +
(
ηL(.) + (1 − η)V L′

(
.
V

))−1

c

(
Π⊥

d

(
1
V dΦFc(./V )

)))
is invertible from E⊛,σ,d⊛

to E⊛,σ,d⊛

(with an operator norm equal to 1 + oσc→0(1) if taken in Φ = Φc,d, see Lemma 3.1). Furthermore, Φc,d is continuous
with respect to c in E⊛,γ(σ),d⊛

(with the same computations as previously, replacing σ by γ(σ)), therefore

η∂x2Φc+ε,d + (1 − η)V ∂x2

(
Φc+ε,d

V

)
→ η∂x2Φc,d + (1 − η)V ∂x2

(
Φc,d

V

)

in E⊛⊛,γ(σ),d⊛
when ε→ 0. We deduce that c 7→ Φc,d is C1 in E⊛,σ,d⊛

(and therefore in E∗,σ,d). ✷

Now, we show the differentiablity of Φc,d with respect to d.

Lemma 3.3 For 0 < σ < 1, there exists c0(σ) > 0 such that, for 0 < c < c0(σ),

d 7→ Φc,d ∈ C1

(]
1

2c
,

2

c

[
∩
]
d⊛ − δ

2
, d⊛ +

δ

2

[
, E⊛,σ,d⊛

)
.

We recall that δ > 0 is defined at the beginning of this subsection.

We check easily by standard elliptic regularity arguments that ∂cΦc,d ∈ C∞(R2,C). Furthermore, c 7→ Φc,d is
C1 with values in E∗,σ,d, therefore ∂c∇Φc,d is well defined (in C0(R2,C)). Let us show that it is equal to ∇∂cΦc,d.
For ϕ ∈ C∞

c (R2,C), we have, by derivation under an integral, that
∫

R

2

∂c∇Φc,dϕ = ∂c

∫

R

2

∇Φc,dϕ

= −∂c
∫

R

2

Φc,d∇ϕ

= −
∫

R

2

∂cΦc,d∇ϕ

=

∫

R

2

∇∂cΦc,dϕ.

Therefore ∂c∇Φc,d = ∇∂cΦc,d in the distribution sense, and thus in the strong sense. Furthermore, thanks to the
equation ηL(Φc,d)+(1−η)V L′(Ψc,d)+F (Ψc,d) = λ(c, d)Zd, we can isolate ∆Φc,d as in (2.11), and show in particular
that it is a C1 function of c. By similar arguments as for the gradient, we can show that ∂c∆Φc,d = ∆∂cΦc,d.
Furthermore, the same proof holds if we differentiate Φc,d with respect to d. We can therefore inverse derivatives
in position and derivatives with respect to c or d on Φc,d.

Let us also show that (c, d) 7→ ∂cΦc,d is a continuous function from Ω :=
{

(c, d) ∈ R2, 0 < c < c0(σ), 1
2c < d < 2

c

}

to E∗,σ,d. With the same compactness argument used in the proof of the continuity of c 7→ Φc,d, we can show that
(c, d) 7→ Φc,d is continuous from Ω to E∗,σ,d. From the proof of Lemma 3.2, we have that

(
Id +

(
ηL(.) + (1 − η)V L′

( .
V

))−1

(Π⊥
d (dΨF (./V )))

)
(∂cΦc)

= Π⊥
d (∂cF (Φc,d/V )) − iη∂x2Φc,d + (1 − η)V ∂x2

(
Φc,d

V

)
.

Since (c, d) 7→ Φc,d is continuous from Ω to E∗,σ,d, and that the dependence on (c, d) of the other terms of the

right-hand side is explicit, we check that Π⊥
d (∂cF (Φc,d/V )) − iη∂x2Φc,d + (1 − η)V ∂x2

(
Φc,d

V

)
is continuous from Ω

to E∗∗,γ(σ),d. We check also that (c, d) 7→
(

Id +
(
ηL(.) + (1 − η)V L′

(
.
V

))−1
(Π⊥

d (dΨF (./V )))
)

is continuous from

Ω to E∗∗,γ(σ),d → E∗,σ,d, and thus (c, d) 7→ ∂cΦc,d is a continuous function from Ω to E∗,σ,d. The same proof holds
for (c, d) 7→ ∂dΦc,d.

We end this subsection with the symmetries of ∂dΦc,d.

Lemma 3.4 The function ∂dΦc,d satisfies the symmetries: for x = (x1, x2) ∈ R2,

∂dΦc,d(x1, x2) = ∂dΦc,dc(−x1, x2) = ∂dΦc,d(x1,−x2).
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Proof From subsection 2.3,

∀x = (x1, x2) ∈ R2,Ψc,d(x1, x2) = Ψc,d(x1,−x2) = Ψc,d(−x1, x2)

and V enjoys the same symmetries, therefore for all d ∈ R such that 1
2c < d < 2

c ,

Φc,d(x1, x2) = Φc,d(−x1, x2) = Φc,d(x1,−x2).

Since

∂dΦc,d = lim
ε→0

Φc,d+ε − Φc,d

ε
,

these symmetries also hold for ∂dΦc,d. ✷

3.2 End of the construction and properties of Qc

A consequence of equation (2.23) and Proposition 2.26 is that, for 0 < σ < 1, there exists c0(σ) > 0 such that, for
0 < c < c0(σ),

ηL(Φc,d) + (1 − η)V L′(Ψc,d) + F (Ψc,d) = λ(c, d)Zd

with

λ(c, d)

∫

R

2

|∂dV |2η = π

(
1

d
− c

)
+Oσ

c→0(c2−σ).

Following the proof of Proposition 2.26, with Lemmas 3.2 and 3.3, we can check that the Oσ
c→0(c2−σ) is continuous

with respect of c and d. Therefore, by the intermediate value theorem, there exists dc > 0 such that λ(c, dc) = 0,
with

dc =
1

c
+Oσ

c→0(c−σ),

for c > 0 small enough. Then, for the function Φc,dc = VΨc,dc with ‖Ψc,dc‖∗,σ,dc 6 K(σ,σ′)c1−σ′

, we have

ηL(Φc,dc) + (1 − η)V L′(Ψc,dc) + F (Ψc,dc) = 0,

meaning that if we define
Qc := ηV (1 + Ψc,dc) + (1 − η)V eΨc,dc ,

then Qc solves (TWc).

3.2.1 Behaviour at infinity and energy estimation

Lemma 3.5 The function Qc satisfies Qc(x) → 1 when |x| → ∞.

Proof From ‖Ψc,dc‖∗,σ,dc 6 K(σ, σ′)c1−σ′

we have Ψc,dc(x) → 0 when |x| → ∞. Furthermore |1 − V |2 6
C(dc)
1+r2 by

Lemma 2.3 and Qc = V eΨc,dc for large values of |x|, hence Qc(x) → 1 when |x| → ∞. ✷

In the statement of Theorem 1.1, we have set Qc = V + Γc,dc , we therefore define

Γc,dc := ηVΨc,dc + (1 − η)V
(
eΨc,dc − 1

)
. (3.4)

We compute that ∥∥∥∥
Γc,dc

V

∥∥∥∥
∗,σ,dc

6 K‖Ψc,dc‖∗,σ,dc +
∥∥(1 − η)

(
eΨc,dc − 1 − Ψc,dc

)∥∥
∗,σ,dc

,

and since ‖Ψc,dc‖∗,σ,dc 6 1 for c small enough (depending on σ), we have

∥∥(1 − η)
(
eΨc,dc − 1 − Ψc,dc

)∥∥
∗,σ,dc

6 K

∥∥∥∥∥(1 − η)Ψ2
c,dc

+∞∑

n=2

Ψn−2
c,dc

n!

∥∥∥∥∥
∗,σ,dc

.
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Now, for 0 < σ < σ′ < 1, we have 1+σ′

2 > 1+σ
2 , hence

|Ψc,dc| 6 K(σ, σ′)
c1−

1+σ′

2

(1 + r̃)
1+σ
2

and |∇Ψc,dc | 6 K(σ, σ′)
c1−

1+σ′

2

(1 + r̃)1+
1+σ
2

,

therefore

|Ψc,dc |2 6 K(σ, σ′)
c1−σ′

(1 + r̃)1+σ
and |∇Ψc,dc |2 6 K(σ, σ′)

c1−σ′

(1 + r̃)2+σ
.

Thus, with |∇2Ψc,dc | 6 K(σ, σ′) c1−σ′

(1+r̃)1+σ , we check that, for any 0 < σ < σ′ < 1,

∥∥∥∥∥(1 − η)Ψ2
c,dc

+∞∑

n=2

Ψn−2
c,dc

n!

∥∥∥∥∥
∗,σ,dc

6 K(σ, σ′)c1−σ′

.

Combining this result with ‖Ψc,dc‖∗,σ,dc 6 K(σ, σ′)c1−σ′

, we deduce that

∥∥∥∥
Γc,dc

V

∥∥∥∥
∗,σ,dc

6 K(σ, σ′)c1−σ′

. (3.5)

In particular, we have, for any 0 < σ < σ′ < 1, 0 < c < c0(σ, σ′), that

|Γc,dc | 6
K(σ, σ′)c1−σ′

(1 + r̃)σ
, (3.6)

∣∣∣∣Re

(
Γc,dc

V

)∣∣∣∣ 6
K(σ, σ′)c1−σ′

(1 + r̃)1+σ
, (3.7)

and, if r̃ > 2,

|∇Γc,dc | 6
∣∣∣∣∇
(

Γc,dc

V

)∣∣∣∣+

∣∣∣∣
∇V
V

∣∣∣∣×
∣∣∣∣
Γc,dc

V

∣∣∣∣ ,

therefore, using |∇V | 6 K
(1+r̃) from Lemma 2.1, we have

|∇Γc,dc | 6
K(σ, σ′)c1−σ′

(1 + r̃)1+σ
. (3.8)

Estimate (3.8) remains true in {r̃ 6 2} since ‖Γc,dc‖C1({r̃62}) 6
∥∥ Γ
V

∥∥
∗,σ,dc

6 K(σ, σ′)c1−σ′

. We now show the

estimates on Γc,dc of Theorem 1.1.

Lemma 3.6 For +∞ > p > 2, there exists c0(p) > 0 such that if 0 < c < c0(p), we have Γc,dc ∈ Lp(R2),∇Γc,dc ∈
Lp−1(R2) and

‖Γc,dc‖Lp(R2) + ‖∇Γc,dc‖Lp−1(R2) = oc→0(1).

Proof If p = +∞, using (3.6) and (3.8), we infer

‖Γc,dc‖L∞(R2) 6 K(σ)c1−σ,

‖∇Γc,dc‖L∞(R2) 6 K(σ)c1−σ,

hence the result holds. If 2 < p < +∞ then, by (3.6),

∫

R

2

|Γc,dc |p 6

∫

R

2

‖Γc,dc‖p∗,σ,dc

(1 + r̃)pσ
dx 6

∫

R

2

K(σ, σ′)c(1−σ′)p

(1 + r̃)pσ
dx.

Taking 0 < σ < σ′ < 1 such that pσ > 2 then gives the result. Furthermore, by (3.8),

∫

R

2

|∇Γc,dc |p 6

∫

R

2

K(σ, σ′)c(1−σ′)p

(1 + r̃)p(σ+1)
dx,
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so for p > 1 we can take 0 < σ < σ′ < 1 such that p(σ + 1) > 2 and we have the result. ✷

Remark that we can have better estimates on Γc,dc , in particular if we look at real and imaginary parts of
Γc,dc

V .
For instance it is possible to show that

∥∥∥∥Re

(
Γc,dc

V

)∥∥∥∥
Lp({r̃>1})

= oc→0(1)

for p > 1 instead of p > 2. This estimate does not hold for r̃ small since it is not clear that Ψc,dc is bounded there
(but Φc,dc is). This is due to the fact that the zeros of Qc are not exactly those of V .

Lemma 3.7 The travelling wave Qc has finite energy, that is:

E(Qc) =
1

2

∫

R

2

|∇Qc|2 +
1

4

∫

R

2

(1 − |Qc|2)2 < +∞.

Proof Far from the vortices, ∇Qc = ∇(V1V−1)eΨc,dc + ∇Ψc,dcV1V−1e
Ψc,dc . We know that, for r̃ > 1,

|∇Ψc,dc | 6
K(σ)

r̃1+σ

and (by Lemma 2.3)

|∇(V1V−1)| 6 K(c)

r̃2
,

hence

|∇Qc|2 6
K(c, σ)

r̃2+2σ

and is therefore integrable. On the other hand,

|1 − |Qc|2| =
∣∣∣1 − |V1V−1|2e2Re(Ψc,dc )

∣∣∣ 6 K(1 − |V1V−1|2 + |V1V−1|2|Re(Ψc,dc)|),

and we have

1 − |V1V−1|2 = O

(
1

r̃2

)
and Re(Ψc,dc) = Oσ

(
1

r̃1+σ

)
,

therefore

(1 − |Qc|2)2 = O

(
1

r̃2+2σ

)

and is integrable. ✷

At this point, we have finished the proof of the construction of Qc. In the next two subsection, we add some
estimates on Qc that will be usefull for the differentiability of the branch, and others that are interesting in
themselves.

3.2.2 A set of estimations on Qc

The next Lemma gives additional estimates on Qc which are more precise but more technical than the ones in
Theorem 1.1.

Lemma 3.8 For any 0 < σ < σ′ < 1, there exists c0(σ, σ′),K(σ, σ′) > 0 such that for 0 < c < c0(σ, σ′) we have

‖Ψc,dc‖∗,σ,dc 6 K(σ, σ′)c1−σ′

. (3.9)

Furthermore, for any 0 < σ < 1, there exist c0(σ),K(σ) > 0 such that for 0 < c < c0(σ) we have

‖VΨc,dc‖C1(r̃63) + ‖r̃σIm(Ψc,dc)‖L∞(r̃>2) + ‖r̃1+σRe(Ψc,dc)‖L∞(r̃>2)

+ ‖r̃1+σIm(∇Ψc,dc)‖L∞(r̃>2) + ‖r̃2+σRe(∇Ψc,dc)‖L∞(r̃>2)

6 K(σ)c1−σ, (3.10)
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|1 − |Qc|| 6
K(σ)

(1 + r̃)1+σ
, (3.11)

|Qc − V | 6 K(σ)c1−σ

(1 + r̃)σ
, (3.12)

||Qc|2 − |V |2| 6 K(σ)c1−σ

(1 + r̃)1+σ
, (3.13)

|Re(∇QcQc)| 6
K(σ)

(1 + r̃)1+σ
, (3.14)

|Im(∇QcQc)| 6
K

1 + r̃
(3.15)

Equation (3.10) is a slight improvements of (3.9). It is, except for the second derivatives, the estimate in the
case σ′ = σ.
Proof The first estimate (3.9) comes from the construction of the solution.

We now take χ a cutoff function with value 1 in {r̃ > 2} and 0 in {r̃ 6 1}, we write Ψ̃ = χΨc,dc and h̃ = χh,

where h contains the nonlinear and source terms. We recall from (B.8) that Ψ̃ = Ψ̃1 + iΨ̃2 and h̃ = h̃1 + ih̃2 satisfy
the system





∆Ψ̃1 − 2Ψ̃1 = −h̃1 − 2Re

(
∇V
V .∇Ψ̃

)
− 2(1 − |V |2)Ψ̃1 + c∂x2Ψ̃2 + Loc1(Ψ)

∆Ψ̃2 = −h̃2 − 2Im
(
∇V
V .∇Ψ̃

)
+ Loc2(Ψ) − c∂x2Ψ̃1,

where Loc1(Ψ),Loc2(Ψ) are localized terms. From Lemmas 2.22 to 2.24, we check that for any 0 < σ < 1,

‖h̃‖∗∗,σ,d 6 K(σ)c1−σ.

Furthermore, as in the proof of Proposition 2.17, we check that (using ‖Ψ̃‖∗,σ/2,d 6 K(σ)c1−σ)
∥∥∥∥
∇V
V

.∇Ψ̃ − 2(1 − |V |2)Re(Ψ̃) + Loc(Ψ)

∥∥∥∥
∗∗,σ,d

6 K(σ)c1−σ.

Finally, with (3.9), for σ′ = 1+σ
2 > σ,

‖c∂x2Ψ̃‖∗∗,σ,d 6 K(σ)c‖Ψ̃‖∗,σ,d 6 K(σ)c1+1− 1+σ
2 6 K(σ)c1−σ.

With Lemma 2.10 for α = 1 + σ > 0, we deduce from the first equation of the system that

‖(1 + r̃)1+σΨ̃1‖L∞(R2)

6 K(σ)

∥∥∥∥(1 + r̃)1+σ

(
−h̃1 − 2Re

(∇V
V

.∇Ψ̃

)
− 2(1 − |V |2)Ψ̃1 + c∂x2Ψ̃2 + Loc1(Ψ)

)∥∥∥∥
L∞(R2)

6 K(σ)c1−σ,

and, by differentiating the equation, by Lemma 2.10 for α = 2 + σ > 0

‖(1 + r̃)2+σ∇Ψ̃1‖L∞(R2)

6 K(σ)

∥∥∥∥(1 + r̃)2+σ∇
(
−h̃1 − 2Re

(∇V
V

.∇Ψ̃

)
− 2(1 − |V |2)Ψ̃1 + c∂x2Ψ̃2 + Loc1(Ψ)

)∥∥∥∥
L∞(R2)

6 K(σ)c1−σ.

Now, using Lemma 2.8 and ‖(1 + r̃)2+σ∇Ψ̃1‖L∞(R2) 6 K(σ)c1−σ, we infer that

‖(1 + r̃)σΨ̃2‖L∞(R2) + ‖(1 + r̃)1+σ∇Ψ̃2‖L∞(R2)

6 K(σ)

∥∥∥∥(1 + r̃)2+σ

(
−h̃2 − 2Im

(∇V
V

.∇Ψ̃

)
+ Loc2(Ψ) − c∂x2Ψ̃1

)∥∥∥∥
L∞(R2)

6 K(σ)c1−σ,

53



which concludes the proof of (3.10).

The estimate (3.11) is clear if r̃ 6 3. If r̃ > 3, then Qc = V eΨc,dc and, for c small enough (depending on σ),
|Re(Ψc,dc)| 6 1, thus

|1 − |Qc|| =
∣∣∣1 − |V | − |V |

(
eRe(Ψc,dc) − 1

)∣∣∣
6 |1 − |V || +K|Re(Ψc,dc)|

6
K

(1 + r̃)2
+
K(σ)c1−σ

(1 + r̃)1+σ

6
K(σ)

(1 + r̃)1+σ

by Lemma 2.3 and (3.10). For (3.12), if r̃ > 3, we compute

|Qc − V | = |V | ×
∣∣eΨc,dc − 1

∣∣ 6 C|Ψc,dc | 6
K(σ)c1−σ

(1 + r̃)σ

and if r̃ 6 3, |Qc − V | 6 C‖Ψc,dc‖∗,σ,dc and the estimate (3.12) holds. Similarly, for r̃ > 3,

||Qc|2 − |V |2| 6 |V |2
∣∣∣e2Re(Ψc,dc) − 1

∣∣∣ 6 K(σ)c1−σ

(1 + r̃)1+σ

and for the same reason if r̃ 6 3 the estimate (3.13) holds. Inequalities (3.14) and (3.15) are clear if r̃ 6 3 and we
compute, for r̃ > 3,

∇QcQc = ∇
(
V eΨc,dc

)
V̄ eΨ̄c,dc = ∇V V̄ e2Re(Ψc,dc) + |V |2∇Ψc,dce

2Re(Ψc,dc).

We have
∣∣e2Re(Ψc,dc)

∣∣ 6 1 for c small enough and by Lemma 2.1 we have |Im(∇V V̄ )| 6 K
1+r̃ and |Re(∇V V̄ )| 6 K

(1+r̃)3 .

Combining it with |∇Ψc,dc | 6 K(σ)c1−σ

(1+r̃)1+σ from (3.10), estimates (3.14) and (3.15) hold. ✷

3.2.3 Estimations on derivatives of Φc,d with respect to c and d at d = dc.

We cannot easily compute ∂dΨc,d|d=dc
because of issues locally around the vortices (due to the fact that Ψc,d is

unbounded near r̃ = 0, and changing d change the position of the vortices). We shall prove instead an estimate on
∂dΦc,d|d=dc

, as well as an estimate on ∂cΨc,d|d=dc
.

Lemma 3.9 For any 0 < σ < σ′ < 1, c ∈ R such that 1
2d < c < 2

d and 0 < c < c0(σ, σ′), we have

‖∂cΨc,d|d=dc
‖∗,σ,d 6 K(σ, σ′)c−σ′

and ∥∥∥∥
∂dΦc,d

V |d=dc

∥∥∥∥
∗,σ,dc

6 K(σ, σ′)c1−σ′

,

with K(σ, σ′) > 0 depending only on σ, σ′.

See Appendix C.2 for the proof of this result.

4 Differentiability of the branch c 7→ Qc

The goal of this section is to prove that the constructed branch is C1, and to give the leading order term of ∂cQc

as c→ 0. The result is the following one.
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Proposition 4.1 For any +∞ > p > 2, there exists c0(p) > 0 such that

c 7→ Qc − 1 ∈ C1(]0, c0(p)[, Xp),

with the estimate
∥∥∥∥∂cQc +

(
1 + oc→0(1)

c2

)
∂d(V1(.− d−→e1)V−1(.+ d−→e1))|d=dc

∥∥∥∥
Xp

= oc→0

(
1

c2

)
.

Proposition 4.1, together with subsection 3.2, ends the proof of Theorem 1.1. Subsections 4.1 to 4.7 are devoted
to the proof of Proposition 4.1.

In this section, to make the dependances on c and d clear, we use the following notations. We denote Φc,d,Ψc,d

and Γc,d in order to emphasize the dependence of Φ,Ψ and Γ in Proposition 2.21 on c and d. A value of d that
makes λ(c, d) = 0 in Proposition 2.26 is written dc. We will show later on that there exist one and only one value of
dc satisfying this in

]
c
2 , 2c

[
. With these notations, Qc = V1(.− dc

−→e1)V−1(.+ dc
−→e1) + Γc,dc is the solution of (TWc)

we constructed in section 3.
In subsection 3.1 we showed that Φc,d is a C1 function of both c and d. We also have computed estimates for

the derivatives of Φc,d with respect to c and d in Lemma 3.9, that will be usefull here.
The goal is to show that dc is a C1 function of c. We will do this by the implicit function theorem, but this

requires a lot of computations. In particular, in Proposition 2.26, dc was choosen so that

〈L(Φc,d) − (1 − η)(E − ic∂x2V )Ψc,d + F (Ψc,d), ∂dV 〉 = 0,

but we may equivalently define it by the implicit equation

∫

B(d−→e1,dε′)∪B(−d−→e1,dε′)

Re((L(Φc,d) − (1 − η)EΨc,d + F (Ψc,d))∂dV ) = 0.

This is the same equation but the scalar product is not taken on the whole space but only on B(d−→e1 , dε
′

) ∪
B(−d−→e1 , dε

′

) for some 0 < ε′ < 1 (we will take ε′ = 13/24 but this value is purely technical, other values are
possible). The only reason why we take it in the whole space in Lemma 2.26 was because of the boundary terms
that will appear in the integration by parts when we write

〈L(Φ), ∂dV 〉 = 〈Φ, L(∂dV )〉.

With the boundary terms on the boundary of B(±d−→e1 , dε
′

), ε′ > 0, we are far enough from the vortices to make
them small enough for our estimations. Thanks to this we can separate what happens near the vortex V1 from what
happens near the vortex V−1 because now the integrals are in two well separated domain, one around each vortex.
We use this in subsection 4.1. We need to differentiate the equation with respect to d. If we write Qc,d = V + Γc,d,
then ∂dQc = ∂dV + ∂d(Γc,d). The term ∂dV is easy to compute and to understand: we just move both vortices
in opposite direction. But ∂dΓc,d is very difficult to understand, and our estimations on Γc,dc are not enough to
compute easily what happens with sufficient precision to control its contribution. We would rather write Qc,d under
the form

Qc,d(x) = (V1(x− d−→e1) + Γ̃1(x− d−→e1)) + (V−1(x + d−→e1) + Γ̃−1(x+ d−→e1)) + Err

where Γ̃1(x− d−→e1) is centered near V1, is small and is here because of the existence of V−1 far away. Then the term
we understand is

∂x1+d(V1(x− d−→e1) + Γ̃1(x− d−→e1))

which is what changes near the center of V1 when we move only the other vortex. This can be computed more
easily and that is what we do in subsection 4.3. This term is easy to compute only near the vortex V1, and that is
one of the reasons we work only on B(d−→e1 , dε

′

). The main contribution to the variation of the position of V−1 is as
expected from the source term E − ic∂x2V . This is the computation of subsection 4.4.

Furthermore, most estimations boils down to what happen near each vortex, see for instance the contribution
of E in step 5 of the proof of Proposition 2.26, where we separate the contribution far from both vortices and close
to them. By integrating only on B(d−→e1 , dε

′

) we reduce the number of estimations we need to do. Moreover, in such
a ball the contribution of the vortex V−1 and its derivatives are easy to compute, see subsection 4.2.
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Subsection 4.5 gathers all the estimations needed to show that only the contribution from the source term is of
leading order. Subsection 4.6 and 4.7 are easy computations using previous subsections to compute the first order
term of ∂cQc.

The main and most difficult part is subsection 4.3. We want to show that ∂x1+d(Γ̃1(x − d−→e1)) is much smaller
than Γ̃1(x − d−→e1), i.e. that the derivative with respect to x1 + d gives us additional smallness in c. For this we do
a proof by contradiction which follows closely what was done in the proof of Proposition 2.17.

We define the following differential operators:

∂y1 := ∂x1 − ∂d,

∂z1 := ∂x1 + ∂d.

These notations follow the definitions of y1 = x1 − d and z1 = x1 + d from (2.1). The derivative in d is taken at
fixed c. The function ∂dΦc,d is the derivative of Φ with respect to d at fixed c and we shall use the notation

∂dΦc,dc := ∂dΦc,d|d=dc
,

and similarly for ∂dΓc,dc and ∂dΨc,dc . The derivatives ∂y1 and ∂z1 behave naturally on function depending on x
and d only through y or z, as shown in the following lemma.

Lemma 4.2 For any F ∈ C1(R2,C), we have

∂y1(F(z)) = ∂z1(F(y)) = 0

and
∂y1(F(y)) = 2∂x1F(y),

∂z1(F(z)) = 2∂x1F(z).

Proof We compute

∂y1(F(z)) = ∂x1(F(x1 + d, x2)) − ∂d(F(x1 + d, x2)) = ∂x1F(z) − ∂x1F(z) = 0.

Similarly we have ∂z1(F(y)) = 0. Moreover,

∂y1(F(y)) = ∂x1(F(x1 − d, x2)) − ∂d(F(x1 − d, x2)) = ∂x1F(y) + ∂x1F(y) = 2∂x1F(y)

and similarly, ∂z1(F(z)) = 2∂x1F(z). ✷

We have an estimate on ∂dΦc,d|d=dc
, but it is not enough to show that dc is a C1 function of c. The main

idea of the proof is to compute an estimate on ∂z1Φc,dc = ∂x1Φc,dc + ∂dΦc,dc near the vortex V1 which is better
than the ones on ∂x1Φc,dc and ∂dΦc,dc . In particular we will have ∂z1Φc,dc = oc→0(c1+λ) for some λ > 0 instead of
oc→0(c1−σ) for σ > 0. This estimate is done in Proposition 4.5. First, we compute a first rough estimate on ∂z1Ψc,d

which is a corollary of Lemma 3.3.

Corollary 4.3 For χ a smooth cutoff function with value 1 in {r−1 > 3} and 0 in {r−1 6 2}, for 0 < σ < σ′ < 1,
there exist c0(σ, σ′) > 0 such that, for 0 < c < c0(σ, σ′), we have

‖V χ∂z1Ψc,d|d=dc
‖C1({r̃63})

+ ‖r̃1+σRe(∂z1Ψc,d|d=dc
)‖L∞({r̃>2}) + ‖r̃2+σ∇Re(∂z1Ψc,d|d=dc

)‖L∞({r̃>2})

+ ‖r̃σIm(∂z1Ψc,d|d=dc
)‖L∞({r̃>2}) + ‖r̃1+σ∇Im(∂z1Ψc,d|d=dc

)‖L∞({r̃>2})

6 K(σ, σ′)c1−σ′

.

Proof Remark that V1∂dΨc,d might not be bounded near d−→e1 , but V1∂z1Ψc,d is, since, by Lemma 4.2, ∂z1V1 = 0
hence

V1∂z1Ψc,d = ∂z1Φc,d = ∂dΦc,d + ∂x1Φc,d,
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with ∂dΦc,d bounded by Lemma 3.3. We take a cutoff χ to avoid the fact that V−1∂z1Ψc,d is not necessary bounded
near −d−→e1 . In particular, with these remarks, we easily check, with Lemma 3.3, that

‖V χ∂z1Ψc,d|d=dc
‖C1({r̃63}) 6 K(σ, σ′)c1−σ′

.

We now focus on the region {r̃ > 2}. From the definition of ∂z1 , we have that

∂z1Ψc,d|d=dc
= ∂dΨc,dc + ∂x1Ψc,dc .

