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Introduction
The study of Euler sums has a fairly long history dating back to the middle of the
18th century. In response to a letter from Goldbach dated from december 1742,
Euler considered infinite sums of the form

Sp,q =
∞∑

n=1

H(p)
n

nq
,

where p and q are positive integers, and H(p)
n = ∑n

k=1
1

kp are generalized harmonic
numbers. For p = 1, the generalized harmonic numbers reduce to classical har-
monic numbers Hn = H(1)

n . The importance of harmonic numbers comes from
the fact that they appear (sometimes quite unexpectedly) in different branches of
number theory and combinatorics. In our times, the sums Sp,q are called the linear
Euler sums. Euler discovered that for all pairs (p, q) with p = 1, or p = q, or p+ q
odd, these sums have expressions in terms of zeta values (i.e. the values of the
Riemann zeta function ζ(s) = ∑

n≥1 n
−s at positive integers), a remarkable result
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that will be also found and completed later by Nielsen [11, pp. 47–51]. Among
the beautiful formulas discovered by Euler [10], the following two are particularly
noteworthy:

• Euler’s reciprocity formula:

Sp,q + Sq,p = ζ(p)ζ(q) + ζ(p+ q) (p, q ≥ 2),

called “prima methodus”, that allows to express Sq,p as a function of Sp,q

and vice versa. In the particular case p = q, it results from this formula that

Sp,p = 1
2
{
(ζ(p))2 + ζ(2p)

}
;

• Euler’s formula: S1,2 = 2ζ(3), and

2S1,p = (p+ 2)ζ(p+ 1) −
p−2∑
j=1

ζ(p− j)ζ(j + 1) (p > 2),

that Euler derives from his “secunda methodus”, this famous formula will
be several times rediscovered throughout the 20th century (see [13, Remark
3.1] for historical details).

Ramanujan’s method of summation of series appears in Chapter VI of Ra-
manujan’s second notebook [12]. Because of the ambiguities (observed by Hardy
in Chapter XIII of his classical treatise on divergent series) contained in the def-
inition of the “constant of a series” that made its use very tricky, Ramanujan’s
method, based on the Euler-Maclaurin summation formula, had fallen into neglect.
This method has known a revival of interest at the end of the 20th century when
a clear and rigorous definition of the sum of a series in the sense of Ramanujan
summation was given by Candelpergher et al. [5] at the same time as the link with
the usual summation was completely clarified. The reader will find in the recent
monograph [2] a masterful synthesis of main definitions, fundamental properties,
and scope of application of the Ramanujan summation.

Ramanujan’s method is particulary well suited to linear Euler sums because it
allows to easily handle both the convergence case and the divergence case; however
this process of regularization is unusual and remains little known. In the remainder
of this article, we consider the sum in the sense of Ramanujan summation corre-
sponding to Sp,q. To avoid confusion, this sum is noted Rp,q, where the letter R is
reminiscent of Ramanujan summation (see Definition 1). A complete evaluation
of the sums R1,p, Rp,1, and Rp,p is then given for each positive integer p. This al-
lows us to provide a number of relations similar (though more complicated) to the
classical relations mentioned above (see Propositions 1 to 4). Several interesting
applications of these formulas are given in [4] and [8].
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1 Ramanujan summation of Euler sums

Let us recall that the generalized harmonic numbers H(p)
n are defined for integers

n ≥ 1 and p ≥ 1 by
H(p)

n =
n∑

k=1

1
kp
.

When p = 1, they reduce to classical harmonic numbers denoted Hn = H(1)
n . It is

convenient to express them in the following form:

H(p)
n = (−1)p−1

(p− 1)!∂
p−1ψ(n+ 1) + ζ(p) (p ≥ 2) ,

and
Hn = ψ(n+ 1) + γ ,

where ψ(z) = Γ′(z)
Γ(z) is the digamma function and γ = −ψ(1) is the Euler constant

[6, p. 95].

Definition 1. For any positive integer p, the function s 7→ Z(p, s) is defined as
the analytic continuation of the function defined in the half-plane Re(s) > 1 by

Z(p, s) =
∞∑

n=1
H(p)

n n−s −
∫ ∞

1
ψp(x)x−s dx ,

where ψ1(x) = ψ(x+ 1) + γ, and

ψp(x) = (−1)p−1

(p− 1)!∂
p−1ψ(x+ 1) + ζ(p) (p ≥ 2) .