We compute

∂dΨc,dc =
∂dΦc,dc

V
+
∂dV

V
Ψc,dc,

and from Lemma 3.3, we have ∥∥∥∥
∂dΦc,dc

V

∥∥∥∥
∗,σ,dc

6 K(σ, σ′)c1−σ′

.

From Lemma 2.6, we have

|∂dV | 6 K

(1 + r̃)

and

|∇∂dV | 6 K

(1 + r̃)2
,

and together with ‖Ψc,dc‖∗,σ,dc 6 K(σ, σ′)c1−σ′

, we check that

∥∥r̃1+σRe
(
∂dV
V Ψc,dc

)∥∥
L∞({r̃>2})

+
∥∥r̃2+σ∇Re

(
∂dV
V Ψc,dc

)∥∥
L∞({r̃>2})

+
∥∥r̃σIm

(
∂dV
V Ψc,dc

)∥∥
L∞({r̃>2})

+
∥∥r̃1+σ∇Im

(
∂dV
V Ψc,dc

)∥∥
L∞({r̃>2})

6 K(σ, σ′)c1−σ′

.

Finally, for the contribution of ∂x1Ψc,dc , using ‖Ψc,dc‖∗,σ,dc 6 K(σ, σ′)c1−σ′

, we show that, with some margin,

‖r̃1+σRe(∂x1Ψc,dc)‖L∞({r̃>2}) + ‖r̃2+σ∇Re(∂x1Ψc,dc)‖L∞({r̃>2})

+ ‖r̃σIm(∂x1Ψc,dc)‖L∞({r̃>2}) + ‖r̃1+σ∇Im(∂x1Ψc,dc)‖L∞({r̃>2})

6 K(σ, σ′)c1−σ′

,

which ends the proof of this corollary. ✷

4.1 Recasting the implicit equation defining dc

At this point, we do not know if dc is uniquely defined for c > 0. We denote by dc a value defined by the implicit
equation on d:

〈TWc(Qc,d), ∂dV 〉 = 0,

where
Qc,d := V + Γc,d,

with Γc,d = ηVΨc,d + (1 − η)V (eΨc,d − 1), which is a C1 function of d and c in E∗,σ,d thanks to subsection 3.1.
Remark that dc is also defined by the implicit equation for 0 < ε′ < 1:

∫

B(d−→e1,dε′)∪B(−d−→e1,dε′)

Re(∂dV TWc(Qc,d)) = 0,

that we will use instead because of the reasons explained at the begining of section 4. We can check easily that
∂dQc,d, ∂cQc,d ∈ C∞(R2) (by looking at the equations they satisfy in the distribution sense and using standard
elliptic regularity arguments), and furthermore, that d 7→ ∂dQc,d and c 7→ ∂cQc are continuous functions (on their
domain of definition in C∞

loc(R
2) for instance). From now on, we take any 0 < ε′ < 1, but we will fix its value

57



later on. We want to differentiate this quantity with respect to d and take the result at a value dc such that
TWc(Qc,dc) = 0 in R2. In particular, we have

∂d

∫

B(d−→e1,dε′)∪B(−d−→e1,dε′)

Re(∂dV TWc(Qc,d))|d=dc
=

∫

B(d−→e1,dε′)∪B(−d−→e1,dε′)

Re(∂dV ∂d(TWc(Qc,d)))|d=dc
.

Now, by symmetry, we remark that

∫

B(d−→e1,dε′)∪B(−d−→e1,dε′)

Re(∂dV ∂d(TWc(Qc,d))) = 2

∫

B(d−→e1,dε′)

Re(∂dV ∂d(TWc(Qc,d))).

We will use the two operators we have already defined:

∂y1 = ∂x1 − ∂d and ∂z1 = ∂x1 + ∂d.

Since TWc(Qc,dc) = 0 everywhere in R2, we therefore have ∂x1(TWc(Qc,dc)) = 0, hence, at d = dc,

∂d(TWc(Qc,d)) = ∂z1(TWc(Qc,d)).

We write
TWc(Qc,d) = TWc(V ) + L(Γc,d) + NLV (Γc,d),

with
L(Γc,d) = −∆Γc,d − ic∂x2Γc,d − (1 − |V |2)Γc,d + 2Re(V̄ Γc,d)V

and
NLV (Γc,d) := 2Re(V̄ Γc,d)Γc,d + |Γc,d|2(V + Γc,d).

We compute
∂z1(TWc(Qc,d)) = ∂z1(TWc(V )) + L(∂z1Γc,d) + (∂z1L)(Γc,d) + ∂z1(NLV (Γc,d)),

therefore, at d = dc,

∂d

∫

B(d−→e1,dε′)

Re(∂dV TWc(Qc,d)) =

∫

B(d−→e1,dε′)

Re(∂dV ∂z1(TWc(V )))

+

∫

B(d−→e1,dε′)

Re(∂dV L(∂z1Γc,d)) +

∫

B(d−→e1,dε′)

Re(∂dV (∂z1L)(Γc,d))

+

∫

B(d−→e1,dε′)

Re(∂dV ∂z1(NLV (Γc,d))) (4.1)

since the boundary term is 0 (when the differentiation is on the d in B(d−→e1 , dε
′

)) because TWc(Qc,dc) = 0. We
need to estimate those four terms at d = dc, and that is the goal of the next subsections. Subsections 4.2 and 4.3
yield estimates on the derivatives of V−1 and ∂z1Ψc,d respectively in B′

d := B(d−→e1 , dε
′

). Subsection 4.4 is about the
estimation of ∫

B(d−→e1,dε′)

Re(∂dV ∂z1(TWc(V )))

which will be the leading order term, and subsection 4.5 shows that all the other terms are smaller for dc large
enough.
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4.2 Estimates on the derivatives of V−1 in B(d−→e1 , dε)
Lemma 4.4 For 0 < ε < 1, in B(d−→e1 , dε), with the O(.) being always real valued, we have

∂x1V−1 =

(
Od→∞

(
1

d3

)
+ iOd→∞

(
1

d2−ε

))
V−1,

∂x2V−1 =

(
Od→∞

(
1

d4−ε

)
+ iOd→∞

(
1

d

))
V−1,

∂x1x1V−1 =

(
Od→∞

(
1

d4−2ε

)
+ iOd→∞

(
1

d3−ε

))
V−1,

∂x1x2V−1 =

(
Od→∞

(
1

d3−ε

)
+

i

4d2

(
1 +Od→∞

(
1

d1−ε

)))
V−1.

Proof Recall from Lemma 2.2 that, with u =
ρ′
−1(r−1)

ρ−1(r−1)
,

∂x1V−1 =

(
cos(θ−1)u+

i

r−1
sin(θ−1)

)
V−1,

∂x2V−1 =

(
sin(θ−1)u − i

r−1
cos(θ−1)

)
V−1,

∂x1x1V−1 =

(
cos2(θ−1)(u2 + u′) + sin2(θ−1)

(
u

r−1
− 1

r2−1

)
− 2i sin(θ−1) cos(θ−1)

(
1

r2−1

− u

r−1

))
V−1

and

∂x1x2V−1 =

(
sin(θ−1) cos(θ−1)

(
u2 + u′ +

1

r2−1

− u

r−1

)
+ i cos(2θ−1)

(
1

r2−1

− u

r−1

))
V−1.

In the ball B(d−→e1 , dε), we have, by Lemma 2.1, that 1
r−1

6
K
d ,

u = Od→∞

(
1

d3

)
and sin(θ−1) = Od→∞

(
1

d1−ε

)
,

the last one is because for (y1, y2) ∈ B(d−→e1 , dε), we have |y2| 6 dε hence

| sin(θ−1)| =
|y2|
r−1

6
K

d1−ε
.

We also compute in the same way that

cos(θ−1) =

√
1 − sin2(θ−1) = 1 +Od→∞

(
1

d2−2ε

)
.

With the equation on ρ−1 coming fom −∆V−1 − (1 − |V−1|2)V−1 = 0, we check easily that

u′ = Od→∞

(
1

d4

)

as well (or see [15]). Finally, we estimate

cos(2θ−1) = 1 − 2 sin2(θ−1) = 1 +Od→∞

(
1

d2−2ε

)

and
1

r2−1

= (2d+Od→∞(dε))−2 =
1

4d2
+Od→∞

(
1

d3−ε

)
.

With this estimations, we end the proof of the lemma. ✷
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4.3 Estimate on ∂z1Ψc,d in B(d−→e1 , dε
′

)

We define the following norms for Ψ = Ψ1 + iΨ2 and h = h1 + ih2, 0 < α < 1, 0 < ε′ < ε < 1:

‖Ψ‖∗,B′
d

:= ‖VΨ‖C1({r162})

+ ‖r1−α
1 Ψ1‖L∞({dε′>r1>2}) + ‖r1−α

1 ∇Ψ1‖L∞({dε′>r1>2})

+ ‖r−α
1 Ψ2‖L∞({dε′>r1>2}) + ‖r1−α

1 ∇Ψ2‖L∞({dε′>r1>2})

and

‖h‖∗∗,Bd
:= ‖V h‖C0({r163})

+ ‖r1−α
1 h1‖L∞({dε>r1>2}) + ‖r2−α

1 h2‖L∞({dε>r1>2}).

They are the norms ‖.‖∗,−α,d and ‖.‖∗∗,−α,d of subsection 2.3, but without the second derivatives, less decay on the

gradient of the real part for ‖.‖∗,B′
d
, and only on B′

d = B(d−→e1 , dε
′

) for ‖.‖∗,B′
d

and on Bd := B(d−→e1 , dε) for ‖.‖∗∗,Bd
.

The other main difference with the previous norms is that we require less decay (we take −α < 0 instead of σ > 0
in the decay) in space, which here, since the norms are only in {r1 6 dε}, can be compensated by some smallness
in c.

From Corollary 4.3, we have that ‖∂z1Ψc,dc‖∗,B′
dc
< +∞. We want to show the following proposition.

Proposition 4.5 For 0 < α < 1, 0 < ε′ < ε < 1, 0 < λ < 1, if

λ < (1 + α)ε′,

λ+ (1 − α)ε′ < 2ε− ε′

and
λ < 2 − ε(2 − α),

we have
‖∂z1Ψc,d|d=dc

‖∗,B′
dc

= oc→0(c1+λ).

Such a choice of parameters (λ, α, ε, ε′) exists, we can take for instance α = 1/2, λ = 3/4, ε = 19/24 and
ε′ = 13/24. Furthermore, with this particular choice of parameters, we also have

λ+ (1 − α)ε′ > 1, (4.2)

which will be usefull later on. These conditions are bounds on how much additional smallness we can have on
∂z1Ψc,d near dc

−→e1 .
The main goal of this proposition is to have a decay in c better than Oc→0(c), which is not obvious from

the estimates we have done until now. The estimate on ∂z1Ψc,d|d=dc
from Corollary 4.3 will not be enough in

the computation of ∂cdc for the nonlinear terms. The proof of Proposition 4.5 follows closely the proof of the
inversibility of the linearized operator in Proposition 2.17. We want to invert the same linearized operator, but
with a different norm, which is better locally around the vortex V1.

The reason why we take Bd a little bigger than B′
d is to make the elliptic estimates of step 2 in Proposition 2.17

work here too. The main idea of this proposition is to show that if we move V−1 a little, then locally around V1 the
change is very small. We now start the proof of Proposition 4.5.

Proof First, we remark that in Bd, since ε < 1, r̃ = r1.

Step 1. Computation of the equation on ∂z1Ψc,d.

Recall that Φc,d solves the equation (with Φc,d = VΨc,d)

ηL(Φc,d) + (1 − η)V L′(Ψc,d) + F (Ψc,d) = λ(c, d)Zd,
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and we recall that λ(c, d) =
〈F (Ψc,d),Zd〉

‖Zd‖2
L2(R2)

, and we check easily, with Lemma 3.3, that it is a C1 function of d. The

equation on Φc,d holds for any x ∈ R2 and any d ∈ R, 1
2d < c < 2

d , hence

∂z1(ηL(Φc,d) + (1 − η)V L′(Ψc,d) + Π⊥
d (F (Ψc,d)) − λ(c, d)Zd) = 0.

We compute

∂z1(λ(c, d)Zd) = (∂x1 + ∂d)(λ(c, d)Zd)

= ∂dλ(c, d)Zd + λ(c, d)∂z1Zd,

and we recall, from the proof of Proposition 2.26 that

λ(c, d)

∫

R

2

|∂dV |2η2 = π

(
1

d
− c

)
+Oσ

c→0(c2−σ).

With Lemma 3.3 and Corollary 4.3, as well as Lemma 2.6, we infer that the terms contributing to the Oσ
c→0(c2−σ)

are such that, when differentiated with respect to d, their contributions are still a Oσ
c→0(c2−σ). Indeed, if the

derivative with respect to d fall on a Ψc,d, then by Lemma 3.3 and Corollary 4.3, the same estimates used in the
proof of Proposition 2.26 still hold. If the derivative fall on a term depending on V , by Lemma 2.6, we gain some
decay in the integrals. We deduce that, since λ(c, dc) = 0,

∂dλ(c, d)|d=dc
=

−π
d2c

+Oσ
c→0(c2−σ) = Oσ

c→0(c2−σ).

Here, we see why the fact that d is differentiable with respect to c is not obvious. The main contribution is at this
point not enough to beat the error terms. Therefore, showing that ∂dλ(c, d) 6= 0 is not simple here. This is why we
need improved estimations on ∂z1Ψc,dc, that will give us the fact that the error terms are a Oε

c→0(c2+ε) for some
ε > 0.

Now, writing
TWc(Qc,d) = ηL(Φc,d) + (1 − η)V L′(Ψc,d) + F (Ψc,d),

(with the notations of Lemma 2.7), we have (since λ(c, dc) = 0)

(∂z1(TWc(Qc,d)) − ∂dλ(c, d)Zd)|d=dc
= 0.

We recall that
F (Ψc,d) = E − ic∂x2V + V (1 − η)(−∇Ψc,d.∇Ψc,d + |V |2S(Ψc,d)) +R(Ψc,d),

where R(Ψc,d) is a sum of terms at least quadratic in Ψc,d or Φc,d localized in the area where η 6= 0.
We compute

∂z1(TWc(Qc,d)) = ηL(V ∂z1Ψc,d) + (1 − η)V L′(∂z1Ψc,d)

+ η∂z1L(Φc,d) + (1 − η)V ∂z1L
′(Ψc,d) + ∂z1(E − ic∂x2V )

+ ηL(∂z1VΨc,d) + (1 − η)∂z1V L
′(Ψc,d)

+ ∂z1η(L(Φc,d) − V L′(Ψc,d) − ic∂x2Φc,d)

− ∂z1ηV (−ic∂x2Ψc,d −∇Ψc,d.∇Ψc,d + |V |2S(Ψc,d))

+ ∂z1(R(Ψc,d))

+ ∂z1V (1 − η)(−ic∂x2Ψc,d −∇Ψc,d.∇Ψc,d + |V |2S(Ψc,d))

+ V (1 − η)∂z1(−ic∂x2Ψc,d −∇Ψc,d.∇Ψc,d + |V |2S(Ψc,d)).

We regroup the terms in the following way. We define

L(∂z1Ψc,d) := ηL(V ∂z1Ψc,d) + (1 − η)V L′(∂z1Ψc,d),
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which is the same linearized operator we have inverted in Proposition 2.17 (taken in ∂z1Ψc,d), and we define the
operator

L∂z1
(Ψc,d) := η∂z1L(Φc,d) + (1 − η)V ∂z1L

′(Ψc,d) + ηL(∂z1VΨc,d) + (1 − η)∂z1V L
′(Ψc,d).

We already have shown that TWc(V ) = E − ic∂x2V , therefore

∂z1(TWc(V )) = ∂z1(E − ic∂x2V ).

We define the local error
Errloc := ∂z1(R(Ψc,d)) − ∂dλ(c, d)Zd,

the far away error
Errfar := ∂z1V (1 − η)(−∇Ψc,d.∇Ψc,d + |V |2S(Ψ))

and the nonlinear terms

NL∂z1
(Ψc,d) := V (1 − η)∂z1(−∇Ψc,d.∇Ψc,d + |V |2S(Ψc,d)).

Finally, we write the cutoff error

Errcut := ∂z1η(L(Φc,d) − V L′(Ψc,d) + ic∂x2Ψc,d + ∇Ψc,d.∇Ψc,d − |V |2S(Ψc,d))

which is supported in the area {2 6 r−1 6 3}, and in particular is zero in B(dc
−→e1 , dεc). With these definitions, we

have, at d = dc,

(∂z1(ηL(Φc,d) + (1 − η)V L′(Ψc,d) + F (Ψc,d)) − ∂dλ(c, d)Zd)|d=dc

= L(∂z1Ψc,d)|d=dc

+
(
∂z1(TWc(V )) + L∂z1

(Ψc,d) + NL∂z1
(Ψc,d)

)
|d=dc

+ (Errloc + Errfar + Errcut)|d=dc
.

The equation satisfied by ∂z1Ψc,d at d = dc is therefore

(
L(∂z1Ψc,d) + ∂z1(TWc(V )) + L∂z1(Ψc,d) + NL∂z1

(Ψc,d) + Errloc + Errfar + Errcut
)
|d=dc

= 0.

Step 2. Beginning of the contradiction argument.

Now, suppose that the result of Proposition 4.5 is false. The scheme of this proof is the same as in Proposition
2.17. Then, there exist an absolute constant δ > 0 and sequences ∂z1Ψn, cn → 0, dn → ∞ such that

d1+λ
n ‖∂z1Ψn|d=dn

‖∗,B′
dn

> δ,

where we write dn = dcn (a value such that λ(cn, dn) = 0 in Proposition 2.26). We have just shown that Ψn (where
we omit the subscripts in dn, cn) satisfies

L(∂z1Ψn) + ∂z1(TWcn(V )) + L∂z1(Ψn) + NL∂z1
(Ψn) + Errloc + Errfar + Errcut = 0.

The function
(V ∂z1Ψn)(.− dn

−→e1)

‖∂z1Ψn‖∗,B′
dn

converges locally uniformly up to a subsequence to a limit G, since it is bounded in ‖.‖∗,B′
λ

for any λ > 0 (for the
same reasons that Ψn → Ψ locally uniformly in the beginning of the proof of Proposition 2.17).

The equation on ∂z1Ψn is
L(∂z1Ψn) + V hn = 0, (4.3)
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with

V hn := ∂z1(TWcn(V )) + L∂z1(Ψn) + NL∂z1
(Ψn) + Errloc + Errfar + Errcut .

The goal of Proposition 2.17 was to estimate ‖Ψ‖∗,σ,d with ‖h‖∗∗,σ′,d for the equation L(Ψ) = h if d is large enough
(given an orthogonality condition on Ψ). Here we do the same thing, but localized in space, and with a very
particular hn that we will estimate. To continue as in the proof of Proposition 2.17, we want to show that

hn(.− dn
−→e1)

‖∂z1Ψn‖∗,B′
dn

→ 0

in C0
loc so that we get at the limit (following the +1 vortex) in (4.3)

LV1(G) = 0,

using the sames techniques as in the proof of Proposition 2.17. It will be enough for that to show that

∥∥∥∥∥
hn

‖∂z1Ψn‖∗,B′
dn

∥∥∥∥∥
∗∗,Bdn

→ 0 (4.4)

and we will also use this estimate later on. Remark that here, the problem is no longer symmetric in x1, in
particular, we cannot use the same argument near the −1 vortex, but it is not needed.

Step 3. Proof of (4.4).

Recall the definition of ‖.‖∗∗,Bdn
:

‖h‖∗∗,Bdn
= ‖V h‖C0({r163})

+ ‖r1−α
1 h1‖L∞({dε

n>r1>2}) + ‖r2−α
1 h2‖L∞({dε

n>r1>2}).

Since
d1+λ
n ‖∂z1Ψn|d=dn

‖∗,B′
dn

> δ,

we have
1

‖∂z1Ψn‖∗,B′
dn

6
1

δc1+λ
n

,

therefore it is enough to show that
‖hn‖∗∗,Bdn

= ocn→0(c1+λ
n ) (4.5)

to have (4.4). We recall that

V hn = ∂z1(TWcn(V )) + L∂z1(Ψn) + NL∂z1
(Ψn) + Errloc + Errfar + Errcut .

The contribution of ∂z1(TWcn(V )) will be established in step 3.1, L∂z1
(Ψn) in step 3.2, NL∂z1

(Ψn) in step 3.3, and
finally, Errloc + Errfar + Errcut in step 3.4.

Step 3.1. Proof of
∥∥∥∂z1 TWcn (V )

V

∥∥∥
∗∗,Bdn

= ocn→0(c1+λ
n ).

Recall from (2.2) that

TWc(V ) = E − ic∂x2V = −2∇V1.∇V−1 + (1 − |V1|2)(1 − |V−1|2)V1V−1 − ic∂x2V,

therefore, with Lemma 4.2, we have

∂z1(TWc(V )) = −4∇V1.∇∂x1V−1 + 2(1 − |V1|2)V1∂x1((1 − |V−1|2)V−1) − 2ic∂x2(V1∂x1V−1).
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We now estimate this quantity at d = dn. We have, in {r1 6 dεn},

|(1 − |V1|2)V1∂x1((1 − |V−1|2)V−1)| 6 K

1 + r21
× 1

d3n
,

and using λ < 1, α > 0, we deduce
∥∥∥∥

(1 − |V1|2)V1∂x1((1 − |V−1|2)V−1)

V

∥∥∥∥
∗∗,Bdn

= ocn→0(c1+λ
n ).

We compute with Lemmas 2.2 and 4.4 that

Re

(
4∇V1.∇∂x1V−1

V

)
= 4Re

(∇V1
V1

)
.Re

(∇∂x1V−1

V−1

)
− 4Im

(∇V1
V1

)
.Im

(∇∂x1V−1

V−1

)
,

leading to

|V |
∣∣∣∣Re

(
4∇V1.∇∂x1V−1

V

)∣∣∣∣ 6
K

(1 + r31)d3−ε
n

+
K

(1 + r1)d2n

for a universal constant K. Since λ < 1 and α > 0, we have
∥∥∥∥Re

(
4∇V1.∇∂x1V−1

V

)∥∥∥∥
∗∗,Bdn

= ocn→0(c1+λ
n ).

Similarly, we have, in {r1 6 dεn},

|V |
∣∣∣∣Im

(
4∇V1.∇∂x1V−1

V

)∣∣∣∣ 6
K

(1 + r31)d2n
+

K

(1 + r1)d3−ε
n

.

Therefore, using
1

dn
6

K

(1 + r1)1/ε
,

since we are in Bdn = B(dn
−→e1 , dεn), and

λ < 2 − ε(2 − α),

which is one of the hypothesis of the lemma, we have
∥∥∥∥iIm

(
4∇V1.∇∂x1V−1

V

)∥∥∥∥
∗∗,Bdn

= ocn→0(c1+λ
n ).

Now, for 2icn∂x2(V1∂x1V−1) = 2icn∂x2V1∂x1V−1 + 2icn∂x1x2V−1V1, we estimate similarly (still using Lemma 2.2
and 4.4) ∣∣∣∣Re

(
icn∂x2V1∂x1V−1

V

)∣∣∣∣ 6
K

(1 + r31)d3−ε
n

+
K

(1 + r1)d4n
,

∣∣∣∣Im
(
icn∂x2V1∂x1V−1

V

)∣∣∣∣ 6
K

(1 + r31)d4n
+

K

(1 + r1)d3−ε
n

,

therefore, using 1
dn

6 K
(1+r1)1/ε

, we have, under the condition

λ < 2 − ε(2 − α)

for the imaginary part (as for the previous term) and with no condition for the real part (since α > 0, λ < 1), that
∥∥∥∥

2icn∂x2V1∂x1V−1

V

∥∥∥∥
∗∗,Bdn

= ocn→0(c1+λ
n ).

We then compute (still using Lemma 2.2 and 4.4)

|V |
∣∣∣∣Re

(
icn∂x1x2V−1V1

V

)∣∣∣∣ 6
K

d3n
,
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|V |
∣∣∣∣Im

(
icn∂x1x2V−1V1

V

)∣∣∣∣ 6
K

d4−ε
n

,

therefore, using 1
dn

6 K
(1+r1)1/ε

, we have, under the conditions

λ < 2 − ε(1 − α) and λ < 3 − ε(3 − α),

which are met since
λ < 2 − ε(2 − α) = 2 − ε(1 − α) − ε < 2 − ε(1 − α),

and λ < 2 − ε(2 − α) = 3 − ε(3 − α) − 1 + ε < 3 − ε(3 − α), that

∥∥∥∥
ic∂x2(V1∂x1x2V−1)

V

∥∥∥∥
∗∗,Bdn

= ocn→0(c1+λ
n ).

This concludes the proof of step 3.1.

Step 3.2. Proof of
∥∥∥L∂z1

(Ψn)

V

∥∥∥
∗∗,Bdn

= ocn→0(c1+λ
n ).

We have defined

L∂z1
(Ψn) = η(∂z1L)(Φn) + (1 − η)V (∂z1L

′)(Ψn) + ηL((∂z1V )Ψn) + (1 − η)∂z1V L
′(Ψn).

We recall from Lemma 2.7 that

L′(Ψn) = −∆Ψn − 2
∇V
V

.∇Ψn + 2|V |2Re(Ψn) − icn∂x2Ψn,

L(Φn) = −∆Φn − (1 − |V |2)Φn + 2Re(V̄Φn)V − icn∂x2Φn,

hence
(∂z1L)(Φn) = 4Re(V−1∂x1V−1)Φn + 4Re

(
∂x1V−1V1Φn

)
V + 4Re(V̄Φn)V1∂x1V−1.

We shall now estimate all these terms one by one.
Since η∂z1L(Φn) is compactly supported in {r̃ 6 2} and ‖.‖∗∗,Bdn

looks at the function only on {r1 6 dε}, using

Lemma 4.4 (∇V−1 = Oc→0(c)) and ‖Ψn‖∗, 1−λ
4 ,dn

6 K(λ)c
1+λ
2 , we check that

∥∥∥∥
η∂z1L(Φn)

V

∥∥∥∥
∗∗,Bdn

= ocn→0(c1+λ
n ).

With the same arguments, we also check that

∥∥∥∥
ηL(∂z1VΨn)

V

∥∥∥∥
∗∗,Bdn

= ocn→0(c1+λ
n ).

Now, with ‖Ψn‖∗,σ,dn 6 K(σ, σ′)c1−σ′

n , we check that for any 0 < σ < σ′ < 1,

|L′(Ψn)| 6 K(σ, σ′)

(1 + r1)1+σd1−σ′

n

,

therefore, with Lemma 4.4, we have

|(1 − η)∂z1V L
′(Ψn)| 6 K(σ, σ′)

(1 + r1)1+σd3−ε−σ′

n

.

In particular, we check that if
λ < 2 − ε(2 − α),

65



we can take σ, σ′ such that 0 < σ < σ′ < 2−ε(2−α)−λ
1−ε , hence

∥∥∥∥
(1 − η)∂z1V L

′(Ψn)

V

∥∥∥∥
∗∗,Bdn

= ocn→0(c1+λ
n ).

Finally, we estimate

|∂z1L′(Ψn)| 6 K

∣∣∣∣∂x1

∇V−1

V−1
.∇Ψn

∣∣∣∣+K|Re(∂x1V−1V−1)Re(Ψn)|.

With Lemma 4.4 and ‖Ψn‖∗,σ,dn 6 K(σ, σ′)c1−σ
n′ (from (3.9)), we check that

|(1 − η)V ∂z1L
′(Ψn)| 6 K(σ, σ′)(1 − η)

r1+σ
1 d4−ε−σ′

n

,

therefore, with the same condition as for the previous term, namely

λ < 2 − (2 − α)ε,

we infer, taking σ < σ′ small enough,
∥∥∥∥

(1 − η)V ∂z1L
′(Ψn)

V

∥∥∥∥
∗∗,Bdn

= ocn→0(c1+λ
n ).

This concludes the proof of step 3.2.

Step 3.3. Proof of
∥∥∥NL∂z1

(Ψn)

V

∥∥∥
∗∗,Bdn

= ocn→0(c1+λ
n ).

We recall
NL∂z1

(Ψn) = V (1 − η)∂z1(−∇Ψn.∇Ψn + |V |2S(Ψn)),

with S(Ψn) = e2Re(Ψn) − 1 − 2Re(Ψn). We compute

∂z1(−∇Ψn.∇Ψn + |V |2S(Ψn)) = −2∇∂z1Ψn.∇Ψn

+ 4Re(∂x1V−1V−1)S(Ψn)

+ |V |2∂z1S(Ψn).

Now, with Corollary 4.3 and (3.9), we check that, for any 0 < σ < σ′ < 1, r1 > 2,

|∇∂z1Ψn.∇Ψn| 6
K(σ, σ′)

r2+2σ
1 d2−2σ′

n

,

|4Re(∂x1V−1V−1)S(Ψn) + |V |2∂z1S(Ψn)| 6 K(σ, σ′)

r2+2σ
1 d2−2σ′

n

,

therefore, taking σ < σ′ < 1−λ
2 , we check that

‖(1 − η)(−2∇∂z1Ψn.∇Ψn + 4Re(∂x1V−1V−1)S(Ψn) + |V |2∂z1S(Ψn))‖∗∗,Bdn
= ocn→0(c1+λ

n ).

The proof of step 3.3 is complete.

Step 3.4. Proof of
∥∥Errloc +Errfar +Errcut

V

∥∥
∗∗,Bdn

= ocn→0(c1+λ
n ).

We recall
Errcut = ∂z1η(L(Φn) − V L′(Ψn) + ic∂x2Ψn + ∇Ψn.∇Ψn − |V |2S(Ψn)),

Errloc = ∂z1(R(Ψn)) − ∂dλ(cn, dn)Zdn ,

Errfar = ∂z1V (1 − η)(−∇Ψn.∇Ψn + |V |2S(Ψn)).
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Errcut is compactly supported in {r−1 6 2}, therefore Errcut = 0 in Bdn , hence

∥∥∥∥
Errcut
V

∥∥∥∥
∗∗,Bdn

= 0.

Now, Errloc is supported in {r1 6 2}, and from Lemma 2.7, we know that R(Ψn) is a sum of terms at least quadratic
in Ψn or Φn localized in the area where η 6= 0. Therefore, from Corollary 4.3 and (3.10), we check that

|∂z1(R(Ψn))| 6 K(σ)

d2−2σ
n

,

and we have check in step 1 that |∂dλ(cn, dn)| = Oσ
cn→0(c2−σ

n ). Thus, taking σ < 1−λ
2 ,

∥∥∥∥
Errloc
V

∥∥∥∥
∗∗,Bdn

= ocn→0(c1+λ
n ).

From (3.9), we check that, for any 1 > σ′ > σ > 0, in {r1 6 dεn},

| − ∇Ψn.∇Ψn + |V |2S(Ψn)| 6 K(σ, σ′)

(1 + r1)2+2σd2−2σ′

n

,

and from Lemma 4.4, we have there

|∂z1V | 6 K

d2−ε
n

,

therefore, choosing σ < σ′ small enough, we have

∥∥∥∥
∂z1V

V
(1 − η)(−∇Ψn.∇Ψn + |V |2S(Ψn))

∥∥∥∥
∗∗,Bdn

= ocn→0(c1+λ
n ).

This ends the proof of step 3.4 and hence of (4.4).

Step 4. Three additional estimates on hn.

This step is devoted to the proof of the following three estimates:

‖V hn‖L∞({r̃63}) + ‖r̃1+σRe(hn)‖L∞({r̃>2}) + ‖r̃2+σIm(hn)‖L∞({r̃>2}) 6 K(σ, σ′)c1−σ′

n . (4.6)

In the right half-plane, we want to show that

|hn| 6
K(σ)c1+σ

n

(1 + r1)
, (4.7)

and, in the left half-plane,

|hn| 6
K(σ)c1−σ

n

(1 + r−1)2
. (4.8)

Observe that hn is not symmetrical with respect to x1 because of the cutoff. Recall that

V hn = ∂z1(TWcn(V )) + L∂z1(Ψn) + NL∂z1
(Ψn) + Errloc + Errfar + Errcut .

We complete estimates done in the previous step to show that (4.6), (4.7) and (4.8) hold.

Step 4.1. Estimates for ∂z1(TWcn(V )).
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From Step 3.1, we have

∂z1(TWc(V )) = −4∇V1.∇∂x1V−1 + 2(1 − |V1|2)V1∂x1((1 − |V−1|2)V−1) − 2ic∂x2(V1∂x1V−1).

In view of Lemma 2.1, equation (2.3) and the estimate (1 + r1)(1 + r−1) > dn(1 + r̃), we have

∥∥∥∥
∂z1(TWc(V ))

V

∥∥∥∥
∗∗,σ,dn

6 K(σ)c1−σ
n .

Furthermore, in the left half-plane, with Lemma 2.1 and equation (2.3), we check easily that

|∂z1(TWc(V ))| 6 Kcn
(1 + r1)2

.

Furthermore, in the right half-plane, we have 1
(1+r−1)

6 Kcn, therefore, still using Lemma 2.1 and equation (2.3),

we check that

|∂z1(TWc(V ))| 6 Kc2n
(1 + r1)

.

Step 4.2. Estimates for L∂z1
(Ψn).

We have, from Step 3.2, that

L∂z1
(Ψn) = η∂z1L(Φn) + (1 − η)V ∂z1L

′(Ψn) + ηL(∂z1VΨn) + (1 − η)∂z1V L
′(Ψn),

with
(∂z1L)(Φn) = 4Re(V−1∂x1V−1)Φn + 4Re

(
∂x1V−1V1Φn

)
V + 4Re(V̄Φn)V1∂x1V−1,

L′(Ψn) = −∆Ψn − 2
∇V
V

.∇Ψn + 2|V |2Re(Ψn) − icn∂x2Ψn

and

|∂z1L′(Ψn)| 6 K

∣∣∣∣∂x1

∇V−1

V−1
.∇Ψn

∣∣∣∣+K|Re(∂x1V−1V−1)Re(Ψn)|.

Similarly as in Step 4.1, every local term (in the area {η 6= 0}) satisfies the two estimates, using ‖Ψn‖∗, 1−σ
2 ,dn

6

K(σ)cσn. The two nonlocal terms are (1 − η)V ∂z1L
′(Ψn) and (1 − η)∂z1V L

′(Ψn). For the first term, in view of
Lemma 2.1, the previous estimate and equations (2.3), (3.10), we check that

‖V (1 − η)∂z1L
′(Ψn)‖L∞({r̃63})

+ ‖r̃1+σRe((1 − η)∂z1L
′(Ψn))‖L∞({r̃>2}) + ‖r̃2+σIm((1 − η)∂z1L

′(Ψn))‖L∞({r̃>2})

6 K(σ, σ′)c1−σ′

n

and, in the left-half plane,

|(1 − η)V ∂z1L
′(Ψn)| 6 K(σ)c1−σ

n

(1 + r−1)2

Furthermore, using now ‖Ψn‖∗, 1−σ
2 ,dn

6 K(σ)cσn, we check that, in the right half-plane,

|(1 − η)V ∂z1L
′(Ψn)| 6 K(σ)c1+σ

n

(1 + r1)
.

Finally, for the term (1 − η)∂z1V L
′(Ψn), we use ‖Ψn‖∗,σ,dn 6 K(σ, σ′)c1−σ′

n and (3.10) to check that

|L′(Ψn)| 6 K(σ)c1−σ′

n

(1 + r̃)1+σ
.
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Combining this estimate with |∂z1V | 6 K
(1+r̃) , we show that

∥∥∥∥(1 + r̃)2+σ

(
(1 − η)

∂z1V

V
L′(Ψn)

)∥∥∥∥
L∞(R2)

6 K(σ, σ′)c1−σ′

n ,

and, in the left half-plane,

|(1 − η)∂z1V L
′(Ψn)| 6 K(σ)c1−σ

n

(1 + r−1)2
.

Furtherore, using ‖Ψn‖∗, 1−σ
2 ,dn

6 K(σ)cσn and (3.10), we also have the estimate

|L′(Ψn)| 6 K(σ)cσn
(1 + r̃)

,

and using |∂z1V | 6 Kcn in the right half-plane, we estimate in this same area that

|(1 − η)∂z1V L
′(Ψn)| 6 K(σ)c1+σ

n

(1 + r̃)
.

Step 4.3. Estimates for NL∂z1
(Ψn).

From Step 3.3,
NL∂z1

(Ψn) = V (1 − η)∂z1(−∇Ψn.∇Ψn + |V |2S(Ψn)).

Using equation (3.10) for 1+σ
2 and Corollary 4.3 (also for 1+σ

2 ), we check without difficulties that

∥∥NL∂z1
(Ψn)

∥∥
L∞({r̃63})

+
∥∥r̃1+σRe

(
NL∂z1

(Ψn)/V
)∥∥

L∞({r̃>2})
+
∥∥r̃2+σIm

(
NL∂z1

(Ψn)/V
)∥∥

L∞({r̃>2})

6 K(σ)c1−σ
n ,

and, with, some margin, that in the left half-plane,

∣∣NL∂z1
(Ψn)

∣∣ 6 K(σ)c1−σ
n

(1 + r−1)2
.

Now, using ‖Ψn‖∗, 1−σ
4 ,dn

6 K(σ)c
1+σ
2

n and Corollary 4.3 (for 1−σ
2 ), we have, in the right half-plane,

∣∣NL∂z1
(Ψn)

∣∣ 6 K(σ)c1+σ
n

(1 + r̃)
.

Step 4.4. Estimates for Errloc + Errfar + Errcut.

For Errloc = ∂z1(R(Ψn)) − ∂dλ(cn, dn)Zdn , the same computations as in Step 4.3 yield the estimates (because
this term is compactly supported in the area {η 6= 0}) needed for (4.6) to (4.8).

For Errcut = ∂z1η(L(Φn) − V L′(Ψn) + ic∂x2Ψn + ∇Ψn.∇Ψn − |V |2S(Ψn)), this term is compactly supported
near the vortex −1, hence is 0 in the right half-plane. Furthermore, using ‖Ψn‖∗,σ/2,dn

6 K(σ)c1−σ
n , we check easily

that
‖Errcut /V ‖∗∗,σ,dn 6 K(σ)c1−σ

n

and, since it is compactly supported, in the left half-plane,

|Errcut | 6
K(σ)c1−σ

n

(1 + r−1)2
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Finally, for Errfar = ∂z1V (1 − η)(−∇Ψn.∇Ψn + |V |2S(Ψn)), from (3.10) we have

|(1 − η)(−∇Ψn.∇Ψn + |V |2S(Ψn))| 6 K(σ)c1−σ
n

(1 + r̃)2+σ
,

and we conclude as in Step 4.2.

This concludes the proof of estimates (4.6), (4.7) and (4.8).

Step 5. Inner estimates.

By the estimation we have just proved, we have in particular

hn(.− dn
−→e1)

‖∂z1Ψn‖∗,B′
dn

→ 0

in C0
loc (which corresponds to follow the +1 vortex). Therefore, at the limit, in the distribution sense,

LV1(G) = 0

in all R2. If we show that 〈G, χ∂x1V1〉 = 0 for χ a cutoff near 0, we can then use Theorem 2.16 to show, similarly
as in the proof of Proposition 2.17, that G = 0 since

∥∥∥∥∥
(V ∂z1Ψn)(.− dn

−→e1)

‖∂z1Ψn‖∗,B′
dn

∥∥∥∥∥
∗,Bdn

= 1,

hence ‖G‖HV1
< +∞. We recall that, by construction, we have 〈Φc,d, Zd〉 = 0. By symmetry, this implies that

〈Φc,d, η(y)∂dV 〉 = 0. Both Φc,d and η(y)∂dV are C1 with respect to d, and therefore

0 = ∂d〈Φc,d, η(y)∂dV 〉 = 〈∂dΦc,d, η(y)∂dV 〉 + 〈Φc,d, ∂d(η(y)∂dV )〉.

Furthermore, 〈∂x1Φc,d, η(y)∂dV 〉 = −〈Φc,d, ∂x1η(y)∂dV 〉, thus

〈∂z1Φc,d, η(y)∂dV 〉 = −〈Φc,d, η(y)∂z1∂dV 〉,

and we check easily that |η(y)∂z1∂dV | 6 Kcη(y), therefore, since ‖Ψc,d‖∗,σ,d 6 K(σ, σ′)c1−σ′

, we have |〈∂z1Φc,d, η(y)∂dV 〉| 6
K(σ, σ′)c2−σ′

, and thus, taking 0 < σ′ < 1 − λ, for cn and dn, n→ ∞, we infer that 〈G, η∂x1V1〉 = 0.
We continue as in the proof of Proposition 2.17. The fact that G = 0 gives us that for any R > 0, we have

‖V ∂z1Ψn‖L∞({r16R}) + ‖∇(V ∂z1Ψn)‖L∞({r16R})

‖∂z1Ψn‖∗,B′
dn

→ 0.

Step 6. Outer computations.

We have the same outer computations as in step 2 of the proof of Proposition 2.17, but with Yn =
∂z1Ψn

‖∂z1Ψn‖∗,Bdn

playing the role of Ψn and Hn = hn

‖∂z1Ψn‖∗,Bdn

playing the role of hn, since they satisfy the same equation. We

showed in (4.4) that
‖Hn‖∗∗,Bdn

= on→∞(1),

and the system of equation is, with Yn = Y1 + iY2 and Hn = H1 + iH2,

{
∆Y1 − 2|V |2Y1 = −H1 − 2Re

(
∇V
V .∇Yn

)
+ c∂x2Y2

∆Y2 + c∂x2Y1 = −H2 − 2Im
(
∇V
V .∇Yn

)
.

70



Recall the two balls Bdn = B(dn
−→e1 , dεn) and B′

dn
= B(dn

−→e1 , dε
′

n ). We have, as in the proof of Proposition 2.17,
outside {r1 6 R} but in B′

dn
, that ‖Yn‖∗,B′

dn
= 1 and ‖Hn‖∗∗,Bdn

= on→∞(1), therefore

|∆Y1 − 2Y1| 6
oR→∞(1) + oRn→∞(1)

(1 + r1)1−α
(4.9)

and

|∆Y2 + c∂x2Y1| 6
oR→∞(1) + oRn→∞(1)

(1 + r1)2−α
. (4.10)

We want to extend these estimates in Bdn = B(dn
−→e1 , dεn) and not only on B′

dn
= (dn

−→e1 , dε
′

n ). Since ‖Hn‖∗∗,Bdn
=

on→∞(1) from (4.4), the estimates on H1 and H2 are already on Bdn , leaving c∂x2Y2 and the real and imaginary
parts of ∇V

V .∇Yn to estimate.
First, we check that, in Bdn\B′

dn
,

|cn∂x2Y2| 6
d1+λ
n c2−σ

n

(1 + r1)1+σ
=

on→∞(1)

(1 + r1)1−σ

taking σ > 0 small enough. We use Yn =
∂z1Ψn

‖∂z1Ψn‖∗,B′
dn

, 1
‖∂z1Ψn‖∗,B′

dn

6 Kd1+λ
n and Corollary 4.3 to compute, for

any 1 > σ > 0, ∣∣∣∣Re

(∇V
V

.∇Yn

)∣∣∣∣ 6
∣∣∣∣
∇V
V

∣∣∣∣× |∇Yn| 6
K(σ)d1+λ

n

r2+σ
1 d1−σ

n

6
K(σ)

r2+σ
1 d−σ−λ

n

.

In Bdn\B′
dn

, we have r1 > dε
′

n , therefore

∣∣∣∣Re

(∇V
V

.∇Yn

)∣∣∣∣ 6
K(σ)

r1−α
1 d

−σ−λ+(1+α+σ)ε′
n

.

Since we assume
λ < (1 + α)ε′,

then we can choose σ > 0 small such that −σ − λ+ (1 + α+ σ)ε′ > 0 and deduce, in Bdn\B′
dn

, that

∣∣∣∣Re

(∇V
V

.∇Yn

)∣∣∣∣ 6
on→∞(1)

r1−α
1

.

This result shows that (4.9) holds on Bdn . Now, we compute

∣∣∣∣Im
(∇V
V

.∇Yn

)∣∣∣∣ 6
∣∣∣∣Re

(∇V
V

)
.Im(∇Yn)

∣∣∣∣+

∣∣∣∣Re(∇Yn).Im

(∇V
V

)∣∣∣∣ ,

and with Corollary 4.3, Lemma 2.2 and 4.4, we estimate

∣∣∣∣Re

(∇V
V

)
.Im(∇Yn)

∣∣∣∣ 6 K(σ)

(
1

d3n
+

1

r31

)
d1+λ
n

r1+σ
1 d1−σ

n

and ∣∣∣∣Re(∇Yn).Im

(∇V
V

)∣∣∣∣ 6 K(σ)
d1+λ
n

r2+σ
1 d1−σ

n

(
1

d2−ε
n

+
1

r1

)
.

In Bdn\B′
dn

, we have dεn > r1 > dε
′

n , and with similar estimates as for the previous term, we check that, since
λ < (1 + α)ε′, we have

λ < (2 + α)ε′,

for the first term, and
λ < (1 + α)ε′
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for the second one. We can find σ > 0 such that
∣∣∣∣Im

(∇V
V

.∇Yn

)∣∣∣∣ 6
on→∞(1)

(1 + r1)2−α

in Bdn\B′
dn

. We deduce that (4.10) holds on Bdn . Additionally, we will use (from Lemma 3.3) for 0 < σ < σ′ < 1,

‖V χYn‖C1({r̃63})

+ ‖r̃1+σRe(Yn)‖L∞({r̃>2}) + ‖r̃1+σ∇Re(Yn)‖L∞({r̃>2})

+ ‖r̃σIm(Yn)‖L∞({r̃>2}) + ‖r̃1+σ∇Im(Yn)‖L∞({r̃>2})

6 K(σ, σ′)c1−σ′

n d1+λ
n

6 K(σ, σ′)dλ+σ′′

n (4.11)

and from (4.6),

‖VHn‖L∞({r̃63}) + ‖r̃1+σRe(Hn)‖L∞({r̃>2}) + ‖r̃2+σIm(Hn)‖L∞({r̃>2}) 6 K(σ, σ′)dλ+σ′′

n (4.12)

to do estimates outside of Bdn . These estimates are not optimal (in particular in the smallness in cn) but we will
only use them on parts far away from the center of V1. Thanks to (4.7), we have a slightly better estimate in the
right half-plane, that is, for 0 < σ < 1,

|Hn| 6 K|hn|d1+λ
n 6

K(σ)dλ−σ
n

(1 + r1)
. (4.13)

Step 7. Elliptic estimates.

We follow the proof of Proposition 2.17. At this point, we have on Yn that ‖Yn‖∗,B′
dn

= 1, ‖V Yn‖L∞({r16R}) +

‖∇(V Yn)‖L∞({r16R}) → 0 as n→ ∞ for any R > 1, and with Yn = Y1 + iY2,

|∆Y2 + c∂x2Y1| 6
oR→∞(1) + oRn→∞(1)

(1 + r1)2−α
,

|∆Y1 − 2|V |2Y1| 6
oR→∞(1) + oRn→∞(1)

(1 + r1)1−α
.

We want to show that ‖Yn‖∗,B′
dn

= oR→∞(1) + oRn→∞(1). We want to use similar elliptic estimates as in the proof

of Proposition 2.17, but we have to show that they still work if we only have the estimate in Bdn = B(dn
−→e1 , dεn)

and we want the final estimates in B′
dn

= B(dn
−→e1 , dε

′

n ), with ε′ < ε.

Step 7.1. Elliptic estimate for Y2.

We start by solving the following problem in R2:

∆ζ = f,

with

f := −H2 − 2Im

(∇V
V

.∇Yn

)
,

which is odd in x2 (the derivation with respect to z1 breaks the symmetry on x1, but not on x2) and satisfies

|f | 6 oR→∞(1) + oRn→∞(1)

(1 + r1)2−α

in Bdn = B(dn
−→e1 , dεn), and, from (4.11) and (4.12),

72



|f | 6 K(σ, σ′)dλ+σ′

n

(1 + r̃)2+σ
(4.14)

in R2, for any 1 > σ′ > σ > 0. Similarly as in the proof of Lemma 2.8, we write, for x ∈ B(dn
−→e1 , dε

′

n ),

∇ζ(x) =
1

2π

∫

R

2

x− Y

|x− Y |2 f(Y )dY . (4.15)

By symmetry (see in particular Lemma 3.4), we have

∫

B(dn
−→e1,2|x−dn

−→e1|)

f(Y )dY = 0,

hence
∫

B(dn
−→e1,dε

n)

x− Y

|x− Y |2 f(Y )dY

=

∫

B(dn
−→e1,dε

n)

f(Y )

(
x− Y

|x− Y |2 − 1{|Y −dn
−→e1|62|x−dn

−→e1|}

x− dn
−→e1

|x− dn
−→e1 |2

)
dY,

and then, we infer

∣∣∣ 1
2π

∫
B(dn

−→e1,dε
n)
f(Y )

(
x−Y

|x−Y |2 − 1{|Y−dn
−→e1|62|x−dn

−→e1|}
x−dn

−→e1
|x−dn

−→e1|2

)
dY
∣∣∣

6
∫
B(dn

−→e1,dε
n)

(oR→∞(1)+oRn→∞(1))
(1+|Y |)2−α

∣∣∣ x−Y
|x−Y |2 − 1{|Y−dn

−→e1|62|x−dn
−→e1|}

x−dn
−→e1

|x−dn
−→e1|2

∣∣∣ dY.

We do the same change of variable Z = Y − dn
−→e1 as in the proof of lemma 2.8, and we are now at

∣∣∣ 1
2π

∫
B(dn

−→e1,dε
n)
f(Y )

(
x−Y

|x−Y |2 − 1{|Y−dn
−→e1|62|x−dn

−→e1|}
x−dn

−→e1
|x−dn

−→e1|2

)
dY
∣∣∣

6
∫
B(0,dε

n)
(oR→∞(1)+oRn→∞(1))

(1+|Z|)2−α

∣∣∣ x−dn
−→e1−Z

|x−dn
−→e1−Z|2

− 1{|Z|62|x−dn
−→e1|}

x−dn
−→e1

|x−dn
−→e1|2

∣∣∣ dZ.

We want to follow the same computations as in the proof of Lemma 2.8, but now 1
(1+|Z|)2−α is no longer integrable,

and this is why we added the function 1{|Z|62|x−dn
−→e1|}. If |Z| > 2|x− dn

−→e1 |, then |x− dn
−→e1 − Z| > |Z|/2 and

∫

B(0,dε
n)∩{|Z|>2|x−dn

−→e1|}

(oR→∞(1) + oRn→∞(1))

(1 + |Z|)2−α

∣∣∣∣
x− dn

−→e1 − Z

|x− dn
−→e1 − Z|2

∣∣∣∣ dZ

6

∫

B(0,dε
n)∩{|Z|>2|x−dn

−→e1|}

(oR→∞(1) + oRn→∞(1))

(1 + |Z|)2−α|Z| dZ

6
oR→∞(1) + oRn→∞(1)

(1 + |x− dn
−→e1 |)1−α

.

Then, in {|Z| 6 2|x − dn
−→e1 |}, we follow exactly the same computation as in the proof of the proof of Lemma 2.8

for the remaining part of the integral, and we conclude that

∣∣∣∣∣
1

2π

∫

B(dn
−→e1,dε

n)

f(Y )

(
x− Y

|x− Y |2 − 1{|Y−dn
−→e1|62|x−dn

−→e1|}

x− dn
−→e1

|x− dn
−→e1 |2

)
dY

∣∣∣∣∣

6
oR→∞(1) + oRn→∞(1)

(1 + |x− dn
−→e1 |)1−α

.

We are left with the estimation of (after a translation)

∫

R

2\B(0,dε
n)

|f(Z + dn
−→e1)|

|Z − (x− dn
−→e1)|dZ.
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By symmetry (see Lemma 3.4), we have

∫

R

2\B(0,dε
n)

f(Z + dn
−→e1)

|Z| dZ = 0,

therefore
∣∣∣∣∣

∫

R

2\B(0,dε
n)

f(Z + dn
−→e1)

|Z − (x− dn
−→e1)|dZ

∣∣∣∣∣ =

∣∣∣∣∣

∫

R

2\B(0,dε
n)

f(Z + dn
−→e1)

(
1

|Z − (x− dn
−→e1)| −

1

|Z|

)
dZ

∣∣∣∣∣ .

Since |x− dn
−→e1 | 6 dε

′

n ≪ dεn 6 |Z|, we have, for Z ∈ R2\B(0, dεn),

∣∣∣∣
1

|Z − (x− dn
−→e1)| −

1

|Z|

∣∣∣∣ 6
K|x− dn

−→e1 |
|Z|2 6

Kdε
′

n

d2εn
,

thus, with (4.14),

∣∣∣∣∣

∫

R

2\B(0,dε
n)

f(Z + dn
−→e1)

(
1

|Z − (x− dn
−→e1)| −

1

|Z|

)
dZ

∣∣∣∣∣

6
K(σ, σ′)dε

′+λ+σ′

n

d2εn

∣∣∣∣∣

∫

R

2\B(dn
−→e1,dε

n)

1

(1 + r̃)2+σ

∣∣∣∣∣

6 K(σ, σ′)dε
′+λ−2ε+σ′

n .

In particular, we have

∣∣∣∣∣

∫

R

2\B(0,dε
n)

f(Y + dn
−→e1)

(
1

|Y − (x− dn
−→e1)| −

1

|Y |

)
dY

∣∣∣∣∣ 6
on→∞(1)

(1 + |x− dn
−→e1 |)1−α

if, since |x− dn
−→e1 | 6 dε

′

n ,

K(σ, σ′)dε
′+λ−2ε+σ′

n 6
on→∞(1)

d
ε′(1−α)
n

,

hence, since we make the assumption
λ+ ε′(1 − α) < 2ε− ε′,

we can find σ′ > 0 such that, for x ∈ B(dn
−→e1 , dεn),

|∇ζ(x)| 6 oR→∞(1) + oRn→∞(1)

(1 + |x− dn
−→e1 |)1−α

. (4.16)

Using Lemma 2.8 and (4.14), we also have, in all R2 this time, that

|∇ζ(x)| 6 K(σ, σ′)dλ+σ′

n

(1 + r̃)1+σ
. (4.17)

Here, we cannot integrate from infinity (since the estimate is only on a ball) to get an estimation on ζ, but this will
be dealt with later on.

Now, we define Y ′
2 := Y2 − ζ, and we have, for j ∈ {1, 2},

∂xjY ′
2 = Kj ∗ f ′,

where

f ′ := −H1 − 2Re

(∇V
V

.∇Yn

)
− (1 − |V |2)Y1 − c∂x2ζ.
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We first estimate the convolution in B(dn
−→e1 , dεn). With ‖Yn‖∗,B′

dn
= 1, we check that, with some margin in

B(dn
−→e1 , dε

′

n ), ∣∣∣∣2Re

(∇V
V

.∇Yn

)
− (1 − |V |2)Y1

∣∣∣∣ 6
oR→∞(1)

(1 + r1)3/2−α
.

Now, we have shown in step 6 that ∣∣∣∣Re

(∇V
V

.∇Yn

)∣∣∣∣ 6
on→∞(1)

r1−α+σ′′

1

for some σ′′ > 0. In B(dn
−→e1 , dεn)\B(dn

−→e1 , dε
′

n ), we have

|(1 − |V |2)Y1| 6
dλ+σ′

n

r3+σ
1

6
d
λ+σ′−(2+α−σ′′)ε′

n

r1−α+σ′′

1

=
on→∞(1)

r1−α+σ′′

1

given that σ′ and σ′′ are small enough since λ− (2 + α)ε′ < 0. Therefore, following the proof of Lemma 2.13 (only
changing the integral from R

2 to B(dn
−→e1 , dεn)), we check with the same computations (since we have some margin

σ′′ > 0 on the decay) that

∣∣∣∣∣

∫

B(dn
−→e1,dε

n)

Kj(x− Y )

(
2Re

(∇V
V

.∇Yn

)
− (1 − |V |2)Y1

)
(Y )dY

∣∣∣∣∣ 6
oR→∞(1)

(1 + r1)1−α
.

Now, using (4.16), we check that, following the proof of Lemma 2.13 (using Hölder inequality instead of Cauchy-
Schwarz in the last estimate to make sur that the two integrals are well defined, this does not change the final
estimate), ∣∣∣∣∣

∫

B(dn
−→e1,dε

n)

Kj(x− Y )(c∂x2ζ)(Y )dY

∣∣∣∣∣ 6
c(oR→∞(1) + oRn→∞(1))

(1 + r1)1−α−1/10
.

And, since x ∈ B(dn
−→e1 , dε

′

n ), c(1 + r1)1/10 6 K, therefore

∣∣∣∣∣

∫

B(dn
−→e1,dε

n)

Kj(x − Y )(c∂x2ζ)(Y )dY

∣∣∣∣∣ 6
oR→∞(1) + oRn→∞(1)

(1 + r1)1−α
.

For the last remaining term, we use (4.7) with σ = λ+1
2 to estimate

|H1| 6
oRn→0(1)

(1 + r1)
,

and then, from Lemma 2.13 (only changing the integral from R

2 to B(dn
−→e1 , dεn) in the proof), we infer

∣∣∣∣∣

∫

B(dn
−→e1,dε

n)

Kj(x− Y )H1(Y )dY

∣∣∣∣∣ 6
oR→∞(1) + oRn→∞(1)

(1 + r1)1−α
.

Combining these estimates, we have shown that
∣∣∣∣∣

∫

B(dn
−→e1,dε

n)

Kj(x − Y )f ′(Y )dY

∣∣∣∣∣ 6
oR→∞(1) + oRn→∞(1)

(1 + r1)1−α
.

Now, we focus on the left half-plane. From (4.8), we have

|H1| 6
K(σ)c1−σ

n d1+λ
n

(1 + r−1)2
.