It follows from [2, Thm. 9] that this function can be analytically continued as an
entire function in the whole C. For each integer q ∈ Z, Rp,q is defined by

Rp,q := Z(p, q) .

The value Rp,q is thus well-defined and may be interpreted as the R-sum (i.e.
the sum in the sense of Ramanujan summation) of the (possibly divergent) series∑

n≥1 H
(p)
n n−q. Therefore, with the notations of [2], Rp,q is nothing else than∑R

n≥1
H

(p)
n

nq .

Example 1 (values of Rp,q at q = 0). It results from [2, p. 44] that

Rp,0 =


3
2γ − 1

2 ln(2π) + 1
2 if p = 1 ,

3
2ζ(2) − 2 if p = 2 ,
3
2ζ(p) − p−2

p−1ζ(p− 1) − 1
p−1 if p > 2 .
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2 Evaluation of the sum R1,p

Let ζH be the harmonic zeta function [4, 7] defined for Re(s) > 1 by

ζH(s) =
∞∑

n=1
Hn n

−s .

According to Definition 1, Z(1, s) is closely linked to ζH(s) through the relation

Z(1, s) = ζH(s) −
∫ ∞

1
x−s (ψ(x+ 1) + γ) dx (Re(s) > 1) .

In particular, since
ζH(p) = S1,p (p ≥ 2) ,

it follows that

R1,p := Z(1, p) = S1,p −
∫ ∞

1

ψ(x+ 1) + γ

xp
dx (p ≥ 2) . (1)

Definition 2. For any positive integer p, let τp be the real constant defined by
the series representation

τp :=
∞∑

k=1
(−1)k+p ζ(k + p)

k
. (2)

Remark 1. The sequence {τp}p appears in [4] and [9]. The constant τ1 has been
thoroughly studied by Boyadzhiev [1] (see also [6, Ex. 92, p. 142]).
To give a better expression of the R-sum R1,p, we first prove the following lemma:

Lemma 1. For p > 2, we have the relation

(−1)p
∫ ∞

1

ψ(x+ 1) + γ

xp
dx =

p−2∑
j=1

(−1)j

j
ζ(p− j) − ζ ′(p) − (−1)pτp . (3)

For p = 2, this relation reduces to∫ ∞

1

ψ(x+ 1) + γ

x2 dx = −ζ ′(2) − τ2 . (4)

For p = 1, we have the identity∫ 1

0

ψ(x+ 1) + γ

x
dx = τ1.
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Proof. For p ≥ 2, the convergent series ∑n≥1
ln(n+1)

np may be splitted into the two
series ∞∑

n=1

ln(n+ 1)
np

=
∞∑

n=1

ln(n)
np

+
∞∑

n=1

1
np

ln
(

1 + 1
n

)
.

The well-known expansion of ln(1 + 1/n) in power series leads to the identity
∞∑

n=1

1
np

ln
(

1 + 1
n

)
=

∞∑
n=1

1
np

[ ∞∑
k=1

(−1)k−1

k

( 1
n

)k
]

= (−1)p−1 τp ,

then it follows that
∞∑

n=1

ln(n+ 1)
np

= −ζ ′(p) − (−1)p τp . (5)

On the other side, the partial fraction expansion

(−1)p

xp−1(x+ y) =
p−2∑
j=0

(−1)j

xj+1 yp−1−j
− 1
yp−1(x+ y) (p ≥ 2),

leads, after integration, to the formula

(−1)p
∫ ∞

1

dx

xp−1(x+ n) =
p−2∑
j=1

(−1)j

j np−1−j
+ ln(n+ 1)

np−1 (p > 2) ,

valid for any positive integer n. After division by n, it can be rewritten as

ln(n+ 1)
np

=
p−2∑
j=1

(−1)j−1

j np−j
+ (−1)p

∫ ∞

1

x

xp n(x+ n) dx .