Furthermore, we check, using (4.11) and (4.17) that, in the left half-plane,

∣∣∣∣−2Re

(∇V
V

.∇Yn

)
− (1 − |V |2)Y1

∣∣∣∣ 6
K(σ, σ′)d1+λ

n c1−σ′

n

(1 + r−1)2+σ
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and

|cn∂x2ζ| 6
K(σ, σ′)dλ+σ′

n cn
(1 + r−1)1+σ

.

We have by Theorem 2.12 (since x ∈ B(dn
−→e1 , dε

′

n )) that |Kj(x−Y )| 6 K

dβ
n(1+r̃(Y ))2−β

for Y in the left half-plane,

for any 0 6 β 6 2. Therefore, taking β = 2 − σ, we have

∣∣∣∣∣

∫

{y160}

Kj(x− Y )H1(Y )dY

∣∣∣∣∣ 6
∫

R

2

K(σ, σ′)dλ+σ+σ′−2
n

(1 + r̃)2+σ
6
K(σ, σ′)d

λ+σ+σ′−2+(1−α)ε′

n

(1 + |x− dn
−→e1 |)1−α

.

Taking β = 2, we have
∣∣∣∣∣

∫

{Y160}

Kj(x− Y )

(
−2Re

(∇V
V

.∇Yn

)
− (1 − |V |2)Y1

)
(Y )dY

∣∣∣∣∣

6

∫

R

2

K(σ, σ′)dλ+σ′−2
n

(1 + r̃)2+σ

6
K(σ, σ′)d

λ+σ′−2+(1−α)ε′

n

(1 + |x− dn
−→e1 |)1−α

,

and finally, taking β = 1, we estimate

∣∣∣∣∣

∫

{Y160}

Kj(x− Y )cn∂x2ζ(Y )dY

∣∣∣∣∣ 6
∫

R

2

K(σ, σ′)dλ+σ′−2
n

(1 + r̃)2+σ
6
K(σ, σ′)d

λ+σ′−2+(1−α)ε′

n

(1 + |x− dn
−→e1 |)1−α

.

Thus, taking σ′ > σ > 0 small enough, since λ− 2 + (1 − α)ε′ < 0, we have

∣∣∣∣∣

∫

{Y160}

Kj(x− Y )f ′(Y )dY

∣∣∣∣∣ 6
on→0(1)

(1 + |x− dn
−→e1 |)1−α

.

We are left with the estimation in Ω := {Y1 > 0}\B(dn
−→e1 , dεn). We infer that, in Ω, we have, for 0 < σ < σ′ < 1

|f ′| 6 K(σ′)dλ−σ′

n

(1 + r1)
+

K(σ)dλ+σ
n

(1 + r1)2+σ
.

Indeed, from equation (4.13) and (4.17), we have |H1 − c∂x2ζ| 6 K(σ)dλ+σ
n

(1+r1)
, and using (4.11), we check that

∣∣∣∣2Re

(∇V
V

.∇Yn

)
− (1 − |V |2)Y1

∣∣∣∣ 6
K(σ)dλ+σ

n

(1 + r̃)2+σ
.

Now, for y ∈ Ω, x ∈ B(dn
−→e1 , dε

′

n ), we have from Theorem 2.12 that

|Kj(x − Y )| 6 K

d2εn

and

|Kj(x − Y )| 6 K

(1 + r̃(Y ))3/2d
ε/2
n

.

We deduce that, for x ∈ B(dn
−→e1 , dε

′

n ),

∫

Ω

|Kj(x− Y )|K(σ′)dλ−σ′

n

(1 + r1(Y ))
dY 6 K(σ′)dλ−σ′−ε/2

n

∫

R

2

K

(1 + r̃(Y ))5/2
dY

6
K(σ′)d

λ−σ′+(1−α)ε′−ε/2
n

(1 + |x− dn
−→e1 |)1−α

=
on→0(1)

(1 + |x− dn
−→e1 |)1−α
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taking σ′ < 1 large enough (since λ+ (1 − α)ε′ − 1 − ε/2 < 0), and

∫
Ω |Kj(x− Y )| K(σ)dλ+σ

n

(1+r̃(Y ))2+σ dY 6 K(σ)dλ+σ−2ε
n

∫
R

2
1

(1+r̃(Y ))2+σ dY

6
K(σ)dλ+σ+(1−α)ε′−2ε

n

(1+|x−dn
−→e1|)1−α = on→0(1)

(1+|x−dn
−→e1|)1−α

taking σ > 0 small enough (since λ+ (1 − α)ε′ − 2ε < 0). We deduce that, for x ∈ B(dn
−→e1 , dε

′

n ),

|∂xjY ′
2| = |Kj ∗ f ′| 6 on→0(1) + oR→∞(1)

(1 + |x− dn
−→e1 |)1−α

.

With (4.16), we have shown that

|∂xjY2| 6
on→0(1) + oR→∞(1)

(1 + |x− dn
−→e1 |)1−α

.

Now, since |Y2| + |∇Y2| = oR→∞(1) in B(dn
−→e1 , 10), by integration from dn

−→e1 , we check that, since α > 0,

|Y2| 6
on→0(1) + oR→∞(1)

(1 + |x− dn
−→e1 |)−α

.

Step 7.2. Elliptic estimate for Y1.

For Y1 we also use the function K0 and we have

Y1 =
1

2π
K0

(√
2|.|
)
∗ (−∆Y1 + 2Y1),

therefore

|Y1|(x) 6

∫

B̃dn (x)

1

2π
K0

(√
2|x− Y |

)
|(−∆Y1 + 2Y1)(Y )|dY

+

∫

R\B̃dn (x)

1

2π
K0

(√
2|x− Y |

)
|(−∆Y1 + 2Y1)(Y )|dY,

where Bdn(x) = B(x−dn−→e1 , dεn). The first term can be computed as in the proof of Lemma 2.10, and for the second
term, in R\Bdn, we have

K0

(√
2|x|

)
6 Ke−dε/2

n e−|x|1/2

from Lemma 2.9, which, with (4.11) and (4.12), make the term integrable and a odn→∞(e−dε/4
n ), which is enough

to show that

|∇Y1| + |Y1| 6
on→∞(1) + oR→∞(1)

(1 + r1)1−α
.

Step 8. Conclusion.

We conclude that there is a contradiction, as in the end of the proof of Proposition 2.17. This ends the proof of
Proposition 4.5. ✷

In the rest of this chapter, we take α, ε, ε′, λ such that they satisfy the conditions of Proposition 4.5, and

λ+ (1 − α)ε′ > 1.
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4.4 Proof of
∫
B(d−→e1,dε

′ )
Re(∂dV ∂z1(TWc(V )))|d=dc =

−π
d2
c

+ odc→∞

(
1
d2
c

)

From (2.2), the equation on V is

TWc(V ) = E − ic∂x2V = −2∇V1.∇V−1 + (1 − |V1|2)(1 − |V−1|2)V1V−1 − ic∂x2(V1V−1).

We use Lemma 4.2 to compute

∂z1V = ∂x1V1V−1 + ∂x1V−1V1 − (−∂x1V1V−1 + ∂x1V−1V1) = 2∂x1V1V−1.

Therefore

∂z1 TWc(V ) = −4∇V1.∇∂x1V−1 + 2(1 − |V1|2)V1∂x1((1 − |V−1|2)V−1) − 2ic∂x2(V1∂x1V−1),

and then
∫

B(d−→e1,dε′)

Re(∂dV ∂z1(TWc(V ))) = −4

∫

B(d−→e1,dε′)

Re(∂dV∇V1.∇∂x1V−1)

+ 2

∫

B(d−→e1,dε′)

Re(∂dV (1 − |V1|2)V1∂x1((1 − |V−1|2)V−1))

− 2

∫

B(d−→e1,dε′)

Re(∂dV ic∂x2(V1∂x1V−1)).

We want to compute this quantity at d = dc. We omit the subscript and use only d in this proof. In fact, it works
for any d such that 1

2d 6 c 6 2
d .

Step 1. Proof of
∫
B(d−→e1,dε′)

Re(∂dV (1 − |V1|2)V1∂x1((1 − |V−1|2)V−1)) = od→∞

(
1
d2

)
.

First remark that ∂x1((1 − |V−1|2)V−1) = Od→∞

(
1
d3

)
in B(d−→e1 , dε

′

) by Lemma 4.4 and

(1 − |V1|2)V1∂dV = Or1→∞

(
1

r31

)

therefore ∫

B(d−→e1,dε′)

Re(∂dV (1 − |V1|2)V1∂x1((1 − |V−1|2)V−1)) = od→∞

(
1

d2

)
.

Step 2. Proof of
∫
B(d−→e1,dε′) Re(∂dV ic∂x2(V1∂x1V−1)) = od→∞

(
1
d2

)
.

Now we compute
ic∂x2(V1∂x1V−1) = ic∂x2V1∂x1V−1 + ic∂x1x2V−1V1,

hence the equality
∫

B(d−→e1,dε′)

Re(∂dV ic∂x2(V1∂x1V−1)) = −c
∫

B(d−→e1,dε′)

Re
(
∂x1V1V−1i∂x2V1∂x1V−1

)

− c

∫

B(d−→e1,dε′)

Re
(
∂x1V1V−1i∂x1x2V−1V1

)

+ c

∫

B(d−→e1,dε′)

Re
(
∂x1V−1V1i∂x2V1∂x1V−1

)

+ c

∫

B(d−→e1,dε′)

Re
(
∂x1V−1V1i∂x1x2V−1V1

)
.

Now, using Lemma 4.4, we estimate the first term of this equality,

c

∣∣∣∣∣

∫

B(d−→e1,dε′)

Re
(
∂x1V1V−1i∂x2V1∂x1V−1

)
∣∣∣∣∣ 6

78



c

∫

B(d−→e1,dε′)

∣∣∂x1V1∂x2V1
∣∣× |V−1∂x1V−1| 6 K

∫

B(d−→e1,dε′)

1

(1 + r21)

1

d3−ε′
6
K ln(dε

′

)

d3−ε′
.

Since ε′ > 0, we have

c

∫

B(d−→e1,dε′)

Re
(
∂x1V1V−1i∂x2V1∂x1V−1

)
= od→∞

(
1

d2

)
.

Using Lemma 4.4, for the second term of the equality, we have
∣∣∣∣∣c
∫

B(d−→e1,dε′)

Re
(
∂x1V1V−1i∂x1x2V−1V1

)
∣∣∣∣∣ 6

∣∣∣∣∣c
∫

B(d−→e1,dε′)

Im
(
∂x1V1V1

)
Re(∂x1x2V−1V−1)

∣∣∣∣∣

+

∣∣∣∣∣c
∫

B(d−→e1,dε′)

Re
(
∂x1V1V1

)
Im(∂x1x2V−1V−1)

∣∣∣∣∣

6

∫

B(d−→e1,dε′)

K

(1 + r1)d4−ε′
6

K

d4−2ε′
= od→∞

(
1

d2

)

since c 6 2
d and ε′ < 1. For the third term of the equality, we obtain similarly

∣∣∣∣∣c
∫

B(d−→e1,dε′)

Re
(
∂x1V−1V1i∂x2V1∂x1V−1

)
∣∣∣∣∣ 6

∣∣∣∣∣c
∫

B(d−→e1,dε′)

Im(V1∂x2V1)Re
(
∂x1V−1∂x1V−1

)
∣∣∣∣∣

+

∣∣∣∣∣c
∫

B(d−→e1,dε′)

Re(V1∂x2V1)Im
(
∂x1V−1∂x1V−1

)
∣∣∣∣∣

6

∫

B(d−→e1,dε′)

K

(1 + r1)d5−2ε′
= od→∞

(
1

d2

)
.

Finally, for the last term of the equality,
∣∣∣∣∣c
∫

B(d−→e1,dε′)

Re
(
∂x1V−1V1i∂x1x2V−1V1

)
∣∣∣∣∣ 6

∣∣∣∣∣c
∫

B(d−→e1,dε′)

Im(V1V1)Re
(
∂x1x2V−1∂x1V−1

)
∣∣∣∣∣

+

∣∣∣∣∣c
∫

B(d−→e1,dε′)

Re(V1V1)Im
(
∂x1x2V−1∂x1V−1

)
∣∣∣∣∣

6

∫

B(d−→e1,dε′)

K

d5−ε′
6

K

d5−3ε′
= od→∞

(
1

d2

)
.

This conclude the proof of step 2.

Step 3. Proof of
∫
B(d−→e1,dε′)

Re(∂dV (−4∇V1.∇∂x1V−1)) = − π
d2 + od→∞

(
1
d2

)
.

We have
−4∇V1.∇∂x1V−1 = −4∂x1V1∂x1x1V−1 − 4∂x2V1∂x1x2V−1.

Remark that using |∂dV | 6 K
(1+r1)

and Lemma 4.4 once again,

∣∣∣∣∣

∫

B(d−→e1,dε′)

Re(∂dV ∂x1V1∂x1x1V−1)

∣∣∣∣∣ 6
∫

B(d−→e1,dε′)

K

(1 + r21)d3−ε′
= od→∞

(
1

d2

)
.

Moreover,

−4

∫

B(d−→e1,dε′)

Re(∂dV ∂x2V1∂x1x2V−1) =

4

∫

B(d−→e1,dε′)

Re
(
∂x1V1V−1∂x2V1∂x1x2V−1

)
− 4

∫

B(d−→e1,dε′)

Re
(
∂x1V−1V1∂x2V1∂x1x2V−1

)
. (4.18)
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For the first integral in (4.18), we write

4

∫

B(d−→e1,dε′)

Re
(
∂x1V1V−1∂x2V1∂x1x2V−1

)
=

4

∫

B(d−→e1,dε′)

Re
(
∂x1V1∂x2V1

)
Re(V−1∂x1x2V−1) − Im

(
∂x1V1∂x2V1

)
Im(V−1∂x1x2V−1).

For the first contribution, we have
∣∣∣∣∣

∫

B(d−→e1,dε′)

Re
(
∂x1V1∂x2V1

)
Re(V−1∂x1x2V−1)

∣∣∣∣∣ 6
∫

B(d−→e1,dε′)

K

(1 + r21)d3−ε′
= od→∞

(
1

d2

)
.

For the second contribution, recall from Lemma 2.2 that

∂x1V1 =

(
cos(θ1)u− i

r1
sin(θ1)

)
V1 and ∂x2V1 =

(
sin(θ1)u +

i

r1
cos(θ1)

)
V1,

therefore
Im
(
∂x1V1∂x2V1

)
=

u

r1
|V1|2,

and then, by Lemma 4.4,

−4

∫

B(d−→e1,dε′)

Im
(
∂x1V1∂x2V1

)
Im(V−1∂x1x2V−1) = −4

∫

B(d−→e1,dε′)

u

r1

1

4d2
|V1|2dr1 + od→∞

(
1

d2

)

since ∫

B(d−→e1,dε′)

u

r1

1

4d2+1/4
|V1|2dr1 = od→∞

(
1

d2

)
.

We compute, using |V1|2 = ρ21, u =
ρ′
1

ρ1
and Lemma 2.1,

−4

∫

B(d−→e1,dε′)

u

r1

|V1|2
4d2

dr1 =
−2π

d2

∫ dε′

0

ρ′1(r1)ρ(r1)dr1 =
−π
d2

[ρ21]d
ε′

0 =
−π
d2

+ od→∞

(
1

d2

)
.

We obtain the estimate for the first integral in (4.18):

4

∫

B(d−→e1,dε′)

Re
(
∂x1V1V−1∂x2V1∂x1x2V−1

)
=

−π
d2

+ od→∞

(
1

d2

)
.

For the second integral in (4.18), we estimate
∣∣∣∣∣

∫

B(d−→e1,dε′)

Re
(
∂x1V−1V1∂x2V1∂x1x2V−1

)
∣∣∣∣∣ 6

∫

B(d−→e1,dε′)

K

(1 + r1)d4−ε′
= od→∞

(
1

d2

)
.

This ends the proof of this subsection.

4.5 Proof of ∂d
∫
B(d−→e1 ,dε

′ )∪B(−d−→e1 ,dε
′)
Re(∂dV TWc(Qc,d))|d=dc =

−2π
d2
c

+ odc→∞

(
1
d2
c

)

In order to prove the result of this subsection, by using (4.1) and the result of subsection 4.4 we just have to show
that at d = dc, ∫

B(d−→e1,ε′)

Re(∂dV L(∂z1Γc,dc)) +

∫

B(d−→e1,dε′)

Re(∂dV (∂z1L)(Γc,dc))

+

∫

B(d−→e1,dε′)

Re(∂dV ∂z1(NLV (Γc,dc))) = odc→∞

(
1

d2c

)
.

Similarly to subsection 4.4, we omit the subscript on dc in the proof.

80



Step 1. Proof of
∫
B(d−→e1,d3/4) Re(∂dV L(∂z1Γc,d)) = od→∞

(
1
d2

)
.

For this term, we want to do integration by parts and use that L(∂dV ) is very small, but since the integral is
not on the whole space, there are the two boundary terms:

∣∣∣∣∣

∫

B(d−→e1,dε′)

Re(∂dV L(∂z1Γc,d))

∣∣∣∣∣ 6
∣∣∣∣∣

∫

B(d−→e1,dε′)

Re
(
L(∂dV )∂z1Γc,d

)
∣∣∣∣∣

+

∣∣∣∣∣

∫

∂B(d−→e1,dε′)

Re(∂dV∇∂z1Γc,d)

∣∣∣∣∣+

∣∣∣∣∣

∫

∂B(d−→e1,dε′)

Re(∇∂dV ∂z1Γc,d)

∣∣∣∣∣ ,

where ∂B(d−→e1 , dε
′

) is the boundary of B(d−→e1 , dε
′

). On ∂B(d−→e1 , dε
′

), we have

Γc,d = V (eΨc,d − 1),

hence
∂z1Γc,d = 2V1∂x1V−1(eΨc,d − 1) + V ∂z1Ψc,de

Ψc,d (4.19)

and

∇∂z1Γc,d = 2∇V1∂x1V−1(eΨc,d − 1) + 2V1∇∂x1V−1(eΨc,d − 1) + 2V1∂x1V−1∇Ψc,de
Ψc,d

+ ∇V ∂z1Ψc,de
Ψc,d + V∇∂z1Ψc,de

Ψc,d + V ∂z1Ψc,d∇Ψc,de
Ψc,d . (4.20)

By Lemmas 2.2 and 4.4, Proposition 4.5 and (3.10), we infer on ∂B(d−→e1 , dε
′

) that, for any 1 > σ > 0,

|∂z1Γc,d| 6
K(σ)

d2−ε′d1−σ
+

K

d1+λ−αε′
. (4.21)

Thus, still on ∂B(d−→e1 , dε
′

), from Lemma 2.6 we compute

∣∣∣∣∣

∫

∂B(d−→e1,dε′)

Re(∇∂dV ∂z1Γc,d)

∣∣∣∣∣ 6
K

dε′

(
K(σ)

d2−ε′d1−σ
+

K

d1+λ−αε′

)
6
K(σ)

d3−σ
+

K

d1+λ+(1−α)ε′
.

Since 3 − σ > 2 and λ+ (1 − α)ε′ > 1 by (4.2), we have

∣∣∣∣∣

∫

∂B(d−→e1,dε′)

Re(∇∂dV ∂z1Γc,d)

∣∣∣∣∣ = od→∞

(
1

d2

)
.

For (4.20), we estimate on ∂B(d−→e1 , dε
′

), still using Lemmas 2.2 and 4.4, Proposition 4.5 and (3.10), for any 1 > σ > 0,

|2∇V1∂x1V−1(eΨc,d − 1) + 2V1∇∂x1V−1(eΨc,d − 1) + 2V1∂x1V−1∇Ψc,de
Ψc,d | 6 K(σ)

d3−σ
,

and

|∇V ∂z1Ψc,de
Ψc,d + V∇∂z1Ψc,de

Ψc,d + V ∂z1Ψc,d∇Ψc,de
Ψc,d | 6 K

d1+λ+(1−α)ε′
+

K(σ)

e2+λ+(1−α)ε′−σ
.

In particular, from (4.20), we can find 1 > σ > 0 such that, on ∂B(d−→e1 , dε
′

),

|∇∂z1Γc,d| = od→∞

(
1

d2

)
,

thus ∣∣∣∣∣

∫

∂B(d−→e1,dε′)

Re(∂dV∇∂z1Γc,d)

∣∣∣∣∣ = od→∞

(
1

d2

)
.

From (2.27), we know that

|L(∂dV )| 6 K

(1 + r̃2)d
.
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Moreover, by Proposition 4.5, we have |∂z1Γc,d| 6 K
d1+λ−αε′ in B(d−→e1 , dε

′

), which is enough to show that

∫

B(d−→e1,dε′)

Re(L(∂dV )∂z1Γc,d) = od→∞

(
1

d2

)
.

Step 2. Proof of
∫
B(d−→e1,dε′)

Re(∂dV (∂z1L)(Γc,d)) = od→∞

(
1
d2

)
.

We have

(∂z1L)(Γc,d) = 4Re(V−1∂x1V−1)Γc,d + 4Re
(
∂x1V−1V1Γc,d

)
V + 4Re(V̄ Γc,d)V1∂x1V−1,

thus
∫

B(d−→e1,dε′)

Re(∂dV (∂z1L)(Γc,d)) = 4

∫

B(d−→e1,dε′)

Re(∂dV Γc,d)Re(V−1∂x1V−1)

+ 4

∫

B(d−→e1,dε′)

Re
(
∂x1V−1V1Γc,d

)
Re(∂dV V )

+ 4

∫

B(d−→e1,dε′)

Re(∂dV V1∂x1V−1)Re(V̄ Γc,d). (4.22)

Using |∂dV | 6 K
1+r1

,

Re(V−1∂x1V−1) = Od→∞

(
1

d3

)
and |Γc,d| 6

K

(1 + r1)1/2d1/2

from Lemma 2.6, Lemma 2.2 and (3.5) respectively, we may bound
∣∣∣∣∣

∫

B(d−→e1,dε′)

Re(∂dV Γc,d)Re(V−1∂x1V−1)

∣∣∣∣∣ 6
∫

B(d−→e1,dε′)

K

(1 + r1)1+1/2d3+1/2
= od→∞

(
1

d2

)
.

The second term of (4.22) is

4

∫

B(d−→e1,dε′)

Re
(
∂x1V−1V1Γc,d

)
Re(∂dV V ).

We compute that

∣∣Re
(
∂x1V−1V1Γc,d

)∣∣ 6 K

(1 + r1)1/8d17/8
and |Re(∂dV V )| 6 K

(1 + r1)3

in B(d−→e1 , dε
′

) using

|Γc,d| 6
K

(1 + r1)1/8d7/8

by (3.10) and the definition of Γc,d. Therefore, since 17/8 > 2,
∫

B(d−→e1,dε′)

4Re
(
∂x1V−1V1Γc,d

)
Re(∂dV V ) = od→∞

(
1

d2

)
.

The last term of (4.22) is ∫

B(d−→e1,dε′)

4Re(V̄ Γc,d)Re(V1∂x1V−1∂dV ).

Recalling that

|Re(V̄ Γc,d)| 6 K|Re(Ψ)| 6 K

(1 + r1)1+1/8d7/8

and

|Re(V1∂x1V−1∂dV )| 6 K

d5/4(1 + r1)
,

we deduce ∫

B(d−→e1,dε′)

4Re(V̄ Γc,d)Re(V1∂x1V−1∂dV ) = od→∞

(
1

d2

)
.
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Step 3. Proof of
∫
B(d−→e1,dε′) Re(∂dV ∂z1(NLV (Γc,d))) = od→∞

(
1
d2

)
.

Recall that

∂z1 NLV (Γc,d) = 4Re
(
∂x1V−1V1Γc,d

)
Γc,d + 2Re(V̄ ∂z1Γc,d)Γc,d + 2Re(V̄ Γc,d)∂z1Γc,d

+2Re(Γc,d∂z1Γc,d)(V + Γc,d) + |Γc,d|2(2∂x1V−1V1 + ∂z1Γc,d).

We write ∫

B(d−→e1,dε′)

Re(∂dV ∂z1(NLV (Γc,d))) = I1 + I2 + I3 + I4 + I5,

with

I1 =

∫

B(d−→e1,dε′)

4Re(∂dV Γc,d)Re
(
∂x1V−1V1Γc,d

)
,

I2 =

∫

B(d−→e1,dε′)

2Re(∂dV Γc,d)Re(V̄ ∂z1Γc,d),

I3 =

∫

B(d−→e1,dε′)

2Re(V̄ Γc,d)Re(∂dV ∂z1Γc,d),

I4 =

∫

B(d−→e1,dε′)

2Re(Γc,d∂z1Γc,d)Re(∂dV V ) + 2Re(Γc,d∂z1Γc,d)Re(∂dV Γc,d),

I5 =

∫

B(d−→e1,dε′)

|Γc,d|2Re(∂dV (2∂x1V−1V1 + ∂z1Γc,d)).

Estimate for I1.

We estimate, by using |Γc,d| 6 K
(1+r1)9/16d7/16 that

∣∣Re(∂dV Γc,d)Re
(
∂x1V−1V1Γc,d

)∣∣ 6 |Γc,d|2
K

(1 + r1)d5/4
6

K

(1 + r1)2+1/8d17/8

Then, since 17/8 > 2, ∫

B(d−→e1,dε′)

4Re(∂dV Γc,d)Re
(
∂x1V−1V1Γc,d

)
= od→∞

(
1

d2

)
.

Estimate for I2.

From (4.19), we have
∂z1Γc,d = 2V1∂x1V−1(eΨc,d − 1) + V ∂z1Ψc,de

Ψc,d ,

therefore, on B(d−→e1 , dε
′

), by Lemma 4.4, Proposition 4.5 and (3.9), for any 1 > σ > 0,

|Re(V̄ ∂z1Γc,d)| 6 K(σ)

d3−ε′−σ
+

K

(1 + r1)1−αd1+λ
+

K(σ)

d2+λ−σ(1 + r1)−α
.

Combining this with

|Re(∂dV Γc,d)| 6 K(σ)

(1 + r1)d1−σ

since |Γc,d| 6 K(σ)
d1−σ , we infer

∣∣∣∣∣

∫

B(d−→e1,dε′)

2Re(∂dV Γc,d)Re(V̄ ∂z1Γc,d)

∣∣∣∣∣ 6

∣∣∣∣∣

∫

B(d−→e1,dε′)

K(σ)

(1 + r1)d4−ε′−2σ

∣∣∣∣∣

+

∣∣∣∣∣

∫

B(d−→e1,dε′)

K(σ)

(1 + r1)2−αd2+λ−σ

∣∣∣∣∣

+

∣∣∣∣∣

∫

B(d−→e1,dε′)

K(σ)

(1 + r1)1−αd3+λ−2σ

∣∣∣∣∣ ,
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and since λ+ (1 − α)ε′ > 1, we conclude, taking σ > 0 small enough,

∫

B(d−→e1,dε′)

2Re(∂dV Γc,d)Re(V̄ ∂z1Γc,d) = od→∞

(
1

d2

)
.

Estimate for I3.

We have from (4.19) that

∂z1Γc,d = 2V1∂x1V−1(eΨc,d − 1) + V ∂z1Ψc,de
Ψc,d ,

therefore

|Re(∂dV ∂z1Γc,d)| 6 K

(
1

(1 + r1)d3−2ε′
+

1

(1 + r1)1−αd1+λ

)
,

and |Re(V̄ Γc,d)| 6 K|Re(Ψc,d)|, hence

|Re(V̄ Γc,d)| 6 K(σ)

(1 + r1)1+σd1−σ
,

then
∣∣∣∣∣

∫

B(d−→e1,dε′)

2Re(∂dV ∂z1Γc,d)Re(V̄ Γc,d)

∣∣∣∣∣ 6

∫

B(d−→e1,dε′)

K(σ)

(1 + r1)2+σd4−2ε′−σ

+

∫

B(d−→e1,dε′)

K(σ)

(1 + r1)2+σ−αd2+λ−σ

= od→∞

(
1

d2

)

by taking σ > 0 small enough and using λ+ (1 − α)ε′ > 1.

Estimate for I4.

Recall that

|Re(∂dV V )| 6 K

(1 + r1)3
,

and we have

|Re(∂dV Γc,d)| 6 K

(1 + r1)1+6/8d2/8

since |Γc,d| 6 K
(1+r1)1+6/8d2/8 . Therefore, with 1

d 6
K

(1+r1)
,

|Re(∂dV V ) + Re(∂dV Γc,d)| 6 K

(1 + r1)2

Now, we use |Γc,d| 6 K(σ)
(1+r1)σd1−σ and Proposition 4.5 to get

|Re(Γc,d∂z1Γc,d)| 6 K

(1 + r1)σ−αd2+λ−σ′ .

We conclude as for the previous estimates,

∫

B(d−→e1,dε′)

2(Re(∂dV V ) + Re(∂dV Γc,d))Re(Γc,d∂z1Γc,d) = od→∞

(
1

d2

)
.

Estimate for I5.
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We have, by Proposition 4.5,

|Re(∂dV (∂x1V−1V1 + ∂z1Γc,d))| 6 K

(1 + r1)

(
1

d2−ε′
+

1

(1 + r1)1−αd2+λ−σ

)

and using |Γc,d| 6 K(σ)
d1−σ , we have

|Γc,d|2 6
K(σ)

d2−2σ
.

Therefore, for σ > 0 small enough, since λ+ (1 − α)ε′ > 1,

∫

B(d−→e1,dε′)

|Γc,d|2Re(∂dV (2∂x1V−1V1 + ∂z1Γc,d)) = od→∞

(
1

d2

)

which concludes the estimates.

4.6 Proof of ∂cdc = − 1
c2
+ oc→0

(
1
c2

)

Recall that dc is defined by the implicit equation

∫

B(d−→e1,dε′)∪B(−d−→e1,dε′)

Re(∂dV TWc(Qc,d)) = 0.

We showed in subsection 4.5 that

∂d

∫

B(d−→e1,dε′)∪B(−d−→e1,dε′)

Re(∂dV TWc(Qc,d))|d=dc
=

−2π

d2c
+ odc→∞

(
1

d2c

)
.

Therefore, by the implicit function theorem,

∂cdc =
∂c
∫
B(d−→e1,dε′)∪B(−d−→e1,dε′) Re(∂dV TWc(Qc,d))|d=dc

−2π
d2
c

+ odc→∞

(
1
d2
c

) .

We compute for
TWc(Qc,d) = −ic∂x2Qc,d − ∆Qc,d − (1 − |Qc,d|2)Qc,d

that, with ∂cQc,d = ∂c(V + Γc,d) = ∂cΓc,d at fixed d, we have (still at fixed d)

∂c(TWc(Qc,d)) = −i∂x2Qc,d − LQc,d
(∂cΓc,d),

where
LQc,d

(h) := −∆h− ic∂x2h− (1 − |Qc,d|2)h+ 2Re(Qc,dh)Qc,d.

We are left with the computation of

∂c

∫

B(d−→e1,dε′)∪B(−d−→e1,dε′)

Re(∂dV TWc(Qc,d))|d=dc
=

−
∫

B(d−→e1,dε′)∪B(−d−→e1,dε′)

Re(∂dV (i∂x2Qc,d))|d=dc

−
∫

B(d−→e1,dε′)∪B(−d−→e1,dε′)

Re(∂dV LQc(∂cΓc,d))|d=dc
.

As above, we omit the subscript in dc for the computations.

Step 1. Proof of
∫
B(d−→e1,dε′)∪B(−d−→e1,dε′)

Re(∂dV (−i∂x2Qc))|d=dc
= 2π + oc→0(1).
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We have ∂x2Qc = ∂x2V + ∂x2Γc,d, hence

−
∫

B(d−→e1,dε′)∪B(−d−→e1,dε′)

Re(∂dV (i∂x2Qc)) =

−
∫

B(d−→e1,dε′)∪B(−d−→e1,dε′)

Re(i∂dV ∂x2V )) −
∫

B(d−→e1,dε′)∪B(−d−→e1,dε′)

Re(i∂dV ∂x2Γc,d).

Since

|∂dV | 6 K

(1 + r1)

and

|∂x2Γc,d| 6
K

(1 + r1)1+1/2d1/2
,

we have ∫

B(d−→e1,dε′)

Re(i∂dV ∂x2Γc,d) = oc→0(1).

Furthermore,

−
∫

B(d−→e1,dε′)

Re(i∂dV ∂x2V ) =

∫

B(d−→e1,dε′)

Re
(
i∂x1V1∂x2V1

)
+ oc→0(1),

and we already computed in (2.25) that

∫

R

2

Re
(
i∂x2V1∂x1V1

)
= −π + oc→0(c1/4)

hence ∫

B(d−→e1,dε′)∪B(−d−→e1,dε′)

Re(∂dV (−i∂x2Qc))|d=dc
= 2π + oc→0(1).

Step 2. Proof of
∫
B(d−→e1,dε′)∪B(−d−→e1,dε′) Re(∂dV LQc(∂cΓc,d))|d=dc

= oc→0(1).

From the definition of Γc,d, at fixed d, we have

∂cΓc,d = ηV ∂cΨc,d + (1 − η)V ∂cΨc,de
Ψc,d . (4.23)

We have, by definition,

LQc(∂cΓc,d) = −ic∂x2∂cΓc,d − ∆∂cΓc,d − (1 − |Qc|2)∂cΓc,d + 2Re(Qc∂cΓc,d)Qc,

and using |∂dV | 6 K
(1+r1)

with |∂x2∂cΓc,d| 6 Kc−1/2

(1+r1)1+1/2 since
∥∥∥∂cΓc,d

V

∥∥∥
∗,1/2,d

6 Kc−3/4 from Lemma 3.9 and (4.23),

we have ∣∣∣∣∣

∫

B(d−→e1,dε′)

Re(∂dV (−ic∂x2∂cΓc,d))

∣∣∣∣∣ 6 K

∫

B(d−→e1,dε′)

c1/4

(1 + r1)2+1/2
= oc→0(1).

The estimate on B(−d−→e1 , dε
′

) is similar.

We define
L̃Qc(h) := −∆h− (1 − |Qc|2)h+ 2Re(Qch)Qc

and we are then left with the computation of

∫

B(d−→e1,dε′)

Re(∂dV L̃Qc(∂cΓc,d)),
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the part on B(−d−→e1 , dε
′

) being symmetrical. We want to put the linear operator onto ∂dV since L̃Qc(∂dV ) is close
to LV (∂dV ) which is itself small. We then integrate by parts:

∣∣∣∣∣

∫

B(d−→e1,dε′)

Re(∂dV L̃Qc(∂cΓc,d))

∣∣∣∣∣ 6
∣∣∣∣∣

∫

B(d−→e1,dε′)

Re(L̃Qc(∂dV )∂cΓc,d)

∣∣∣∣∣

+

∣∣∣∣∣

∫

∂B(d−→e1,dε′)

Re(∂dV∇∂cΓc,d)

∣∣∣∣∣+

∣∣∣∣∣

∫

∂B(d−→e1,dε′)

Re(∇∂dV ∂cΓc,d)

∣∣∣∣∣ .

We have on ∂B(d−→e1 , dε
′

), that |∂dV | 6 K
d3/4 , |∇∂dV | 6 K

d3/2 from Lemma 2.6. Moreover, by
∥∥∥ ∂cΓc,d

V

∥∥∥
∗,1/2,d

6

K(σ)c−1/2−σ from Lemma 3.9 and (4.23), we deduce |∇∂cΓc,d| 6 K(σ)d1/2+σ

d(3/4)(3/2) 6
K(σ)

d5/8−σ and |∂cΓc,d| 6 K(σ)d1/2−σ

d(3/4)(1/2) 6

K(σ)d1/8−σ . We then obtain, for σ > 0 small enough,

∣∣∣∣∣

∫

∂B(d−→e1,dε′)

Re(∂dV∇∂cΓc,d)

∣∣∣∣∣ 6
∫

∂B(d−→e1,dε′)

|∂dV ||∇∂cΓc,d| 6 d3/4
K(σ)d2σ

d3/4d5/8
= oc→0(1),

∣∣∣∣∣

∫

∂B(d−→e1,dε′)

Re(∇∂dV ∂cΓc,d)

∣∣∣∣∣ 6
∫

∂B(d−→e1,dε′)

|∇∂dV ||∂cΓc,d| 6 d3/4
K(σ)d1/8+σ

d3/2
= oc→0(1).

Therefore, ∫

B(d−→e1,dε′)

Re(∂dV L̃Qc(∂cΓc,d)) =

∫

B(d−→e1,dε′)

Re(L̃Qc(∂dV )∂cΓc,d) + oc→0(1).

Now, from (2.27), we have that that

|LV (∂dV )| 6 K

(1 + r̃2)d

and by Lemma 3.9 and (4.23), we have |∂cΓc,d| 6 Kd1/4

(1+r1)1/2
, hence

∣∣∣∣∣

∫

B(d−→e1,dε′)

Re(LV (∂dV )∂cΓc,d)

∣∣∣∣∣ 6 K

∫

B(d−→e1,dε′)

1

(1 + r1)2+1/2d1/4
= oc→0(1).

We deduce from this that
∫

B(d−→e1,dε′)

Re(∂dV L̃Qc(∂cΓc,d)) =

∫

B(d−→e1,dε′)

Re((L̃Qc − LV )(∂dV )∂cΓc,d) + oc→0(1).

We have L̃Qc(h) = −∆h− (1 − |Qc|2)h+ 2Re(Qch)Qc and LV (h) = −∆h− (1 − |V |2)h+ 2Re(V̄ h)V , therefore

(L̃Qc − LV )(∂dV ) = (|Qc|2 − |V |2)∂dV + 2Re(V̄ ∂dV )(Qc − V ) + 2Re(Qc − V ∂dV )Qc.

We have by (3.13) that ||Qc|2 − |V |2| 6 Kc3/4

(1+r̃)1+1/4 , hence

∣∣∣∣∣

∫

B(d−→e1,dε′)

Re((|Qc|2 − |V |2)∂dV ∂cΓc,d)

∣∣∣∣∣ 6 K

∫

B(d−→e1,dε′)

c1/4

(1 + r1)2+3/4
= oc→0(1).

We have from (3.12) that |Qc − V | 6 c3/4

(1+r̃)1/4
, and, in B(d−→e1 , dε

′

), we have (by Lemmas 2.1 and 2.2) that

|Re(V̄ ∂dV )| 6 K
(1+r1)3

, therefore

∣∣∣∣∣

∫

B(d−→e1,dε′)

Re(2Re(V̄ ∂dV )(Qc − V )∂cΓc,d)

∣∣∣∣∣ 6 K

∫

B(d−→e1,dε′)

c1/4

(1 + r1)3+3/4
= oc→0(1).
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Finally, by using the same estimates, we have
∣∣∣∣∣

∫

B(d−→e1,dε′)

Re(2Re(Qc − V ∂dV )Qc∂cΓc,d)

∣∣∣∣∣ 6 K

∫

B(d−→e1,dε′)

c3/4

(1 + r1)1+1/4
|Re(Qc∂cΓc,d)|.

We compute
Re(Qc∂cΓc,d) = Re(V ∂cΓc,d) + Re(Γc,d∂cΓc,d).

By using
∥∥∥∂cΓc,d

V

∥∥∥
∗,1/2,d

6 K(σ)c−1/2−σ from Lemma 3.2 and (4.23), we have
∣∣Re

(
V ∂cΓc,dc

)∣∣ 6
K(σ)c−1/2−σ

(1+r1)3/2
.

Furthermore, with |Γc,d| 6 Kc1/2

(1+r1)1/2
, we have |Re(Γc,d∂cΓc,d)| 6 K(σ)c−σ

(1+r1)
. With these estimates, we infer, taking

σ > 0 small enough, ∣∣∣∣∣

∫

B(d−→e1,dε′)

Re(2Re(Qc − V ∂dV )Qc∂cΓc,d)

∣∣∣∣∣ = oc→0(1)

which ends the proof of ∫

B(d−→e1,dε′)

Re((L̃Qc − LV )(∂dV )∂cΓc,d) = oc→0(1).

Step 3. Conclusion.

We showed that

∂cdc =
2π + oc→0(1)

−2π
d2
c

+ odc→∞

(
1
d2
c

) ,

therefore, with dc = 1+oc→0(1)
c from Proposition 2.26 we have

∂cdc = −1 + oc→0(1)

c2
.

As a result of subsection 4.5, at fixed c,

∂d

∫

B(d−→e1,dε′)∪B(−d−→e1,dε′)

Re(∂dV TWc(Qc,d))|d=dc
6= 0

for c small enough. By the implicit function theorem, taking some 0 < c∗ < c0(σ), we can construct a C1 branch
c 7→ dc in a vicinity of c∗. We define C as the set of c∗ > c⊛ > 0 such that there exists a C1 branch c 7→ dc on
]c⊛, c∗[. We have just shown that C is not empty. Let us suppose that c⊛ := inf C 6= 0. Then, c 7→ dc is uniformly
bounded on ]c⊛, c∗[ in C1 by subsection 4.6, and can therefore be extended by continuity to c⊛, and we denote
d⊛ its value there. We can construct the perturbation Φc⊛,d⊛

by continuity since c, d 7→ Φc,d are C1 functions in
the Banach space {Φ ∈ C1(R2,C), ‖Φ‖∗,σ,d⊛

< +∞} for its canonical norm (which is equivalent to ‖.‖∗,σ,d for any

d ∈ [d⊛, dc∗ ]). By passing to the limit, we have ‖Φc⊛,d⊛
‖∗,σ,d⊛

6 K0(σ, σ′)c1−σ′

⊛ for K0(σ, σ′) defined in Proposition
2.21. By continuity of λ, we check that we have λ(c⊛, d⊛) = 0 (for the perturbation Φc⊛,d⊛

). Therefore, by the
implicit function theorem, there exists a unique branch c 7→ dc in a vicinity of (c⊛, d⊛) such that λ(c, dc) = 0.
This branch, by uniqueness, corresponds to the branch we had on ]c⊛, c∗[, and is also C1 by the implicit function
theorem. Therefore inf C < c⊛, which is in contradiction with c⊛ = inf C, and thus inf C = 0.

In particular, the travelling wave Qc on this branch is uniquely defined by this construction and is a C1 function
of c. Indeed, we shall now show that there is only one choice of dc such that λ(c, dc) = 0 in

]
1
2c ,

2
c

[
. If there exist

d1 6= d2 in
]

1
2c ,

2
c

[
such that λ(c, d1) = λ(c, d2) = 0, by Subsection 4.5, we have

∂d(λ(c, d))|d=d1
< 0 and ∂d(λ(c, d))|d=d2

< 0,

therefore, there exists d′ such that λ(c, d′) = 0 and ∂d(λ(c, d′))|d=d′ > 0, but then, since λ(c, d′) = 0, we have
∂d(λ(c, d))|d=d′ < 0, which is in contradiction with ∂d(λ(c, d′))|d=d′ > 0. Now that we have uniqueness in the choice

of dc (in
]

1
2c ,

2
c

[
), we have uniqueness of Φc,d in the set

{Φ ∈ C1(R2,C), ‖Φ‖∗,σ,dc 6 K0(σ, σ′)c1−σ′}
for K0(σ, σ

′) > 0 defined in Proposition 2.21.
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4.7 Proof of the estimate on ∂cQc

We conclude the proof of Theorem 1.1 with the following lemma.

Lemma 4.6 For any 0 < σ < 1, there exist c0(σ) > 0 such that for any c < c0(σ),

∥∥∥∥
∂cQc

V
+

(
1 + oc→0(1)

c2

)
∂dV|d=dc

V

∥∥∥∥
∗,σ,dc

= oc→0

(
1

c2

)
.

With this estimate and by using the same computations as in the proof of Lemma 3.6, we show that

∥∥∥∥∂cQc +

(
1 + oc→0(1)

c2

)
∂d(V1(.− d−→e1)V−1(.+ d−→e1))|d=dc

∥∥∥∥
p

= oc→0

(
1

c2

)
.

for all +∞ > p > 2 if c is small enough, which ends the proof of Theorem 1.1.

Proof From subsection 4.5, we know that Qc is a C1 function of c. We have Qc = V + Γc,dc , hence

∂cQc = ∂cV + ∂c(Γc,dc) =
−1 + oc→0(1)

c2
∂dV + ∂c(Γc,dc),

where we used ∂cV =
(
− 1

c2 + oc→0

(
1
c2

))
∂dV thanks to subsection 4.6. Γc,dc depends on c directly and through

dc. We will write ∂cΓc,dc for the derivatives with respect to c but at a fixed dc, and ∂dΓc,dc for the derivate with
respect to dc but at fixed c. In particular,

∂c(Γc,dc) = ∂cΓc,dc + ∂cdc∂dΓc,dc .

From Lemma 3.9 and (4.23), we showed that

∥∥∥∥
∂cΓc,dc

V

∥∥∥∥
∗,σ,dc

6 K(σ, σ′)c−σ′

,

and from Lemma 3.3 with the definition of Γc,d, we show easily that

∥∥∥∥
∂dΓc,dc

V

∥∥∥∥
∗,σ,dc

6 K(σ, σ′)c1−σ′

.

Finally, from subsection 4.6, we have ∂cdc = 1+oc→0(1)
c2 , therefore

∥∥∥∥
∂c(Γc,dc)

V

∥∥∥∥
∗,σ,dc

6 K(σ, σ′)(c−σ′

+ c−2(1 + oc→0(1))c1−σ′

) = oc→0

(
1

c2

)

since 0 < σ < σ′ < 1. ✷

This concludes the proof of Lemma 4.6, which itself concludes the proof of Theorem 1.1.

A Proof of Lemma 2.7

Proof First we show that L(Φ) = (E − ic∂x2V )Ψ + L′(Ψ)V . We use Φ = VΨ in L(Φ) to compute

L(Φ) = −∆VΨ − ∆ΨV − 2∇Ψ.∇V − (1 − |V |2)VΨ + 2|V |2VRe(Ψ) − icV ∂x2Ψ − ic∂x2VΨ.

We have that E = −∆V − (1−|V |2)V hence (E− ic∂x2V )Ψ = −∆VΨ− (1−|V |2)VΨ− ic∂x2VΨ and the remaining
terms are exactly equal to V L′(Ψ).

We denote ζ := 1+Ψ−eΨ. Remark that ζ is at least quadratic in Ψ. We compute the different terms in (TWc):

−ic∂x2v − ∆v − (1 − |v|2)v = 0
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with
v = ηV (1 + Ψ) + (1 − η)V eΨ.

We have v = V + Φ − (1 − η)ζ. In general, our goal in this computation is to factorize any term when possible by
V (η + (1 − η)eΨ) and compute the other terms, which will be supported in the area η(1 − η) 6= 0. First compute

∂x2v =

η(∂x2V (1 + Ψ) + ∂x2ΨV ) + ∂x2ηV (1 + Ψ) + (1 − η)eΨ(∂x2V + ∂x2ΨV ) − ∂x2ηV e
Ψ,

therefore

− ic∂x2v = V (η + (1 − η)eΨ)

(
−ic∂x2V

V
− ic∂x2Ψ

)
− icη∂x2VΨ − ic∂x2ηV ζ. (A.1)

For the second term, we compute

∆v = ∆ηV (1 + Ψ − eΨ) + 2∇η.∇(V (1 + Ψ − eΨ))

+ η(∆V (1 + Ψ) + 2∇V.∇Ψ + V∆Ψ)

+ (1 − η)(∆V eΨ + 2∇V.∇ΨeΨ + V (∆Ψ + ∇Ψ.∇Ψ)eΨ),

hence

−∆v = V (η + (1 − η)eΨ)

(
−∆V

V
− 2

∇V
V

.∇Ψ − ∆Ψ

)

− η∆V Ψ − (1 − η)V∇Ψ.∇ΨeΨ − V∆ηζ − 2∇η.∇(V ζ). (A.2)

Finally, let us write A := V (1 + Ψ) and B := V eΨ, so that v = ηA+ (1 − η)B, and remark that V ζ = A− B. We
then have

(1 − |v|2)v = (1 − η2|A|2 − (1 − η)2|B|2 − 2η(1 − η)Re(AB̄))(ηA + (1 − η)B).

We want to bring out the terms not related to the interaction between A and B, namely η(1− |A|2)A+ (1− η)(1−
|B|2)B. We have

(1 − |v|2)v = η(1 − |A|2)A+ ηA[(1 − η2)|A|2 − (1 − η)2|B|2 − 2η(1 − η)Re(AB̄)]

+ (1 − η)(1 − |B|2)B + (1 − η)B[(1 − (1 − η)2)|B|2 − η2|A|2 − 2η(1 − η)Re(AB̄)].

Now, factorizing η(1 − η) we get

(1 − |v|2)v = η(1 − |A|2)A+ (1 − η)(1 − |B|2)B

+ η(1 − η)[(1 + η)A|A|2 − (1 − η)A|B|2 − 2ηARe(AB̄)]

+ η(1 − η)[(2 − η)B|B|2 − ηB|A|2 − 2(1 − η)BRe(AB̄)].

Remark that the last two lines yield 0 if we take A = B, since V ζ = A−B, we can write

(1 − |v|2)v = η(1 − |A|2)A+ (1 − η)(1 − |B|2)B + η(1 − η)(V ζG(Ψ) + V ζH(Ψ))

where G,H are functions satisfying |H(Ψ)|, |G(Ψ)|, |∇H(Ψ)|, |∇G(Ψ)| 6 C(1 + |Ψ| + |∇Ψ| + |eΨ| + |∇ΨeΨ|) for
some universal constant C > 0. We recall that A = V (1 + Ψ) hence

(1 − |A|2)A = (1 − |V |2|1 + Ψ|2)V (1 + Ψ),

therefore we get a constant (in Φ), a linear and a nonlinear part in Ψ:

(1 − |A|2)A = (1 − |V |2)V + (1 − |V |2)V Ψ − 2|V |2VRe(Ψ)

−2|V |2VRe(Ψ)Ψ − |VΨ|2V (1 + Ψ).

We have B = V eΨ, hence

(1 − |B|2)B = eΨ((1 − |V |2)V − 2Re(Ψ)|V |2V − |V |2V S(Ψ)),
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where S(Ψ) = e2Re(Ψ) − 1 − 2Re(Ψ) is nonlinear in Ψ. We add these relations and obtain

η(1 − |A|2)A+ (1 − η)(1 − |B|2)B = V (η + (1 − η)eΨ)((1 − |V |2) − 2Re(Ψ)|V |2)

+ η(1 − η)(V ζG(Ψ) + V ζH(Ψ))

+ η((1 − |V |2)VΨ − 2|V |2VRe(Ψ)Ψ − |VΨ|2V (1 + Ψ))

− (1 − η)eΨ|V |2V S(Ψ). (A.3)

Now adding the computations (A.1), (A.2) and (A.3) in −ic∂x2v − ∆v − (1 − |v|2)v = 0 yields

V (η + (1 − η)eΨ)

(
E − ic∂x2V

V
+ L′(Ψ)

)

+η((E − ic∂x2V )Ψ + 2|V |2VRe(Ψ)Ψ + |VΨ|2V (1 + Ψ))

+V (1 − η)eΨ(|V |2S(Ψ) −∇Ψ.∇Ψ)

−ic∂x2ηV ζ − V∆ηζ − 2∇η.∇(V ζ) − η(1 − η)(V ζG(Z) + V ζH(Ψ)) = 0. (A.4)

We divide by η + (1 − η)eΨ, which is allowed since η + (1 − η)eΨ = 1 + (1 − η)(eΨ − 1) and in {η 6= 1}, |Ψ| 6
|Φ|
|V | 6 K‖Φ‖L∞(R2) 6 KC0 by our assumption ‖Φ‖L∞(R2) 6 C0, therefore, choosing C0 small enough, in {η 6= 1},

we have |eΨ − 1| 6 1/2. We also remark that

(1 − η)eΨ

(η + (1 − η)eΨ)
= (1 − η) + η(1 − η)

(
eΨ − 1

η + (1 − η)eΨ

)
,

therefore (A.4) become

E − ic∂x2V + V L′(Ψ)

+V (1 − η)(−∇Ψ.∇Ψ + |V |2S(Ψ))

+
η

(η + (1 − η)eΨ)
((E − ic∂x2V )Ψ + 2|V |2VRe(Ψ)Ψ + |VΨ|2V (1 + Ψ))

+R1(Ψ) = 0,

where

R1(Ψ) :=
1

(η + (1 − η)eΨ)
(−ic∂x2ηV ζ − V∆ηζ − 2∇η.∇(V ζ) − η(1 − η)(V ζG(Ψ) + V ζH(Ψ)))

+ V η(1 − η)

(
eΨ − 1

η + (1 − η)eΨ

)
(−∇Ψ.∇Ψ + |V |2S(Ψ)).

Remark that R1(Ψ) is nonzero only in the rings where η(1 − η) 6= 0, i.e. 1 6 r̃ 6 2, since every term has either
∂x2η,∆η or η(1 − η) as a factor. Furthermore they all have as an additional factor ζ,∇ζ, S or ∇Ψ.∇Ψ. Hence, if
we suppose that |Ψ|, |∇Ψ|, |∇2Ψ| 6 KC0 in the rings (which is a consequence of Φ = VΨ and ‖Φ‖C2(R2) 6 C0),
then those terms can be bounded by C‖Ψ‖2C1({16r̃62}). Therefore if |Ψ|, |∇Ψ|, |∇2Ψ| 6 KC0 in the rings, then

|R1(Ψ)| + |∇R1(Ψ)| 6 K‖Ψ‖2C2({16r̃62}) 6 K‖Φ‖2C2({r̃62})

for some universal constant K > 0, since in the rings, V is bounded from below by a nonzero constant. Now, we
use

η

(η + (1 − η)eΨ)
= η + η(1 − η)

1 − eΨ

η + (1 − η)eΨ

to compute
η

(η + (1 − η)eΨ)
(E − ic∂x2V )Ψ = η(E − ic∂x2V )Ψ +R2(Ψ),

where

R2(Ψ) := η(1 − η)
(1 − eΨ)(E − ic∂x2V )

η + (1 − η)eΨ
Ψ.
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We show easily that R2(Ψ) satisfies the same estimates as R1(Ψ). Remark that, using Φ = VΨ,
∣∣∣∣

η

(η + (1 − η)eΨ)
(2|V |2VRe(Ψ)Ψ + |VΨ|2V (1 + Ψ))

∣∣∣∣ =

∣∣∣∣
η

(η + (1 − η)eΨ)
(2Re(ΦV̄ )Φ + |Φ|2(V + Φ))

∣∣∣∣ 6 K‖Φ‖2C1({r̃62})

and ∣∣∣∣∇
(

η

(η + (1 − η)eΨ)
(2Re(ΦV̄ )Φ + |Φ|2(V + Φ))

)∣∣∣∣ 6 K‖Φ‖2C1({r̃62})

if ‖Φ‖L∞(R2) 6 C0 (so that the term in eΨ is bounded) since η 6= 0 only if r̃ 6 2. We define

R(Ψ) := R1(Ψ) +R2(Ψ) +
η

(η + (1 − η)eΨ)
(2|V |2VRe(Ψ)Ψ + |VΨ|2V (1 + Ψ)),

which satisfies
|R(Ψ)|, |∇(R(Ψ))| 6 K‖Φ‖2C2({r̃62})

for some universal constant K > 0, provided that ‖Φ‖C2(R2) 6 C0. The equation (A.4) then becomes

E − ic∂x2V + V L′(Ψ) + V (1 − η)(−∇Ψ.∇Ψ + |V |2S(Ψ))

+η(E − ic∂x2V )Ψ +R(Ψ) = 0.

Now we finish by using −icV ∂x2Ψ = −ηicV ∂x2Ψ − (1 − η)icV ∂x2Ψ and

∂x2VΨ + ∂x2ΨV = ∂x2Φ

to obtain
V L′(Ψ) + η(E − ic∂x2V )Ψ − icη∂x2Φ + V (1 − η)(−∇Ψ.∇Ψ + |V |2S(Ψ)) +R(Ψ) = 0.

Finally, since we have shown that L(Φ) = (E − ic∂x2V )Ψ + L′(Ψ)V , we infer

V L′(Ψ) + η(E − ic∂x2V )Ψ = ηL(Φ) + (1 − η)V L′(Ψ).

The proof is complete. ✷

B Elliptic computations

B.1 Proof of Lemma 2.8

Proof The uniqueness of such a function ζ is a consequence of the fact that ζ is bounded (by ∀x ∈ R2, |ζ(x)| 6
Kεf,α
(1+r̃)α ), the linearity of the Laplacian, and that the only weak solution to ∆ζ = 0 that tends to 0 at infinity is 0.

We define
ζ := G ∗ f,

where G is the fundamental solution of the Laplacian in dimension 2, namely G(x) := 1
2π ln(|x|). Since ‖f(x)(1 +

r̃)2+α‖L∞(R2) < +∞, we check that ζ is well defined. Let us show that ζ ∈ C1(R2,C). If f ∈ C∞
c (R2), then, for

j ∈ {1, 2},

ζ(x+ h~ej) − ζ(x)

|h| =
1

2π

∫

R

2

ln(|x − Y |))f(Y + h~ej) − f(Y )

|h| dY

→ 1

2π

∫

R

2

ln(|x − Y |))∂Yjf(Y )dY

when |h| → 0. Then, for ε > 0,
∣∣∣∣∣

1

2π

∫

B(x,ε)

ln(|x− Y |))∂Yjf(Y )dY

∣∣∣∣∣ 6 Kε2| ln(ε)|‖∇f‖L∞(R2)
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and by integration by parts,

1

2π

∫

R

2\B(x,ε)

ln(|x − Y |))∂Yjf(Y )dY =
1

2π

∫

R

2\B(x,ε)

xj − Yj
|x− Y |2 f(Y )dY

− 1

2π

∫

∂B(x,ε)

ln(|x− Y |))f(Y )~ej .~νdσ

and since
∣∣∣ 1
2π

∫
∂B(x,ε) ln(|x− Y |))f(Y )~ej .~νdσ

∣∣∣ 6 K‖f‖L∞(R2)ε| ln(ε)|, taking ε→ 0 we deduce that

ζ(x + h~ej) − ζ(x)

|h| → 1

2π

∫

R

2

ln(|x − Y |))∂Yjf(Y )dY =
1

2π

∫

R

2

xj − Yj
|x− Y |2 f(Y )dY

when |h| → 0. This implies that, for f ∈ C∞
c (R2),

∇ζ(x) =
1

2π

∫

R

2

x− Y

|x− Y |2 f(Y )dY.

Now, for f ∈ C0(R2,C) such that ‖f(x)(1 + r̃)2+α‖L∞(R2) < +∞, we take fn ∈ C∞
c (R2,C) such that fn → f in

L3(R2) and (1 + r̃)α/2fn → (1 + r̃)α/2f in L1(R2) (we check easily that f ∈ L3(R2) and (1 + r̃)α/2f ∈ L1(R2)). In
particular, fn → f in L1(R2). Then, for ζn such that ∆ζn = fn, we check that, by Hölder inequality,

∣∣∣∣∇ζn(x) − 1

2π

∫

R

2

x− Y

|x− Y |2 f(Y )dY

∣∣∣∣ 6
1

2π

∫

R

2

|fn(Y ) − f(Y )|
|x− Y | dY,

∫

{|x−Y |61}

|fn(Y ) − f(Y )|
|x− Y | dY 6 ‖fn − f‖L3(R2)

(∫

{|x−Y |61}

dY

|x− Y |3/2

)2/3

6 K‖fn − f‖L3(R2)

and ∫

{|x−Y |>1}

|fn(Y ) − f(Y )|
|x− Y | dY 6 ‖fn − f‖L1(R2),

therefore ∇ζn → 1
2π

∫
R

2
x−Y

|x−Y |2 f(Y )dY uniformly in R2.

Similarly, we estimate
∣∣∣∣ζn(x) − 1

2π

∫

R

2

ln(|x− Y |)f(Y )dY

∣∣∣∣ 6
1

2π

∫

R

2

|fn(Y ) − f(Y )|| ln(|x − Y |)|dY,

∫

{|x−Y |61}

|fn(Y ) − f(Y )|| ln(|x − Y |)|dY 6 ‖fn − f‖L3(R2)

(∫

{|x−Y |61}

| ln(|x − Y |)|3/2dY
)2/3

6 K‖fn − f‖L3(R2)

and ∫

{|x−Y |>1}

|fn(Y ) − f(Y )|| ln(|x − Y |)|dY 6 K‖(1 + r̃)α/2fn − (1 + r̃)α/2f‖L1(R2),

thus ζn → G∗f = ζ uniformly in R2, which implies by differentiation of a sequence of functions, that ζ ∈ C1(R2,C)
and

∇ζ(x) =
1

2π

∫

R

2

x− Y

|x− Y |2 f(Y )dY.

We check that ζ satisfies
∆ζ = f

in the distribution sense. Indeed, for ϕ ∈ C∞
c (R2), (see [9], chapter 2, Theorem 1)

∫

R

2

(G ∗ f)∆ϕ =

∫

R

2

f(G ∗ ∆ϕ) =

∫

R

2

fϕ.
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It is also easy to check that
∀(x1, x2) ∈ R2, ζ(x1, x2) = −ζ(x1,−x2).

Now, if |x− d~e1| 6 1, we check that

|∇ζ(x)| 6 K

∫

R

2

1

|Y | |f(x− Y )|dY 6 Kεf,α

∫

R

2

dY

|Y |(1 + r̃(Y − x))2+α
6 Kεf,α,

and, similarly,
|ζ(x)| 6 Kεf,α,

which is enough to show the required estimate of this lemma for these values of x. We can make the same estimate
if |x+ d−→e1 | 6 1, we therefore suppose from now on that |x− d−→e1 |, |x+ d−→e1 | > 1.

First, let us show that ∫

{Y1>0}

f(Y )dY =

∫

{Y160}

f(Y )dY = 0. (B.1)

The integrals are well defined because |f(x)| 6 εf,α
(1+r̃)2+α and therefore f is integrable. Since f is odd with respect

to x2, (B.1) holds. We deduce that

|∇ζ(x)| 6
1

2π

∣∣∣∣∣

∫

{Y1>0}

(
x− Y

|x− Y |2 − x− d−→e1
|x− d−→e1 |2

)
f(Y )dY

∣∣∣∣∣

+
1

2π

∣∣∣∣∣

∫

{Y160}

(
x− Y

|x− Y |2 − x+ d−→e1
|x+ d−→e1 |2

)
f(Y )dY

∣∣∣∣∣ .

Now, using |f(x)| 6 εf,α
(1+r̃)2+α , we estimate

2π|∇ζ(x)| 6 εf,α
∫
{Y1>0}

∣∣∣ x−Y
|x−Y |2 − x−d−→e1

|x−d−→e1|2

∣∣∣ dY
(1+r1(Y ))2+α

+ εf,α
∫
{Y160}

∣∣∣ x−Y
|x−Y |2 − x+d−→e1

|x+d−→e1|2

∣∣∣ dY
(1+r−1(Y ))2+α .

By the change of variable Y = Z + d−→e1 , we have

∫

{Y1>0}

∣∣∣∣
x− Y

|x− Y |2 − x− d−→e1
|x− d−→e1 |2

∣∣∣∣
dY

(1 + r1(Y ))2+α

=

∫

{Z1>−d}

∣∣∣∣
(x − d−→e1) − Z

|(x− d−→e1) − Z|2 − x− d−→e1
|x− d−→e1 |2

∣∣∣∣
dZ

(1 + |Z|)2+α
,

6

∫

R

2

∣∣∣∣
(x− d−→e1) − Z

|(x− d−→e1) − Z|2 − x− d−→e1
|x− d−→e1 |2

∣∣∣∣
dZ

(1 + |Z|)2+α
.

Now, if |Z| > 2|x− d−→e1 |, by triangular inequality, we check that

∣∣∣∣
(x− d−→e1) − Z

|(x− d−→e1) − Z|2 − x− d−→e1
|x− d−→e1 |2

∣∣∣∣ 6
K

|x− d~e1|
,

hence
∫

{|Z|>2|x−d−→e1|}

∣∣∣∣
(x− d−→e1) − Z

|(x − d−→e1) − Z|2 − x− d−→e1
|x− d−→e1 |2

∣∣∣∣
dZ

(1 + |Z|)2+α

6
K

|x− d−→e1 |

∫

{|Z|>2|x−d−→e1|}

dZ

(1 + |Z|)2+α
6

K(α)

|x− d−→e1 |1+α
. (B.2)
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We now work for |Z| 6 2|x− d−→e1 |. We remark that

∣∣∣∣
(x− d−→e1) − Z

|(x− d−→e1) − Z|2 − x− d−→e1
|x− d−→e1 |2

∣∣∣∣ |x− d−→e1 |2|(x− d−→e1) − Z|2

= |(x − d−→e1)(|x− d−→e1 |2 − |(x − d−→e1) − Z|2) − Z|x− d−→e1 |2|
= |(x − d−→e1)(2(x− d−→e1).Z̄ − |Z|2) − Z|x− d−→e1 |2|
= |((x − d−→e1) − Z)(2(x− d−→e1).Z̄ − |Z|2) − Z|(x− d−→e1) − Z|2|

= |(x − d−→e1) − Z||Z|
∣∣∣∣

(x− d−→e1) − Z

|(x − d−→e1) − Z|

(
2(x− d−→e1).

Z̄

|Z| − |Z|
)
− Z

|Z| |(x− d−→e1) − Z|
∣∣∣∣ ,

and we estimate
∣∣∣∣

(x− d−→e1) − Z

|(x− d−→e1) − Z|

(
2(x− d−→e1).

Z̄

|Z| − |Z|
)
− Z

|Z| |(x− d−→e1) − Z|
∣∣∣∣

6 2|x− d−→e1 | +

∣∣∣∣
(x− d−→e1) − Z

|(x− d−→e1) − Z| (−|Z|) − Z

|Z| |(x− d−→e1) − Z|
∣∣∣∣ .

Furthermore,

∣∣∣∣
(x− d−→e1) − Z

|(x− d−→e1) − Z| (−|Z|) − Z

|Z| |(x− d−→e1) − Z|
∣∣∣∣
2

|Z|2|(x− d−→e1) − Z|2

= |((x− d−→e1) − Z)|Z|2 + Z|(x− d−→e1) − Z|2|2

= |(x− d−→e1) − Z|2|Z|4 + |Z|2|(x− d−→e1) − Z|4 + 2(x− d−→e1 − Z).Z̄|Z|2|(x− d−→e1) − Z|2

= |(x− d−→e1) − Z|2|Z|2(−|Z|2 + |(x− d−→e1) − Z|2 + 2(x− d−→e1).Z̄)

= |(x− d−→e1) − Z|2|Z|2|x− d−→e1 |2,

therefore ∣∣∣∣
(x− d−→e1) − Z

|(x − d−→e1) − Z|2 − x− d−→e1
|x− d−→e1 |2

∣∣∣∣ 6
3|Z|

|x− d−→e1 | × |(x − d−→e1) − Z| .

We deduce that
∫

{|Z|62|x−d−→e1|}

∣∣∣∣
(x− d−→e1) − Z

|(x − d−→e1) − Z|2 − x− d−→e1
|x− d−→e1 |2

∣∣∣∣
dZ

(1 + |Z|)2+α

6
3

|x− d−→e1 |

∫

{|Z|62|x−d−→e1|}

|Z|dZ
|(x− d−→e1) − Z|(1 + |Z|)2+α

.

We remark that, either |(x− d−→e1) − Z| > |x−d−→e1|
2 , and then

∫

{|Z|62|x−d−→e1|}∩
{
|(x−d−→e1)−Z|>

|x−d−→e1|
2

}
|Z|dZ

|(x− d−→e1) − Z|(1 + |Z|)2+α

6
2

|x− d−→e1 |

∫

{|Z|62|x−d−→e1|}∩
{
|(x−d−→e1)−Z|>

|x−d−→e1|
2

}
|Z|dZ

(1 + |Z|)2+α

6
K(α)

|x− d−→e1 |α
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since α < 1, or |(x− d−→e1) − Z| 6 |x−d−→e1|
2 , and then |Z| > |x−d−→e1|

2 , therefore

∫

{|Z|62|x−d−→e1|}∩
{
|(x−d−→e1)−Z|6

|x−d−→e1|
2

}
|Z|dZ

|(x− d−→e1) − Z|(1 + |Z|)2+α

6

∫
{

|x−d−→e1|
2 6|Z|62|x−d−→e1|

}
|Z|dZ

|(x− d−→e1) − Z|(1 + |Z|)2+α

6
K

|x− d−→e1 |2+α

∫

{|Z−(x−d−→e1)|63|x−d−→e1|}

|Z|dZ
|(x− d−→e1) − Z|

6
K

|x− d−→e1 |α
.

We conclude that
∫

{|Z|62|x−d−→e1|}

∣∣∣∣
(x − d−→e1) − Z

|(x− d−→e1) − Z|2 − x− d−→e1
|x− d−→e1 |2

∣∣∣∣
dZ

(1 + |Z|)2+α
6

K(α)

|x− d−→e1 |1+α
. (B.3)

Combining (B.2) and (B.3), and by symmetry, we deduce that

∫

{Y1>0}

∣∣∣∣
x− Y

|x− Y |2 − x− d−→e1
|x− d−→e1 |2

∣∣∣∣
dY

(1 + r1(Y ))2+α

+

∫

{Y160}

∣∣∣∣
x− Y

|x− Y |2 − x+ d−→e1
|x+ d−→e1 |2

∣∣∣∣
dY

(1 + r−1(Y ))2+α

6
K(α)

|x− d−→e1 |1+α
+

K(α)

|x+ d−→e1 |1+α

6
K(α)

r̃(x)1+α
,

and therefore (recall that |x− d−→e1 |, |x+ d−→e1 | > 1),

|∇ζ(x)| 6 Kεf,α
(1 + r̃(x))1+α

.

Now, let us show that ζ(x) → 0 when |x| → ∞. We recall that

ζ(x) =
1

2π

∫

R

2

ln(|x− Y |)f(Y )dY,

and since
∫
R

2 f(Y )dY = 0, for large values of x (in particular |x| ≫ d),

ζ(x) =
1

2π

∫

R

2

ln

( |x− Y |
|x|

)
f(Y )dY.

If |x− Y | 6 1, then |f(Y )| 6 Kεf,α
(1+|x|)2+σ , hence

∫

{|x−Y |61}

∣∣∣∣ln
( |x− Y |

|x|

)
f(Y )

∣∣∣∣ 6
Kεf,α

(1 + |x|)2+σ

∫

{|x−Y |61}

| ln(|x− Y |) − ln(|x|)|

6
Kεf,α(1 + ln(|x|))

(1 + |x|)2+σ
→ 0

when x→ ∞. If |x− Y | > 1, then ln
(

|x−Y |
|x|

)
→ 0 when |x| → ∞ and we recall that f is bounded in L∞. We have,

for |x| > 2 that |x− Y | 6 |x|(|y| + 2) and therefore, for |x− Y | > 1, |x| > 2,
∣∣∣ln
(

|x−Y |
|x|

)∣∣∣ 6 K ln(|y| + 2), hence

∣∣∣∣1{|x−Y |>1} ln

( |x− Y |
|x|

)
f(Y )

∣∣∣∣ 6 K ln(|Y | + 2)f(Y ) ∈ L1(R2,C).

96



By dominated convergence theorem, we deduce that ζ(x) → 0 when |x| → ∞. Now, to estimate ζ, we integrate
from infinity. For instance, in the case x1 > 0, x2 > 0, we estimate

|ζ(x)| 6
∣∣∣∣
∫ +∞

x2

∂x2ζ(x1, t)dt

∣∣∣∣ 6 Kεf,α

∫ +∞

x2

dt

(1 + |x1 − d−→e1 | + t)1+α
6

Kεf,α
α(1 + r̃(x))α

.

✷

B.2 Proof of Lemma 2.10

Proof The fundamental solution of −∆ + 2 in R2 is 1
2πK0

(√
2|.|
)

where K0 is the modified Bessel function of the
second kind with the properties described in Lemma 2.9. Since Ψ ∈ H1(R2) and the equation −∆ + 2 is strictly
elliptic, we have

Ψ =
1

2π
K0

(√
2|.|
)
∗ h,

therefore (using K0 > 0), for x ∈ R2,

|Ψ(x)| 6 K‖(1 + r̃)αh‖L∞(R2)

∫

R

2

K0

(√
2|x− Y |

) dY

(1 + r̃(Y ))α
.

If |x− d−→e1 | 6 1 or |x+ d−→e1 | 6 1, we have

∫

R

2

K0

(√
2|x− Y |

) 1

(1 + r̃(Y ))α
dY 6

∫

R

2

K0

(√
2|x− Y |

)
dY 6

∫

R

2

K0

(√
2|Y |

)
dY 6 K,

therefore the estimate holds. We now suppose that |x− d−→e1 |, |x+ d−→e1 | > 1. We decompose

∫

R

2

K0

(√
2|x− Y |

) 1

(1 + r̃(Y ))α
dY =

∫

{Y1>0}

K0

(√
2|x− Y |

) dY

(1 + |Y − d−→e1 |)α

+

∫

{Y160}

K0

(√
2|x− Y |

) dY

(1 + |Y + dn
−→e1 |)α

,

and we estimate, by a change of variable,
∫

{Y1>0}

K0

(√
2|x− Y |

) dY

(1 + |Y − d−→e1 |)α
6

∫

R

2

K0

(√
2|Y |

) dY

(1 + |x− d−→e1 − Y |)α .

Now, if |Y | 6 |x−d−→e1|
2 , by Lemma 2.9 we have

∫
{
|Y |6

|x−d−→e1|
2

}K0

(√
2|Y |

) dY

(1 + |x− d−→e1 − Y |)α

6
K

(1 + |x− d−→e1 |)α
∫
{
|Y |6

|x−d−→e1|
2

}K0

(√
2|Y |

)
dY

6
K

(1 + |x− d−→e1 |)α
.

If |Y | > |x−dn
−→e1|

2 , by Lemma 2.9 we have

∫
{
|Y |>

|x−d−→e1|
2

}K0

(√
2|Y |

) dY

(1 + |x− d−→e1 − Y |)α

6 Ke−|x−d−→e1|/4

∫
{
|Y |>

|x−d−→e1|
2

} e
−|Y |/4dY

6
K(α)

(1 + |x− d−→e1 |)α
.
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By symmetry, we have

∫

{Y160}

K0

(√
2|x− Y |

) dY

(1 + |Y + d−→e1 |)α
6

K

(1 + |x+ d−→e1 |)α
,

and this shows that

|Ψ(x)| 6 K(α)‖(1 + r̃)αh‖L∞(R2)

(1 + r̃(x))α
. (B.4)

For ∇Ψ, we have the similar integral form

∇Ψ =
1

2π
∇
(
K0

(√
2|.|
))

∗ h.

Once again, we can show the estimate if |x− d−→e1 | 6 1 or |x+ d−→e1 | 6 1, and otherwise, we estimate as previously

|∇Ψ(x)| 6 K‖(1 + r̃)αh‖L∞(R2)

∫

R

2

∣∣∣∇K0

(√
2|x− Y |

)∣∣∣ 1

(1 + r̃(Y ))α
dY

6 K‖(1 + r̃)αh‖L∞(R2)

∫

R

2

−K ′
0

(√
2|x− Y |

)∣∣∣ 1

(1 + r̃(Y ))α
dY

since K ′
0 < 0 (from Lemma 2.9). Now, we can do the same computation as for the estimation of |Ψ|, using the

properties of K ′
0 instead of K0 in Lemma 2.9. The same proof works, since the two main ingredients were the

integrability near 0 and an exponential decay at infinity of K0, and −K ′
0 verifies this too. We deduce

|∇Ψ(x)| 6 C(α)‖(1 + r̃)αh‖L∞(R2)

(1 + r̃(x))α
. (B.5)

✷

B.3 Proof of Lemma 2.13

Proof First, since α > 0, h ∈ Lp(R2,C) for some large p > 1 (depdending on α), and ∇K,K ∈ Lq(R2,C) for any
4
3 > q > 1 by Theorem 2.12, thus K ∗ h and ∇K ∗ h are well defined. We only look at the estimates for x ∈ R2

with x1 > 0. The case x1 6 0 can be done similarly. In this case, we have r̃(x) = |x− dc
−→e1 |.

We first look at the case 0 < α < 2. By Theorem 2.12 and the change of variables z = x− y, we have

|K ∗ h|(x)

6 C‖h(1 + r̃)α‖L∞(R2)

∫

R

2

dy

|x− y|1/2(1 + |x− y|)3/2(1 + r̃(y))α

6 C(α)‖h(1 + r̃)α‖L∞(R2)

∫

{y1>0}

dy

|x− y|1/2(1 + |x− y|)3/2(1 + |y − d−→e1 |)α

+ C(α)‖h(1 + r̃)α‖L∞(R2)

∫

{y160}

dy

|x− y|1/2(1 + |x− y|)3/2(1 + |y + d−→e1 |)α

6 C(α)‖h(1 + r̃)α‖L∞(R2)

∫

R

2

dz

|z|1/2(1 + |z|)3/2(1 + |z − (x− d−→e1)|)α

+ C(α)‖h(1 + r̃)α‖L∞(R2)

∫

R

2

dz

|z|1/2(1 + |z|)3/2(1 + |z − (x+ d−→e1)|)α . (B.6)

We focus on the estimation of
∫
R

2
dz

|z|1/2(1+|z|)3/2(1+|z−(x−d−→e1)|)α
. If |x− d−→e1 | 6 1, since α > 0,

∫

R

2

dz

|z|1/2(1 + |z|)3/2(1 + |z − (x− d−→e1)|)α 6 C(α)

∫

R

2

dz

|z|1/2(1 + |z|)3/2(1 + |z|)α 6 C(α).
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Now, for |x− d−→e1 | > 1, we decompose

∫

R

2

dz

|z|1/2(1 + |z|)3/2(1 + |z − (x− d−→e1)|)α

=

∫
{
|z|6

|x−d−→e1|
2

}
dz

|z|1/2(1 + |z|)3/2(1 + |z − (x− d−→e1)|)α

+

∫
{
|z|>

|x−d−→e1|
2

}
dz

|z|1/2(1 + |z|)3/2(1 + |z − (x− d−→e1)|)α .

In
{
|z| 6 |x−d−→e1|

2

}
, we have |z−(x−d−→e1)| > |x−d−→e1|

2 and |z−(x−d−→e1)| > |z|, thus, since α−α′ > 0 and |x−d−→e1 | > 1,

∫
{
|z|6

|x−d−→e1|
2

}
dz

|z|1/2(1 + |z|)3/2(1 + |z − (x− d−→e1)|)α

6
C

|x− d−→e1 |α′

∫

R

2

dz

|z|1/2(1 + |z|)3/2(1 + |z|)α−α′

6
C(α − α′)

|x− d−→e1 |α′

6
C(α − α′, α′)

(1 + |x− d−→e1 |)α′ .

In
{
|z| > |x−d−→e1|

2

}
, we have |z| > |z−(x−d−→e1)|

3 since

|z − (x− d−→e1)| 6 |z| + |x− d−→e1 | 6 |z| + 2|z| 6 3|z|,

and |z| > K(1 + |z|) since |z| > |x−d−→e1|
2 > 1

2 . We then estimate, with 0 < α′ < α < 2,

∫
{
|z|>

|x−d−→e1|
2

}
dz

|z|1/2(1 + |z|)3/2(1 + |z − (x− d−→e1)|)α

6
C

(1 + |x− d−→e1 |)α′

∫
{
|z|>

|x−d−→e1|
2

}
dz

(1 + |z|)2−α′(1 + |z − (x− d−→e1)|)α

6
C(α, α′)

(1 + |x− d−→e1 |)α′

∫

R

2

dz

(1 + |z − (x− d−→e1)|)2+α−α′

6
C(α, α′)

(1 + |x− d−→e1 |)α′ .

With similar computations, we check that, since x1 > 0,

∫

R

2

dz

|z|1/2(1 + |z|)3/2(1 + |z − (x+ d−→e1)|)α 6
C(α− α′, α′)

(1 + |x+ d−→e1 |)α′ 6
C(α− α′, α′)

(1 + |x− d−→e1 |)α′ .

Therefore, for 0 < α < 2, we have

|K ∗ h| 6 C(α− α′, α′)‖h(1 + r̃)α‖L∞(R2)

(1 + r̃)α′ .

Now, if we consider ∇K instead of K and α < 3, a similar proof gives the result. The only change is that we now

use 3−α′ > 0 since α′ < α < 3 in the estimate of the integral in
{
|z| > |x−d−→e1|

2

}
, with the extra decay coming from

∇K instead of K.

We now look at the case 2 < α < 3 and
∫
R

2 h = 0. In particular, since α > 2, we indeed have h ∈ L1(R2). For
r̃(x) = |x− d−→e1 | 6 1, the proof is the same as in the case α < 2.
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We now suppose that r̃(x) = |x− d−→e1 | > 1. Since
∫
R

2 h = 0 and ∀x ∈ R2, h(−x1, x2) = h(x1, x2), we have
∫

{y160}

h(y)dy =

∫

{y1>0}

h(y)dy = 0,

hence ∫

{y160}

K(x+ d−→e1)h(y)dy =

∫

{y1>0}

K(x− d−→e1)h(y)dy = 0.

Therefore, we decompose

|(K ∗ h)(x)|

=

∣∣∣∣
∫

R

2

K(x− y)h(y)dy

∣∣∣∣

=

∣∣∣∣∣

∫

{y1>0}

(K(x− y) −K(x− d−→e1))h(y)dy

∣∣∣∣∣+

∣∣∣∣∣

∫

{y160}

(K(x− y) −K(x+ d−→e1))h(y)dy

∣∣∣∣∣

6

∫

{y1>0}∩{|y−d−→e1|6|x−d−→e1|/2}

|K(x− y) −K(x− d−→e1)||h(y)|dy

+

∫

{y1>0}∩{|x−y|6|x−d−→e1|/2}

|K(x− y) −K(x− d−→e1)||h(y)|dy

+

∫

{y1>0}∩{|x−y|>|x−d−→e1|/2}∩{|y−d−→e1|>|x−d−→e1|/2}

|K(x− y) −K(x− d−→e1)||h(y)|dy.

+

∫

{y160}

|K(x− y) −K(x+ d−→e1)||h(y)|dy.

In {y1 > 0} ∩ {|y − d−→e1 | 6 |x− d−→e1 |/2}, by Theorem 2.12,

|K(x− y) −K(x− d−→e1)|
6 |K((x− d−→e1) − (y − d−→e1)) −K(x− d−→e1)|

6 |y − d−→e1 |
(

sup
B(x−d−→e1,|x−d−→e1|/2)

|∇K|
)

6
C|y − d−→e1 |

(1 + |x− d−→e1 |)3
.

With |x− d−→e1 | > 1, α < 3 and the fact that in {y1 > 0} ∩ {|y − d−→e1 | 6 |x− d−→e1 |/2}, r̃(y) = |y − d−→e1 |, we estimate
∫

{y1>0}∩{|y−d−→e1|6|x−d−→e1|/2}

|K(x− y) −K(x− d−→e1)||h(y)|dy

6

∫

{|y−d−→e1|6|x−d−→e1|/2}

C‖h(1 + r̃)α‖L∞(R2)|y − d−→e1 |
(1 + |x− d−→e1 |)3(1 + |y − d−→e1 |)α

dy

6
C‖h(1 + r̃)α‖L∞(R2)

(1 + |x− d−→e1 |)3
∫

{|y−d−→e1|6|x−d−→e1|/2}

|y − d−→e1 |
(1 + |y − d−→e1 |)α

dy

6
C‖h(1 + r̃)α‖L∞(R2)

(1 + |x− d−→e1 |)3
∫

{|z|6|x−d−→e1|/2}

|z|
(1 + |z|)α dz

6
C(α)‖h(1 + r̃)α‖L∞(R2)

(1 + |x− d−→e1 |)3
× 1

(1 + |x− d−→e1 |)α−3

6
C(α)‖h(1 + r̃)α‖L∞(R2)

(1 + |x− d−→e1 |)α
.

Now, in {y1 > 0} ∩ {|x− y| 6 |x− d−→e1 |/2}, we have |y − d−→e1 | > |x− d−→e1 |/2, and thus

|h(y)| 6 C(α)‖h(1 + r̃)α‖L∞(R2)

(1 + |x− d−→e1 |)α
.
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We deduce that
∫

{y1>0}∩{|x−y|6|x−d−→e1|/2}

|K(x− y) −K(x− d−→e1)||h(y)|dy

6
C‖h(1 + r̃)α‖L∞(R2)

(1 + |x− d−→e1 |)α
∫

{y1>0}∩{|x−y|6|x−d−→e1|/2}

|K(x− y) −K(x− d−→e1)|dy

6
C‖h(1 + r̃)α‖L∞(R2)

(1 + |x− d−→e1 |)α

(∫

{|x−y|6|x−d−→e1|/2}

|K(x− y)|dy + |K(x− d−→e1)|
∫

{|x−y|6|x−d−→e1|/2}

dy

)

6
C‖h(1 + r̃)α‖L∞(R2)

(1 + |x− d−→e1 |)α

(∫

{|z|6|x−d−→e1|/2}

|K(z)|dz + |K(x− d−→e1)||x− d−→e1 |2
)

6
C‖h(1 + r̃)α‖L∞(R2)

(1 + |x− d−→e1 |)α
(ln(1 + |x− d−→e1 |) + 1)

6
C(α− α′)‖h(1 + r̃)α‖L∞(R2)

(1 + |x− d−→e1 |)α′

since |x− d−→e1 | > 1.
Now, in {y1 > 0} ∩ {|x− y| > |x− d−→e1 |/2} ∩ {|y − d−→e1 | > |x− d−→e1 |/2}, we have

|K(x− y) −K(x− d−→e1)| 6 |K(x− y)| + |K(x− d−→e1)| 6 C

(1 + |x− d−→e1 |)2

and

|h(y)| 6 ‖h(1 + r̃)α‖L∞(R2)

(1 + |x− d−→e1 |)α
,

as well as

|h(y)| 6 ‖h(1 + r̃)α‖L∞(R2)

(1 + |y − d−→e1 |)α
.

We deduce, since α− α′ > 0, that

∫

{y1>0}∩{|x−y|>|x−d−→e1|/2}∩{|y−d−→e1|>|x−d−→e1|/2}

|K(x− y) −K(x− d−→e1)||h(y)|dy.

6
C‖h(1 + r̃)α‖L∞(R2)

(1 + |x− d−→e1 |)2+(α′−2)

∫

R

2

dy

(1 + |y − d−→e1 |)α−α′+2

6
C(α− α′)‖h(1 + r̃)α‖L∞(R2)

(1 + |x− d−→e1 |)α′ .

We are left with the estimation of
∫
{y160}

|K(x− y) −K(x+ d−→e1)||h(y)|dy. We decompose it,

∫

{y160}

|K(x− y) −K(x+ d−→e1)||h(y)|dy

=

∫

{y160}∩
{
|y+d−→e1|6

|x+d−→e1|
2

} |K(x− y) −K(x+ d−→e1)||h(y)|dy

+

∫

{y160}∩
{
|y+d−→e1|>

|x+d−→e1|
2

} |K(x− y) −K(x+ d−→e1)||h(y)|dy.

In {y1 6 0} ∩
{
|y + d−→e1 | 6 |x+d−→e1|

2

}
, we have

|h(y)| 6 ‖h(1 + r̃)α‖L∞(R2)

(1 + |y + d−→e1 |)α
,
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and

|K(x− y) −K(x+ d−→e1)|
= |K((x+ d−→e1) − (y + d−→e1)) −K(x+ d−→e1)|
6 |y + d−→e1 | sup

B(x+d−→e1,|x+d−→e1|/2)

|∇K|

6
C|y + d−→e1 |

(1 + |x+ d−→e1 |)3
,

thus
∫

{y160}∩
{
|y+d−→e1|6

|x+d−→e1|
2

} |K(x− y) −K(x+ d−→e1)||h(y)|dy

6
C‖h(1 + r̃)α‖L∞(R2)

(1 + |x+ d−→e1 |)3
∫
{
|y+d−→e1|6

|x+d−→e1|
2

}
|y + d−→e1 |

(1 + |y + d−→e1 |)α
dy

6
C‖h(1 + r̃)α‖L∞(R2)

(1 + |x+ d−→e1 |)3
× C(α)

(1 + |x+ d−→e1 |)α−3

6
C(α)‖h(1 + r̃)α‖L∞(R2)

(1 + |x+ d−→e1 |)α

6
C(α)‖h(1 + r̃)α‖L∞(R2)

(1 + |x− d−→e1 |)α

since x1 > 0 (which implies that |x+ d−→e1 | > |x− d−→e1 |).
Finally, in {y1 6 0} ∩

{
|y + d−→e1 | > |x+d−→e1|

2

}
, we first suppose that |x− y| > |x+d−→e1|

2 , thus

|K(x− y) −K(x+ d−→e1)| 6 |K(x− y)| + |K(x+ d−→e1)| 6 C

(1 + |x+ d−→e1 |)2
,

and we have

|h(y)| 6 K(α)‖h(1 + r̃)α‖L∞(R2)

(1 + |x+ d−→e1 |)α
,

as well as

|h(y)| 6 K(α)‖h(1 + r̃)α‖L∞(R2)

(1 + |y + d−→e1 |)α
.

We therefore estimate, since α− α′ > 0, |x+ d−→e1 | > |x− d−→e1 |,
∫

{y160}∩
{
|y+d−→e1|>

|x+d−→e1|
2

}
∩
{
|x−y|>

|x+d−→e1|
2

} |K(x− y) −K(x+ d−→e1)||h(y)|dy

6
C‖h(1 + r̃)α‖L∞(R2)

(1 + |x+ d−→e1 |)2+(α′−2)

∫

R

2

1

(1 + |y + d−→e1 |)α−α′+2

6
C(α − α′)‖h(1 + r̃)α‖L∞(R2)

(1 + |x+ d−→e1 |)α′

6
C(α − α′)‖h(1 + r̃)α‖L∞(R2)

(1 + |x− d−→e1 |)α′ .
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The other case is when |x− y| 6 |x+d−→e1|
2 , where we still have |h(y)| 6 ‖h(1+r̃)α‖L∞(R2)

(1+|x+d−→e1|)α
and we estimate

∫

{y160}∩{|x−y|6|x+d−→e1|/2}

|K(x− y) −K(x+ d−→e1)||h(y)|dy

6
C‖h(1 + r̃)α‖L∞(R2)

(1 + |x+ d−→e1 |)α
∫

{y160}∩{|x−y|6|x+d−→e1|/2}

|K(x− y) −K(x+ d−→e1)|dy

6
C‖h(1 + r̃)α‖L∞(R2)

(1 + |x+ d−→e1 |)α

(∫

{|x−y|6|x+d−→e1|/2}

|K(x− y)|dy + |K(x+ d−→e1)|
∫

{|x−y|6|x+d−→e1|/2}

dy

)

6
C‖h(1 + r̃)α‖L∞(R2)

(1 + |x+ d−→e1 |)α

(∫

{|z|6|x+d−→e1|/2}

|K(z)|dz + |K(x+ d−→e1)||x+ d−→e1 |2
)

6
C‖h(1 + r̃)α‖L∞(R2)

(1 + |x+ d−→e1 |)α
(ln(1 + |x+ d−→e1 |) + 1)

6
C(α− α′)‖h(1 + r̃)α‖L∞(R2)

(1 + |x+ d−→e1 |)α′

6
C(α− α′)‖h(1 + r̃)α‖L∞(R2)

(1 + |x− d−→e1 |)α′ ,

which concludes the estimates of this lemma. ✷

B.4 Proof of Lemma 2.14

Proof We recall from [12] that

(Rj,k ∗ h)(x) =
1

2π

∫

|x−y|>1

δj,k|x− y|2 − 2(x− y)j(x− y)k
|x− y|4 h(y)dy

+
1

2π

∫

|x−y|61

δj,k|x− y|2 − 2(x− y)j(x− y)k
|x− y|4 (h(y) − h(x))dy. (B.7)

As in the proof of Lemma 2.13, we suppose x1 > 0. It implies that r̃(x) = |x−d−→e1 |. The proof can be done similarly
if x1 6 0.

First, we look at the case 0 < α < 2. We check that

∣∣∣∣∣

∫

|x−y|>1

δj,k|x− y|2 − 2(x− y)j(x− y)k
|x− y|4 h(y)dy

∣∣∣∣∣

6 K

∫

|x−y|>1

|h(y)|dy
(1 + |x− y|)2

6 K‖h(1 + r̃)α‖L∞(R2)

∫

R

2

dy

(1 + |x− y|)2(1 + r̃(y))α
.

The estimate of
∫
R

2
dy

(1+|x−y|)2(1+r̃(y))α can be done exactly as the estimate of

∫

R

2

dy

|x− y|1/2(1 + |x− y|)3/2(1 + r̃(y))α

in the proof of Lemma 2.13 (see equation (B.6) and the proof below). We deduce that

∣∣∣∣∣

∫

|x−y|>1

δj,k|x− y|2 − 2(x− y)j(x− y)k
|x− y|4 h(y)dy

∣∣∣∣∣ 6
K(α, α′)‖h(1 + r̃)α‖L∞(R2)

(1 + |x− d−→e1 |)α′ .
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Now, if |x− y| 6 1, for 0 < α < 3, we have

|h(y) − h(x)| 6 |y − x| sup
B(x,1)

|∇h| 6 |y − x| ‖∇h(1 + r̃)α‖L∞(R2)

(1 + r̃(x))α
,

thus
∣∣∣∣∣

∫

|x−y|61

δj,k|x− y|2 − 2(x− y)j(x− y)k
|x− y|4 (h(y) − h(x))dy

∣∣∣∣∣

6
K‖∇h(1 + r̃)α‖L∞(R2)

(1 + r̃(x))α

∫

|x−y|61

1

|x− y|2 |y − x|dy

6
K‖∇h(1 + r̃)α‖L∞(R2)

(1 + r̃(x))α
.

This concludes the proof of the estimate in the case α < 2. We now suppose that 2 < α < 3 and
∫
R

2 h = 0. We
already have estimate the second integral in (B.7) (since the computations were done for 0 < α < 3), and for the
first integral, the case |x− d−→e1 | 6 1 is done as previously.

We now suppose that |x− d−→e1 | > 1. We are left with the estimation of

∫

|x−y|>1

δj,k|x− y|2 − 2(x− y)j(x− y)k
|x− y|4 h(y)dy.

We define Fj,k(z) :=
δj,k|z|

2−2zjzk
|z|4 and we check easily that, for |z| > 1,

|Fj,k(z)| 6 K

|z|2 .

Since ∀x ∈ R2, h(−x1, x2) = h(x1, x2) and
∫
R

2 h = 0, we have

∫

{y1>0}

Fj,k(x− d−→e1)h(y)dy +

∫

{y160}

Fj,k(x+ d−→e1)h(y)dy = 0.

Furthermore, we estimate (since |x− d−→e1 | > 1)

∫

{y1>0}∩{|x−y|61}

|Fj,k(x − d−→e1)h(y)|dy

6 |Fj,k(x− d−→e1)|
∫

{y1>0}∩{|x−y|61}

|h(y)|dy

6
K

(1 + |x− d−→e1 |)2
∫

{y1>0}∩{|x−y|61}

|h(y)|dy.

Now, in {y1 > 0} ∩ {|x− y| 6 1}, we check that |h(y)| 6 K(α)‖h(1+r̃)α‖L∞(R2)

(1+|x−d−→e1|)α
and thus

∫

{y1>0}∩{|x−y|61}

|Fj,k(x− d−→e1)h(y)|dy 6
K(α)‖h(1 + r̃)α‖L∞(R2)

(1 + |x− d−→e1 |)2+α
.

Similarly, since |x+ d−→e1 | 6 |x− d−→e1 | since x1 > 0,

∫

{y160}∩{|x−y|61}

|Fj,k(x+ d−→e1)h(y)|dy 6
K(α)‖h(1 + r̃)α‖C0(R2)

(1 + |x− d−→e1 |)2+α
.
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Therefore, we estimate
∣∣∣∣∣

∫

|x−y|>1

δj,k|x− y|2 − 2(x− y)j(x− y)k
|x− y|4 h(y)dy

∣∣∣∣∣

6

∫

{y1>0}∩{|x−y|>1}

|Fj,k(x − y) − Fj,k(x− d−→e1)||h(y)|dy

+

∫

{y160}∩{|x−y|>1}

|Fj,k(x − y) − Fj,k(x+ d−→e1)||h(y)|dy

+
K(α)‖h(1 + r̃)α‖C0(R2)

(1 + |x− d−→e1 |)2+α
.

Now, we conclude as in the proof of Lemma 2.13 for the estimation of the two remaining integrals, replacing the
function K by Fj,k, and having the domain of all integrals restricted to {|x− y| > 1}. We check that, in {|z| > 1},

|Fj,k(z)| 6 K

|z|2 6
K

(1 + |z|)2 ,

and, in {|x− y| > 1},

|Fj,k(x− y) − Fj,k(x)| 6 K|y|
(1 + |x|)3 .

With these estimates replacing Theorem 2.12, we can do the proof of the estimates as in Lemma 2.13, in the case
2 < α < 3 and

∫
R

2 h = 0. ✷

B.5 Proof of Lemma 2.18

Proof First, we check that, as a solution of ηL(Φ) + (1 − η)V L′(Ψ) = V h, Φ ∈ C2(R2,C) and

‖Φ‖L∞({r<10/c2}) + ‖∇Φ‖L∞({r<10/c2}) + ‖∇2Φ‖L∞({r<10/c2}) 6 K(c, ‖Φ‖H∞, ‖h‖∗∗,σ′) < +∞.

Since Φ ∈ C2(R2,C) and it satisfies the symmetries and the orthogonality condition, to show that Φ = VΨ ∈ E∗,σ,
we only have to show that ‖Ψ‖∗,σ,d < +∞. Now, similarly as in the proof of Proposition 2.17, we add a cutoff

function χR, writing Ψ̃ = Ψ̃1 + iΨ̃2 = χRΨ, h̃ = h̃1 + ih̃2 = χRh but this time its value is 1 if r > 10/c2 and 0 if
r 6 5/c2. In particular, its support is far from both vortices. We check similarly that, with the same notations, we
obtain the equation (2.13) that we write in real and imaginary parts:





∆Ψ̃1 − 2|V |2Ψ̃1 = −h̃1 − 2Re

(
∇V
V .∇Ψ̃

)
+ c∂x2Ψ̃2 + Loc1(Ψ)

∆Ψ̃2 + c∂x2Ψ̃1 = −h̃2 − 2Im
(

∇V
V .∇Ψ̃

)
+ Loc2(Ψ),

(B.8)

where Loc(Ψ) = Loc1(Ψ) + iLoc2(Ψ), and this time the local terms is in {5/c2 6 r 6 10/c2}. Recall that Ψ̃ = 0 on
{r 6 5/c2}. In particular, we look only at values of x such that |x| > 5/c2. Now, we define a function ζ, solution of

∆ζ = −h̃2 − 2Im
(
∇V
V .∇Ψ̃

)
+ Loc2(Ψ) as in Lemma 2.8. With Lemma 2.3 and ∇Ψ̃ ∈ L2(R2) (since Φ ∈ H∞), we

have Y 7→ (1 + r̃)1/10(ln |x− Y |)Im
(

∇V
V .∇Ψ̃

)
(Y ) ∈ L1(R2) (hence Y 7→ (ln |x− Y |)Im

(
∇V
V .∇Ψ̃

)
(Y ) ∈ L1(R2))

and thus ζ is well defined. By Hölder inequality, we can check that Im

(
∇V
V .∇Ψ̃

)
∈ L3(R2) . We check, with the

same computations as in the proof of Lemma 2.8 (with α = 1/10 in the computations), that ζ ∈ C1(R2) and that
we have

|∇ζ(x)| 6 1

2π

∫

R

2

1

|x− Y |

∣∣∣∣−h̃2 − 2Im

(∇V
V

.∇Ψ̃

)
+ Loc2(Ψ)

∣∣∣∣ (Y )dY,

under the condition that ∇Ψ̃ ∈ L2(R2) ∩ L3(R2). With the upcoming estimates, we will check in particular that
this condition is satisfied (by Sobolev embedding). From the proof of Lemma 2.8, we check that, since V h ∈ E∗∗,σ′

and 1+σ
2 < 1,

sup
x∈R2

(1 + |x|) 1+σ
2

∫

R

2

1

|x− Y | | − h̃2 + Loc2(Ψ)|(Y )dY

∣∣∣∣ < +∞
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(here, its size may depend on σ, σ′, c, R, ‖Φ‖H∞ and ‖h‖∗∗,σ′). Now, from Lemma 2.3, we have, outside of {χR = 0}
that |∇V | 6 K(c)

(1+r)2 . We deduce

∫

R

2

1

|x− Y |

∣∣∣∣Im
(∇V
V

.∇Ψ̃

)∣∣∣∣ (Y )dY 6 K(c, R)

∫

R

2

|∇Ψ̃|(Y )

|x− Y |(1 + |Y |)2 dY.

We focus now on the estimation of
∫
R

2

|∇Ψ̃|(Y )
|x−Y |(1+|Y |)2 dY . From [10], Theorem 8.8, we check that ‖∇Ψ̃‖H1(R2) 6

K(c, R, ‖Φ‖H∞ , ‖h‖∗∗,σ′). In particular, by Sobolev embedding, ‖∇Ψ̃‖L3(R2) 6 K(c, R, ‖Φ‖H∞, ‖h‖∗∗,σ′). In the
area {|x− Y | 6 1}, we have (1 + |Y |)2 > K(1 + |x|)2 and therefore, by Hölder inequality,

∫

{|x−Y |61}

|∇Ψ̃|(Y )

|x− Y |(1 + |Y |)2 dY 6
K

(1 + |x|)2
∫

{|x−y|61}

|∇Ψ̃|(Y )

|x− Y | dY

6
K‖∇Ψ̃‖L3(R2)

(1 + |x|)2

(∫

{|x−Y |61}

dY

|x− Y |3/2

)2/3

6
K(c, R, ‖Φ‖H∞, ‖h‖∗∗,σ)

(1 + |x|)2 .

In the area {1 6 |x−Y | 6 |x|/2}, we have |Y | > |x−Y |
2 and |Y | > |x|

2 , therefore, by Cauchy-Schwarz (since 1+σ
2 < 1),

∫

{16|x−Y |6|x|/2}

|∇Ψ̃|(Y )dY

|x− Y |(1 + |Y |)2

6
K(σ, c, R)

(1 + |x|) 1+σ
2

∫

{16|x−Y |6|x|/2}

|∇Ψ̃|(Y )dY

|x− Y |(1 + |x− Y |)2−( 1+σ
2 )

6
K(σ, c, R)

(1 + |x|) 1+σ
2

√∫

{16|x−Y |6|x|/2}

|∇Ψ̃|2(Y )dY

∫

{16|x−Y |6|x|/2}

dY

|x− Y |3−( 1+σ
2 )

6
K(c, R, σ, ‖Φ‖H∞)

(1 + |x|) 1+σ
2

.

Finally, in the area {|x− Y | > |x|/2}, we estimate by Cauchy-Schwarz that

∫

{|x−Y |>|x|/2}

|∇Ψ̃|(Y )

|x− Y |(1 + |Y |)2 dY

6
K

1 + |x|

√∫

{|x−Y |>|x|/2}

|∇Ψ̃|2
∫

{|x−Y |>|x|/2}

dY

(1 + |Y |)4

6
K(‖Φ‖H∞)

1 + |x| .

Combining these estimates, we conclude that

|∇ζ|(x) 6
K(c, R, σ, σ′, ‖Φ‖H∞ , ‖h‖∗∗,σ)

(1 + |x|) 1+σ
2

.

Now, we write Ψ̃′
2 = Ψ̃2 − ζ, and the system becomes

{
∆Ψ̃1 − 2Ψ̃1 − c∂x2Ψ̃′

2 = −h̃1 − 2Re

(
∇V
V .∇Ψ̃

)
+ Loc1(Ψ) − c∂x2ζ − 2(1 − |V |2)Ψ̃1

∆Ψ̃′
2 + c∂x2Ψ̃1 = 0.

We deduce, as for equation (2.5), that for j ∈ {1, 2},

∂xj Ψ̃′
2 = cKj ∗

(
−h̃1 − 2Re

(∇V
V

.∇Ψ̃

)
+ Loc1(Ψ) − c∂x2ζ − 2(1 − |V |2)Ψ̃1

)
.
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We check that, with Lemma 2.13 (for 1 > α = 1+σ
2 > 0, α′ = σ < α),

|Kj ∗ (−h̃1 + Loc1(Ψ) − c∂x2ζ)| 6
K(c, R, σ, ‖Φ‖H∞ , ‖h‖∗∗,σ′)

(1 + |x|)σ ,

since

| − h̃1 + Loc1(Ψ) − c∂x2ζ| 6
K(c, R, σ, ‖Φ‖H∞ , ‖h‖∗∗,σ′)

(1 + |x|) 1+σ
2

.

Furthermore, from Lemma 2.3, outside of {χR = 0}, |∇V | 6
K(c)
(1+r)2 . We check, with Theorem 2.12, that on{

|x− Y | 6 |x|
2

}
, we have |Y | > |x|

2 and

∫

{|x−Y |6|x|/2}

∣∣∣∣Kj(x − Y )Re

(∇V
V

.∇Ψ̃

)
(Y )

∣∣∣∣ dY

6
K(c, R)

(1 + |x|)2
∫

{|x−Y |6|x|/2}

|∇Ψ̃|(Y )dY

|x− Y |1/2(1 + |x− Y |)3/2 .

By Cauchy-Schwarz, we estimate

∫

{|x−Y |6|x|/2}

|∇Ψ̃|(Y )dY

|x− Y |1/2(1 + |x− Y |)3/2

6 ‖∇Ψ̃‖L2(R2)

√∫

{|x−Y |6|x|/2}

dY

|x− Y |(1 + |x− Y |)3
< +∞,

and in
{
|x− Y | > |x|

2

}
, we estimate

∫

{|x−Y |>|x|/2}

∣∣∣∣Kj(x− Y )Re

(∇V
V

.∇Ψ̃

)
(Y )

∣∣∣∣ 6
K(c, R)

(1 + |x|)2
∫

{|x−Y |6|x|/2}

|∇Ψ̃|(Y )dY

(1 + |Y |)2 ,

and we conclude by Cauchy-Schwarz that

∫

{|x−Y |>|x|/2}

∣∣∣∣Kj(x− Y )Re

(∇V
V

.∇Ψ̃

)
(Y )

∣∣∣∣ dY 6
K(c, R, ‖Φ‖H∞)

(1 + |x|)2 .

Since ‖Ψ̃1‖L2(R2) 6 K(c, R, ‖Φ‖H∞), we estimate similarly

∫

R

2

|Kj(x− Y )(1 − |V |2)Ψ̃1(Y )|dY 6
K(c, R, ‖Φ‖H∞)

(1 + |x|)2 ,

and we conclude that |∂xj Ψ̃′
2| 6

K(c,R,‖Φ‖H∞)
(1+|x|)2 . Therefore, since Ψ̃2 = ζ + Ψ̃′

2,

|∇Ψ̃2| 6
K(c, R, σ, σ′, ‖Φ‖H∞ , ‖h‖∗∗,σ′)

(1 + |x|)σ .

By integration from the origin (using ‖Ψ̃2‖L∞({r<10/c2}) 6 K(c, ‖Φ‖H∞ , ‖h‖∗∗)), we deduce also that

|Ψ̃2| 6
K(c, R, σ, σ′, ‖Φ‖H∞ , ‖h‖∗∗,σ′)

(1 + |x|)−1+σ
. (B.9)

With these estimates and the equation

∆Ψ̃1 − 2Ψ̃1 = −h̃1 + c∂x2Ψ̃2 + Loc1(Ψ) − 2Re

(∇V
V

.∇Ψ̃

)
− 2(1 − |V |2)Ψ̃1,
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we check that | − h̃1 + c∂x2Ψ̃2 + Loc1(Ψ)| 6 K(c,R,σ,σ′,‖Φ‖H∞ ,‖h‖∗∗,σ′)

(1+|x|)σ , and by Lemma 2.10 (for α = σ > 0),

|Ψ̃1| + |∇Ψ̃1| 6
K(c, R, σ, σ′, ‖Φ‖H∞ , ‖h‖∗∗,σ′)

(1 + |x|)σ

(where the estimation for the terms Re

(
∇V
V .∇Ψ̃

)
and 2(1 − |V |2)Ψ1 are similar to what has already been done

since we only have ∇Ψ̃,Ψ1 ∈ L2(R2) at this point).

With this first set of estimates, looking at equation (B.8), we have enough to show that

|∆Ψ̃1 − 2Ψ̃1 − c∂x2Ψ̃2| 6
K(c, R, σ, ‖Φ‖H∞ , ‖h‖∗∗,σ′)

(1 + |x|)1+σ

and

|∆Ψ̃2 + c∂x2Ψ̃1| 6
K(c, R, σ, ‖Φ‖H∞ , ‖h‖∗∗,σ′)

(1 + |x|)2+σ
.

From the computations at the beginning of subsection 2.4.3, we have that, for j ∈ {1, 2},

∂xj Ψ̃1 = ∂xjK0 ∗ (∆Ψ̃1 − 2Ψ̃1 − c∂x2Ψ̃2) + cKj ∗ (∆Ψ̃2 + c∂x2Ψ̃1),

therefore, by Lemma 2.13, taking α = 1 + σ < 2 and α′ = 1 + σ′ < α, we have

|∇Ψ̃1| 6
K(c, R, σ, σ′, ‖Φ‖H∞ , ‖h‖∗∗,σ′)

(1 + |x|)1+σ′ .

Furthermore, by Lemma 2.13, |Kj ∗ (∆Ψ̃2 + c∂x2Ψ̃1)| 6 K(c,R,σ,σ′,‖Φ‖H∞ )

(1+|x|)2+σ/2 , hence, since for xj > 0,

Ψ̃1 = K0 ∗ (∆Ψ̃1 − 2Ψ̃1 − c∂x2Ψ̃2) + c

∫ +∞

xj

Kj ∗ (∆Ψ̃2 + c∂x2Ψ̃1)dyj

by integration from infinity, we also have (with a similar computation if xj < 0)

|Ψ̃1| 6
K(c, R, σ, σ′, ‖Φ‖H∞ , ‖h‖∗∗,σ′)

(1 + |x|)1+σ/2
.

Now, using Theorem 8.10 from [10], we have for any x ∈ R2 that

|∇2Ψ̃|(x) 6 K(‖∆Ψ̃‖L∞(B(x,1)) + ‖Ψ̃‖L∞(B(x,1)) + ‖∇Ψ̃‖L∞(B(x,1))),

therefore (the limiting decay coming from (B.9))

|∇2Ψ̃| 6 K(c, R, σ, σ′, ‖Φ‖H∞ , ‖h‖∗∗,σ′)

(1 + |x|)−1+σ
.

With these estimates, we have that Ψ̃ ∈ E⊗,−3+σ,∞. Now, we define

ȟ := h̃+ 2
∇V
V

.∇Ψ̃ + 2(1 − |V |2)Re(Ψ̃) + Loc(Ψ),

and we infer that, for any α 6 σ′

‖ȟ‖⊗⊗,α,∞ 6 K(α, c, R, σ, σ′, δ, ‖Φ‖H∞, ‖h‖∗∗,σ′)(1 + ‖Ψ̃‖⊗,δ,∞) (B.10)

given that δ > −2 + α. Indeed, we have that, for α 6 σ′, ‖h̃‖⊗⊗,α,∞ 6 K(α, σ′)‖h‖∗∗,σ′ , and

‖Loc(Ψ)‖⊗⊗,α,∞ 6 K(c, α)‖Φ‖C2({r610/c2}) 6 K(c, α, ‖Φ‖H∞ , ‖h‖∗∗,σ′).
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We recall that (1 − |V |2)Re(Ψ̃) is a real-valued term, and with Lemma 2.3, 0 < σ < σ′ < 1, we estimate

‖(1 + r̃)1+α(1 − |V |2)Re(Ψ̃)‖L∞(R2) 6 K

∥∥∥∥
(1 + r̃)1+α

(1 + r̃)3+δ

∥∥∥∥
L∞(R2)

‖Ψ̃‖⊗,δ,∞ 6 K(α, δ)‖Ψ̃‖⊗,δ,∞

if 1 + α > 3 + δ (which is a consequence of δ > −2 + α), and

‖(1 + r̃)2+α∇((1 − |V |2)Re(Ψ̃))‖L∞(R2) 6 K

∥∥∥∥
(1 + r̃)2+α

(1 + r̃)4+δ

∥∥∥∥
L∞(R2)

‖Ψ̃‖⊗,δ,∞ 6 K(α, δ)‖Ψ̃‖⊗,δ,∞.

Now, we estimate similarly (still using Lemma 2.3)
∥∥∥∥(1 + r̃)1+αRe

(∇V
V

.∇Ψ̃

)∥∥∥∥
L∞(R2)

6 K(c)

∥∥∥∥
(1 + r̃)1+α

(1 + r̃)3+δ

∥∥∥∥
L∞(R2)

‖Ψ̃‖⊗,δ,∞ 6 K(c, α, δ)‖Ψ̃‖⊗,δ,∞,

∥∥∥∥(1 + r̃)2+α∇Re

(∇V
V

.∇Ψ̃

)∥∥∥∥
L∞(R2)

6 K(c)

∥∥∥∥
(1 + r̃)2+α

(1 + r̃)4+δ

∥∥∥∥
L∞(R2)

‖Ψ̃‖⊗,δ,∞ 6 K(c, α, δ)‖Ψ̃‖⊗,δ,∞,

and since

Im

(∇V
V

.∇Ψ̃

)
= Im

(∇V
V

)
.Re(∇Ψ̃) + Re

(∇V
V

)
.Im(∇Ψ̃),

with Lemma 2.3 and estimate at the end of the proof of Proposition 2.17, we infer that
∥∥∥∥(1 + r̃)2+αIm

(∇V
V

.∇Ψ̃

)∥∥∥∥
L∞(R2)

6

∥∥∥∥(1 + r̃)2+αIm

(∇V
V

)
.Re(∇Ψ̃)

∥∥∥∥
L∞(R2)

+

∥∥∥∥(1 + r̃)2+αRe

(∇V
V

)
.Im(∇Ψ̃)

∥∥∥∥
L∞(R2)

6 K(c)

∥∥∥∥
(1 + r̃)2+α

(1 + r̃)4+δ

∥∥∥∥
L∞(R2)

‖Ψ̃‖⊗,δ,∞ +K

∥∥∥∥
(1 + r̃)2+α

(1 + r̃)4+δ

∥∥∥∥
L∞(R2)

‖Ψ̃‖⊗,δ,∞

6 K(c, α, δ)‖Ψ̃‖⊗,δ,∞,

and with similar estimates,
∥∥∥∥(1 + r̃)2+α∇Im

(∇V
V

.∇Ψ̃

)∥∥∥∥
L∞(R2)

6 K(c, α, δ)‖Ψ̃‖⊗,δ,∞.

This concludes the proof of (B.10). With Ψ̃ ∈ E⊗,−3+σ,∞, we therefore deduce that for ε > 0 a small constant,
‖ȟ‖⊗⊗,−1+σ−ε,∞ < +∞, hence ȟ ∈ E⊗⊗,−1+σ−ε. With estimate (B.10), Lemma 2.15 and

−∆Ψ̃ − ic∂x2Ψ̃ + 2Re(Ψ̃) = ȟ,

and with the symmetries on Ψ̃ and ȟ, we can bootstrap our estimates on Ψ̃ and then on ȟ, and we conclude that
Ψ̃ ∈ E⊗,σ (since σ < σ′). ✷

C Estimations for the differentiability

C.1 Proof of Lemma 3.3

Proof We fix 0 < c < c0(σ). We define, for d ∈
]

1
2c ,

2
c

[
∩
]
d⊛ − δ

2 , d⊛ + δ
2

[
, the function

Hd : Φ 7→ (ηL(.) + (1 − η)V L′(./V ))−1
d (Π⊥

d (Fd(Φ/V )))

from E⊛,σ,d⊛
to E⊛,σ,d⊛

, so that
H(Φ, c, d) = Hd(Φ) + Φ.

We took the same convention as in the proof of Lemma 3.2: we added a subscript in d in the operators to describe
at which values of d this operator is taken.
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Step 1. Differentiability of Hd with respect to d.

To apply the implicit function theorem, we have to check that H(Φ, c, d) (or, equivalentlyHd(Φ)) is differentiable
with respect to d, and that ∂dH(Φ, c, d) ∈ E⊛,σ,d⊛

. By definition of the operator (ηL(.) + (1 − η)V L′(./V ))−1, we
have, in the distribution sense,

(
ηL(Hd+ε(Φ)) + (1 − η)V L′

(
Hd+ε(Φ)

V

))

d+ε

+ Π⊥
d+ε(Fd+ε(Φ/Vd+ε)) = 0

and (
ηL(Hd(Φ)) + (1 − η)V L′

(
Hd(Φ)

V

))

d

+ Π⊥
d (Fd(Φ/Vd)) = 0.

From Lemma 2.7, we have, for any Φ = VdΨ ∈ E⊛,σ,d⊛
that

(
ηL(.) + (1 − η)V L′

( .
V

))
d

(Φ) = Ld(Φ) − (1 − ηd)(E − ic∂x2V )dΨ,

and with the definition of Ld (in Lemma 2.7), we check that, for any Φ ∈ E⊛,σ,d⊛
, in the distribution sense,

((
ηL(.) + (1 − η)V L′

( .
V

))
d+ε

−
(
ηL(.) + (1 − η)V L′

( .
V

))
d

)
(Φ)

= (|Vd+ε|2 − |Vd|2)Φ + 2Re(Vd+εΦ)Vd+ε − 2Re(VdΦ)Vd

− (1 − ηd+ε)(E − ic∂x2V )d+ε + (1 − ηd)(E − ic∂x2V )d.

We therefore compute that, in the distribution sense,
(
ηL(.) + (1 − η)V L′

( .
V

))
d

(Hd+ε(Φ) −Hd(Φ))

= −((|Vd+ε|2 − |Vd|2)Hd+ε(Φ) + 2Re(Vd+εHd+ε(Φ))Vd+ε − 2Re(VdHd+ε(Φ))Vd)

+ ((1 − ηd+ε)(E − ic∂x2V )d+ε − (1 − ηd)(E − ic∂x2V )d)Hd+ε(Φ)

− (Π⊥
d+ε(Fd+ε(Φ/Vd+ε)) − Π⊥

d (Fd(Φ/Vd))).

Since
∂2dV = ∂2x1

V1V−1 + ∂2x1
V−1V1 − 2∂x1V1∂x1V−1,

with Lemmas 2.1, 2.6 and equation (2.3), we check easily that

|Vd+ε|2 − |Vd|2 = ε∂d(|V |2) +
Oc,d

ε→0(ε2)

(1 + r̃)3

and

∇(|Vd+ε|2) −∇(|Vd|2) = ε∂d(∇|V |2) +
Oc,d

ε→0(ε2)

(1 + r̃)3
.

It implies in particular that (|Vd+ε|2 − |Vd|2)Hd+ε(Φ) ∈ E⊛⊛,γ(σ),d⊛
, with

‖(|Vd+ε|2 − |Vd|2)Hd+ε(Φ)‖⊛⊛,γ(σ),d⊛
→ 0

when ε→ 0. We check similarly

2Re(Vd+εHd+ε(Φ))Vd+ε − 2Re(VdHd+ε(Φ))Vd

= ε(2Re(∂dVHd+ε(Φ))Vd + 2Re(VdHd+ε(Φ))∂dVd) +Oc,d
‖.‖⊛⊛,γ(σ),d⊛

(ε2),

and that 2Re(∂dVHd+ε(Φ))Vd + 2Re(VdHd+ε(Φ))∂Vd ∈ E⊛⊛,γ(σ),d⊛
. We continue, still with Lemmas 2.1, 2.6 and

equation (2.3), we infer

((1 − ηd+ε)(E − ic∂x2V )d+ε − (1 − ηd)(E − ic∂x2V )d)Hd+ε(Φ)

= ε∂d((1 − ηd)(E − ic∂x2V )d)Hd+ε(Φ) +Oc,d
‖.‖⊛⊛,γ(σ),d⊛

(ε2)
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and ∂d((1 − ηd)(E − ic∂x2V )d)Hd+ε(Φ) ∈ E⊛⊛,γ(σ),d⊛
. Finally, we recall that

Fd(Ψ) = (E − ic∂x2V )d + Vd(1 − η)(−∇Ψ.∇Ψ + |V |2S(Ψ)) +Rd(Ψ),

and we check similarly that

Π⊥
d+ε(Fd+ε(Φ/Vd+ε)) − Π⊥

d (Fd(Φ/Vd)) = ε∂d(Π⊥
d (Fd(Φ/Vd))) +Oc,d

‖.‖⊛⊛,γ(σ),d⊛

(ε2).

We have
∂d(Π⊥

d (Fd(Φ/Vd))) = (∂dΠ⊥
d )(Fd(Φ/Vd)) + Π⊥

d (∂d(Fd(Φ/Vd))),

and since (∂dΠ⊥
d )(Fd(Φ/V )) is compactly supported, (∂dΠ⊥

d )(Fd(Φ/V )) ∈ E⊛⊛,γ(σ),d⊛
. We will check in the next

step that ∂d(Fd(Φ/Vd)) ∈ E⊛⊛,γ(σ),d⊛
. Let us suppose this result for now and finish the proof of the differentiability.

Combining the different estimates, we have in particular that
(
ηL(.) + (1 − η)V L′

( .
V

))
d

(Hd+ε(Φ) −Hd(Φ)) → 0

in E⊛⊛,γ(σ),d⊛
when ε→ 0. By Proposition 2.17 (from E⊛⊛,γ(σ),d⊛

to E⊛,σ,d⊛
), this implies that

Hd+ε(Φ) → Hd(Φ)

in E⊛,σ,d⊛
when ε→ 0. Now, taking the equation

(
ηL(.) + (1 − η)V L′

( .
V

))
d

(Hd+ε(Φ) −Hd(Φ))

= −((|Vd+ε|2 − |Vd|2)Hd+ε(Φ) + 2Re(Vd+εHd+ε(Φ))Vd+ε − 2Re(VdHd+ε(Φ))Vd)

+ ((1 − ηd+ε)(E − ic∂x2V )d+ε − (1 − ηd)(E − ic∂x2V )d)Hd+ε(Φ)

− (Π⊥
d+ε(Fd+ε(Φ/Vd+ε)) − Π⊥

d (Fd(Φ/Vd)))

and dividing it by ε, and then taking ε→ 0, we check that d 7→ Hd(Φ) is a C1 function in E⊛,σ,d⊛
, with

∂dH(Φ, c, d) = ∂dHd(Φ) =
(
ηL(.) + (1 − η)V L′

( .
V

))−1

(G(d,Φ)),

with

G(d,Φ) := ∂d(|V |2)Hd(Φ) + 2Re(∂dVHd(Φ))Vd + 2Re(VdHd(Φ))∂dVd

+ ∂d((1 − ηd)(E − ic∂x2V )d)Hd(Φ) − ∂d(Π⊥
d (Fd(Φ/Vd))).

By the implicit function theorem, with Lemma 3.1, since ‖Ψc,d‖∗,σ,d 6 K(σ, σ′)c1−σ′

this implies that, for c small
enough, d 7→ Φc,d is a C1 function, and

∂dΦc,d = −dΦH−1(∂dH(Φc,d , d, c)).

Now, let us check that indeed ∂d(Fd(Φ/Vd)) ∈ E⊛⊛,γ(σ),d⊛
for Φ ∈ E⊛,σ,d⊛

.

Step 2. Proof of
∥∥∥ ∂d(Fd(Φ/Vd))

V

∥∥∥
∗∗,γ(σ),d

6 K(σ)c1−γ(σ) +K‖Ψ‖∗,σ,d.

By the equivalence of the ∗ and ⊛ norms, these estimates imply that ∂d(Fd(Φ/Vd)) ∈ E⊛⊛,γ(σ),d⊛
. We suppose

from now on that ‖Ψ‖∗,σ,d 6 1. From Lemma 2.7, we have

Fd

(
Φ

Vd

)
= (E − ic∂x2V )d +Rd

(
Φ

Vd

)
+ Vd(1 − ηd)

(
−∇

(
Φ

Vd

)
.∇
(

Φ

Vd

)
+ |Vd|2S

(
Φ

Vd

))
.

It is easy to check that at fixed Φ, c,

∥∥∥∥∥∥

∂d

(
Rd

(
Φ
Vd

))

V

∥∥∥∥∥∥
∗∗,γ(σ),d

6 K(σ)c1−γ(σ) +K‖Ψ‖∗,σ,d,
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since it is localized near the vortices. For the nonlinear part, we have

∂d
(
V (1 − η)

(
−∇

(
Φ
V

)
.∇
(
Φ
V

)
+ |V |2S

(
Φ
V

)))

V
=

∂dV

V
(1 − η)(−∇Ψ.∇Ψ + |V |2S(Ψ))

− ∂dη(−∇Ψ.∇Ψ + |V |2S(Ψ))

+ (1 − η)

(
−2∇Ψ.∂d

(
∇
(

Φ

Vd

)))

+ (1 − η)2Re(V̄ ∂dV )S(Ψ)

+ (1 − η)|V |2∂d
(
S

(
Φ

Vd

))
.

For the first line, from Lemma 2.6, ‖Ψ‖∗,σ,d 6 1 and the definition of ‖.‖∗,σ,d, we have

∣∣∣∣
∂dV

V
(1 − η)(−∇Ψ.∇Ψ + |V |2S(Ψ))

∣∣∣∣ 6
K‖Ψ‖2∗,σ,d
(1 + r̃)3

6
K‖Ψ‖∗,σ,d
(1 + r̃)3

and ∣∣∇
(
∂dV
V (1 − η)(−∇Ψ.∇Ψ + |V |2S(Ψ))

)∣∣ 6
K‖Ψ‖2

∗,σ,d

(1+r̃)3 6
K‖Ψ‖∗,σ,d

(1+r̃)3 ,

which is enough the estimate. Similarly, since ∂dη is compactly supported, we have

|∂dη(−∇Ψ.∇Ψ + |V |2S(Ψ))| + |∇(∂dη(−∇Ψ.∇Ψ + |V |2S(Ψ)))| 6
K‖Ψ‖2∗,σ,d
(1 + r̃)3

6
K‖Ψ‖∗,σ,d
(1 + r̃)3

.

Now, we develop

∂d

(
∇
(

Φ

V

))
= −∂dV∇Φ

V 2
− ∇∂dV Φ

V 2
+
∂dV Φ∇V

V 3
,

and we check, with Lemma 2.6, that

∣∣∣∣(1 − η)

(
−2∇Ψ.∂d

(
∇
(

Φ

Vd

)))∣∣∣∣ 6
K‖Ψ‖2∗,σ,d
(1 + r̃)3

6
K‖Ψ‖∗,σ,d
(1 + r̃)3

,

as well as ∣∣∣∣∇
(

(1 − η)

(
−2∇Ψ.∂d

(
∇
(

Φ

Vd

))))∣∣∣∣ 6
K‖Ψ‖2∗,σ,d
(1 + r̃)3

6
K‖Ψ‖∗,σ,d
(1 + r̃)3

.

Since |Re(V̄ ∂dV )| 6 K
(1+r̃)3 from Lemma 2.6 and |S(Ψ)| 6 K|Re(Ψ)| (since ‖Ψ‖∗,σ,d 6 1), we have similarly

|(1 − η)2Re(V̄ ∂dV )S(Ψ)| 6 K‖Ψ‖∗,σ,d
(1 + r̃)3

,

and finally, since

∂d

(
S

(
Φ

Vd

))
= −2Re

(
Φ∂dV

V 2

)
(e2Re(Ψ) − 1)

is real-valued, we check that ∣∣∣∣∂d
(
S

(
Φ

Vd

))∣∣∣∣ 6
K‖Ψ‖2∗,σ,d
(1 + r̃)2+2σ

6
K‖Ψ‖∗,σ,d

(1 + r̃)1+γ(σ)

and ∣∣∣∣∇∂d
(
S

(
Φ

Vd

))∣∣∣∣ 6
K‖Ψ‖2∗,σ,d
(1 + r̃)3+2σ

6
K‖Ψ‖∗,σ,d

(1 + r̃)2+γ(σ)
.

and this is enough for the estimate. Finally, we will show that for any 0 < σ < 1,

∥∥∥∥
∂d(E − ic∂x2V )

V

∥∥∥∥
∗∗,σ,d

6 K(σ)c1−σ,
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which would conclude the proof of this step (taking γ(σ) instead of σ).
Let us show first that

|∂dE| 6 Kc1−σ

(1 + r̃)2+σ
. (C.1)

We have from (2.2) that
E = −2∇V1.∇V−1 + (1 − |V1|2)(1 − |V−1|2)V1V−1,

hence
∂dE = 2∇∂x1V1.∇V−1 − 2∇V1.∇∂x1V−1 + ∂d((1 − |V1|2)(1 − |V−1|2)V1V−1).

With Lemmas 2.1 and 2.2, we easily check that

|∇∂x1V1.∇V−1| 6
K

(1 + r1)2(1 + r−1)
,

|∇V1.∇∂x1V−1| 6
K

(1 + r1)(1 + r−1)2

and

|∂d((1 − |V1|2)(1 − |V−1|2)V1V−1)| 6 K

(1 + r1)3(1 + r−1)2
+

K

(1 + r1)2(1 + r−1)3
.

In the right half-plane, where r1 6 r−1 and r−1 > d, we use

1

(1 + r−1)1−σ
6 Kc1−σ

and
1

(1 + r1)α
+

1

(1 + r−1)α
6

2

(1 + r̃)α

for α > 0 on the three previous estimates to show that

|∂dE| 6 Kc1−σ

(1 + r̃)2+σ

in the right half-plane. Similarly, the result holds in the left half-plane, and this proves (C.1). With similar
computations, we can estimate ∇

(
∂dE
V

)
and show that

∥∥∥∥
∂dE

V

∥∥∥∥
∗∗,σ,d

6 K(σ)c1−σ.

Let us now prove that ∥∥∥∥
∂d(ic∂x2V )

V

∥∥∥∥
∗∗,σ,d

6 K(σ)c1−σ. (C.2)

We show easily that
‖ic∂x2∂dV ‖C1({r̃63}) 6 Kc 6 Kc1−σ,

and since ∂x2∂dV = −∂x1x2V1V−1 + ∂x1x2V−1V1 − ∂x1V1∂x2V−1 + ∂x1V−1∂x2V1, by Lemma 2.2 we have

|∂x2∂dV | 6 K

(1 + r̃)2
, |∇∂x2∂dV | 6 K

(1 + r̃)3

therefore ∥∥∥∥r̃1+σRe

(
ic∂x2∂dV

V

)∥∥∥∥
L∞({r̃>2})

+

∥∥∥∥r̃2+σ∇
(
ic∂x2∂dV

V

)∥∥∥∥
L∞({r̃>2})

6 Kc 6 Kc1−σ.

This proves that (C.2) is true for the real part contribution. We are left with the proof of

∥∥∥∥cr̃2+σIm

(
i∂x2∂dV

V

)∥∥∥∥
L∞({r̃>2})

6 K(σ)c1−σ,
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which is more delicate and relies on some cancelations. We compute

Im

(
i∂x2∂dV

V

)
= −Re

(
−∂x1x2V1

V1
+
∂x1x2V−1

V−1

)
−Re

(
−∂x1V1

V1

∂x2V−1

V−1
+
∂x1V−1

V−1

∂x2V1
V−1

)
.

From Lemma 2.2, we have
∂x1V1
V1

= − i

r1
sin(θ1) +Or1→∞

(
1

r31

)

and the part in Or1→∞

(
1
r31

)
can be estimated as in the proof of Lemma 2.22 for

∥∥∥ ic∂x2V

V

∥∥∥
∗∗,σ,d

. In particular, we

will just compute the terms of order less than 1
r31

or 1
r3−1

. From Lemma 2.2, we have also

∂x2V1
V1

= − i

r1
cos(θ1) +Or1→∞

(
1

r31

)

and

Re

(
∂x1x2V1
V1

)
=

cos(θ1) sin(θ1)

r21
+Or1→∞

(
1

r31

)
.

These two estimates hold by changing i→ −i, θ1 → θ−1, r1 → r−1 and V1 → V−1. We then deduce that

Im

(
i∂x2∂dV

V

)
= −

(
−cos(θ1) sin(θ1)

r21
+

cos(θ−1) sin(θ−1)

r2−1

)

−
(
− sin(θ1)

r1

cos(θ−1)

r−1
+

sin(θ−1)

r−1

cos(θ1)

r1

)

+ Or1→∞

(
1

r31

)
+Or−1→∞

(
1

r3−1

)
. (C.3)

We start with the second term of (C.3) which is the easiest one. We use for ǫ = ±1 that

cos(θǫ) =
x1 − dǫ

rǫ
and sin(θǫ) =

x2
rǫ

to compute

sin(θ1) cos(θ−1) =
(x1 + d)x2
r1r−1

and

sin(θ−1) cos(θ1) =
(x1 − d)x2
r1r−1

,

therefore

− sin(θ1)

r1

cos(θ−1)

r−1
+

sin(θ−1)

r−1

cos(θ1)

r1
=

2dx2
(r1r−1)2

.

We have, in the right half-plane, where r1 6 r−1 and r−1 > d > K
c ,

∣∣∣∣cr̃2+σ 2dx2
(r1r−1)2

∣∣∣∣ = 2

∣∣∣∣∣cd
r̃2+σ

r21r
σ
−1

x2
r−1

1

r1−σ
−1

∣∣∣∣∣ 6 Kc1−σ

since r̃2+σ

r21r
σ
−1

6 1, |x2|
r−1

6 1 and cd 6 K. Similarly, we have the same estimate in the left half-plane.

Now for the first term of (C.3), we have, for ǫ = ±1,

sin(θǫ) cos(θǫ) =
(x1 − ǫd)x2

r2ǫ
.

Therefore,

−cos(θ1) sin(θ1)

r21
+

cos(θ−1) sin(θ−1)

r2−1

=
x2

(r1r−1)4
(r41(x1 + d) − r4−1(x1 − d)).
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We compute, for ǫ = ±1,

r4ǫ = ((x1 − ǫd)2 + x22)2 = (x1 − ǫd)4 + 2(x1 − ǫd)2x22 + x42,

hence

−cos(θ1) sin(θ1)

r21
+

cos(θ−1) sin(θ−1)

r2−1

=
x2

(r1r−1)4
(x1 − d)(x1 + d)((x1 − d)3 − (x1 + d)3 + 2x22((x1 − d) − (x1 + d)))

+
x2

(r1r−1)4
x42(x1 + d− (x1 − d)).

We simplify this equation to

− cos(θ1) sin(θ1)

r21
+

cos(θ−1) sin(θ−1)

r2−1

=
−x2(x1 − d)(x1 + d)

(r1r−1)4
(2d3 + 6x21d− 4x22d) +

2x52d

(r1r−1)4
. (C.4)

We now estimate separately each contribution of (C.4). We have, in the right half-plane, where r1 6 r−1 and
r−1 > d >

K
c , ∣∣∣∣cr̃2+σ 2x52d

(r1r−1)4

∣∣∣∣ = 2

∣∣∣∣∣cd
x52

r21r
3
−1

r̃2+σ

r21r
σ
−1

1

r1−σ
−1

∣∣∣∣∣ 6 Kc1−σ

since |x2| 6 r1, |x2| 6 r−1 and r̃2+σ

r21r
σ
−1

6 1. Still in the right half-plane,

∣∣∣∣cr̃2+σ x2(x1 − d)(x1 + d)

(r1r−1)4
2d3
∣∣∣∣ = 2

∣∣∣∣∣cd
d2

r2−1

(x1 − d)

r1

(x1 + d)

r−1

x2
r1

r̃2+σ

r21r
σ
−1

1

r1−σ
−1

∣∣∣∣∣ 6 Kc1−σ

since d 6 Kr−1, |x1 − d| 6 r1 and |x1 + d| 6 r−1. For the next term, we write x21 = x21 − d2 + d2 in

x2(x1 − d)(x1 + d)

(r1r−1)4
6x21d =

x2(x1 − d)(x1 + d)

(r1r−1)4
6(x21 − d2)d+

x2(x1 − d)(x1 + d)

(r1r−1)4
6d3.

In the right half-plane, using x21 − d2 = (x1 − d)(x1 + d),

∣∣∣∣cr̃2+σ x2(x1 − d)(x1 + d)

(r1r−1)4
6(x21 − d2)d

∣∣∣∣ = 6

∣∣∣∣∣cd
(x1 − d)2

r21

(x1 + d)2

r2−1

x2
r−1

r̃2+σ

r21r
σ
−1

1

r1−σ
−1

∣∣∣∣∣ 6 Kc1−σ

using previous estimates. We continue in the right half-plane with

∣∣∣∣cr̃2+σ x2(x1 − d)(x1 + d)

(r1r−1)4
6d3
∣∣∣∣ = 6

∣∣∣∣∣cd
(x1 − d)

r1

(x1 + d)

r−1

d2

r2−1

x2
r1

r̃2+σ

r21r
σ
−1

1

r1−σ
−1

∣∣∣∣∣ 6 Kc1−σ

and ∣∣∣∣cr̃2+σ x2(x1 − d)(x1 + d)

(r1r−1)4
4x22d

∣∣∣∣ = 4

∣∣∣∣∣cd
(x1 − d)

r1

(x1 + d)

r−1

x32
r1r2−1

r̃2+σ

r21r
σ
−1

1

r1−σ
−1

∣∣∣∣∣ 6 Kc1−σ

using previous estimates. Similarly, all these estimates hold in the left half-plane, and for ∇
(

∂d(ic∂x2V )

V

)
, which

ends the proof of ∥∥∥∥
∂d(ic∂x2V )

V

∥∥∥∥
∗∗,σ,dc

6 Kc1−σ.

✷
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C.2 Proof of Lemma 3.9

Proof From the proof (and with the notations) of Lemma 3.2,

(
Id +

(
ηL(.) + (1 − η)V L′

(
.
V

))−1

c
(Π⊥

d (dΨFc(./V )))
)

((Φc+ε,d − Φc,d))

=
(
ηL(.) + (1 − η)V L′

(
.
V

))−1

c

(
−εΠ⊥

d (−i∂x2V ) − iε
(
η∂x2Φc+ε,d + (1 − η)V ∂x2

(
Φc+ε,d

V

)))

+
(
ηL(.) + (1 − η)V L′

(
.
V

))−1

c
(Oσ,c

‖.‖∗∗,σ,d
(ε2)),

thus, taking ε→ 0, we deduce that (with Lemma 3.2)

(
Id +

(
ηL(.) + (1 − η)V L′

( .
V

))−1

(Π⊥
d (dΨFc(./V )))

)
(∂cΦc,d)

=
(
ηL(.) + (1 − η)V L′

( .
V

))−1
(

Π⊥
d (∂cF (Φc,d/V )) − iη∂x2Φc,d + (1 − η)V ∂x2

(
Φc,d

V

))
.

Since at d = dc, λ(c, dc) = 0, we have

Π⊥
d (∂cF (Φc,d/V )) − iη∂x2Φc,d + (1 − η)V ∂x2

(
Φc,d

V

)

|d=dc

= −i∂x2Qc,

hence, with Proposition 2.17,

‖∂cΨc,d|d=dc
‖∗,σ,d 6 K‖∂cΨc,d|d=dc

‖⊛,σ,d⊛

6 K(σ, σ′)

∥∥∥∥
i∂x2Qc

V

∥∥∥∥
⊛⊛, σ+σ′

2 ,d⊛

.

We will conclude by showing that for any 0 < σ < σ′ < 1,

∥∥∥∥
i∂x2Qc

V

∥∥∥∥
⊛⊛,σ,d⊛

6 K(σ, σ′)c−σ′

;

which, applied to 0 < σ+σ′

2 < σ′ < 1, concludes the proof.

By Lemma 2.22, we have ∥∥∥∥
i∂x2V

V

∥∥∥∥
⊛⊛,σ,d⊛

6 K(σ)c−σ,

and using ‖Ψc,dc‖∗,σ,dc 6 K(σ, σ′)c1−σ′

with Lemma 2.3, we check easily that, for c small enough,

∥∥∥∥
i∂x2Qc

V

∥∥∥∥
⊛⊛,σ,d⊛

6 K(σ, σ′)c−σ′

.

We now focus on the estimation of ∂dΦc,d|d=dc
. At the end of step 1 of the proof of Lemma 3.3, we have shown

that
∂dΦc,d|d=dc

= −dΦH−1(∂dH(Φc,dc , c, dc)).

From Lemma 3.1, we have that, at d = dc,Φ = Φc,dc , the operator dΦH
−1 is invertible from E⊛,σ,d⊛

to E⊛,σ,d⊛
,

with an operator norm with size 1 + oσc→0(1). We therefore only have to check that

‖∂dH(Φc,dc , c, dc)‖∗,σ,dc 6 K(σ, σ′)c1−σ′

.

Since ∂dH(Φc,dc , c, dc) =
(
ηL(.) + (1 − η)V L′

(
.
V

))−1
(G(dc,Φc,dc)), By Proposition 2.17 (from E⊛⊛,σ′,d⊛

to E⊛,σ,d⊛
),

it will be a consequence of ∥∥∥∥
G(dc,Φc,dc)

V

∥∥∥∥
∗∗,σ,d

6 K(σ, σ′)c1−σ′
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for any 0 < σ < σ′ < 1.
We have, since Hdc(Φc,dc) = Φc,dc , that

G(dc,Φc,dc )
V = ∂d(|V |2)

Φc,dc

V + 2Re(∂dVΦc,dc) + 2Re(V̄ Φc,dc)∂dV
V

+ ∂d((1 − η)(E − ic∂x2V ))|d=dc

Φc,dc

V − 1
V ∂d(Π⊥

d (Fd(Φ/V )))|d=dc
.

Since ∂d(|V |2) = 2Re(∂dV V̄ ), we check, with Lemma 2.6 that

∣∣∣∣∂d(|V |2)
Φc,dc

V

∣∣∣∣+

∣∣∣∣2Re(V̄ Φc,dc)
∂dV

V

∣∣∣∣ 6
K(σ, σ′)c1−σ′

(1 + r̃)2+σ
,

and

|Re(∂dV Φc,dc)| 6 K(σ, σ′)c1−σ′

(1 + r̃)1+σ
,

as well as ∣∣∣∣∇
(
∂d(|V |2)

Φc,dc

V
+ 2Re(V̄Φc,dc)

∂dV

V
+ Re(∂dV Φc,dc)

)∣∣∣∣ 6
K(σ, σ′)c1−σ′

(1 + r̃)2+σ
,

and this estimate a real valued quantity. From step 2 of the proof of Lemma 3.3, we have
∥∥∥∥

1

V
∂d((1 − η)(E − ic∂x2V ))

∥∥∥∥
∗∗,σ,d

6 K(σ)c1−σ,

which is enough to show that
∥∥∥∥∂d((1 − η)(E − ic∂x2V ))|d=dc

Φc,dc

V

∥∥∥∥
∗∗,σ,d

6 K(σ, σ′)c1−σ′

.

Finally, in step 2 of the proof of Lemma 3.3, we have shown that (taking the estimate for Φ = Φc,dc)

∥∥∥∥
1

V
∂d(Π⊥

d (Fd(Φ/V )))|d=dc

∥∥∥∥
∗∗,σ,d

6 K(σ, σ′)c1−σ′

,

which conclude the proof of this lemma. ✷
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[4] Fabrice Béthuel, Philippe Gravejat , and Jean-Claude Saut. Travelling waves for the Gross-Pitaevskii equation.
II. Comm. Math. Phys., 285(2):567–651, 2009.

[5] Xinfu Chen, Charles M. Elliott , and Tang Qi. Shooting method for vortex solutions of a complex-valued
Ginzburg-Landau equation. Proc. Roy. Soc. Edinburgh Sect. A, 124(6):1075–1088, 1994.

[6] David Chiron and Mihai Mariş. Traveling waves for nonlinear Schrödinger equations with nonzero conditions
at infinity. Arch. Ration. Mech. Anal., 226(1):143–242, 2017.

[7] Manuel del Pino, Patricio Felmer , and Micha l Kowalczyk. Minimality and nondegeneracy of degree-one
Ginzburg-Landau vortex as a Hardy’s type inequality. Int. Math. Res. Not., (30):1511–1527, 2004.

117



[8] Manuel del Pino, Micha l Kowalczyk , and Monica Musso. Variational reduction for Ginzburg-Landau vortices.
J. Funct. Anal., 239(2):497–541, 2006.

[9] Lawrence C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. American
Mathematical Society, Providence, RI, Second edition , 2010.

[10] David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of second order. Classics in Mathe-
matics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.

[11] V. L. Ginzburg and L. P. Pitaevskii. On the theory of superfluidity. Soviet Physics. JETP, 34 (7):858–861,
1958.

[12] Philippe Gravejat. Decay for travelling waves in the Gross-Pitaevskii equation. Ann. Inst. H. Poincaré Anal.
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