By summing this identity, we then obtain

∞∑
n=1

ln(n+ 1)
np

=
p−2∑
j=1

(−1)j−1

j
ζ(p−j)+(−1)p

∫ ∞

1

ψ(x+ 1) + γ

xp
dx (p > 2) . (6)

Hence, formula (3) follows from (5) and (6) by substitution. For p = 2, it reduces
to ∫ ∞

1

ψ(x+ 1) + γ

x2 dx =
∞∑

n=1

ln(n+ 1)
n2 = −ζ ′(2) − τ2 .

In the case p = 1, the well-known Taylor expansion

ψ(x+ 1) + γ =
∞∑

n=1
(−1)n−1ζ(n+ 1)xn (|x| < 1)
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gives (after division of both sides by x and integration from 0 to 1)∫ 1

0

ψ(x+ 1) + γ

x
dx =

∞∑
n=1

(−1)n−1 ζ(n+ 1)
n

= τ1.

Proposition 1. For any positive integer p > 2, we have

R1,p = S1,p −
p−2∑
j=1

(−1)p−j

j
ζ(p− j) + (−1)pζ ′(p) + τp , (7)

where τp is defined by formula (2). For p = 2, it reduces to

R1,2 = S1,2 + ζ ′(2) + τ2 = 2ζ(3) + ζ ′(2) + τ2 .

Moreover, for p ≥ 2, we have the formula

R1,2p = (p+1)ζ(2p+1)−
p−1∑
j=1

ζ(2p−j)ζ(j+1)−
2p−2∑
j=1

(−1)j

j
ζ(2p−j)+ζ ′(2p)+τ2p . (8)

Proof. On one side, by formula (1), we have the relation

R1,p = S1,p −
∫ ∞

1

ψ(x+ 1) + γ

xp
dx ,

and, on the other side, by Lemma 1, we have∫ ∞

1

ψ(x+ 1) + γ

xp
dx = −(−1)pζ ′(p) − τp +

p−2∑
j=1

(−1)p−j

j
ζ(p− j) .

Hence, formula (7) is immediately deduced from (1) and (3) by substitution, and
(8) results from (7) and the following expression of S1,2p given by Euler’s formula
[13, Thm. 3.1]:

S1,2p = (p+ 1)ζ(2p+ 1) −
p−1∑
j=1

ζ(2p− j)ζ(j + 1) (p > 1) . (9)

Example 2.

R1,2 = 2ζ(3) + ζ ′(2) + τ2 ,

R1,4 = 3ζ(5) − ζ(3)ζ(2) + ζ(3) − 1
2ζ(2) + ζ ′(4) + τ4 ,

R1,6 = 4ζ(7) − ζ(3)ζ(4) − ζ(2)ζ(5) + ζ(5) − 1
2ζ(4) + 1

3ζ(3) − 1
4ζ(2)

+ ζ ′(6) + τ6 .
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Remark 2. We point out here the analogy between our formula for R1,2p and the
“dual” formula

R1,−2p = 1 − 2p
2 ζ(1 − 2p) + ζ ′(−2p) + ν2p (p ≥ 1)

given in [7, Eq. (8)], where νp is defined by the series representation

νp =
∞∑

k=2
(−1)k ζ(k)

k + p
(p ≥ 1) .

3 Evaluation of the sum Rp,1

We now give an evaluation of the “reciprocal” sum Rp,1 corresponding to the
divergent Euler sum Sp,1.

Definition 3. Let σp defined by σ2 = 1, and

σp = 1 + (−1)p

p
+

p−2∑
j=1

(−1)jζ(p− j)
[

(j − 1)!(p− 1 − j)!
(p− 1)! − 1

j

]
(p > 2) . (10)

Example 3. The first values of σp are

σ2 = 1 ,

σ3 = 1
2ζ(2) ,

σ4 = 2
3ζ(3) − 1

3ζ(2) + 1
2 ,

σ5 = 3
4ζ(4) − 5

12ζ(3) + 1
4ζ(2) ,

σ6 = 4
5ζ(5) − 9

20ζ(4) + 9
10ζ(3) − 1

5ζ(2) + 1
3 .

Remark 3. Another interesting expression of σp is given by [3, Eq. (27)]. Let

Z(i, j) =
∞∑

n=1

1
ni (n+ 1)j

(i, j ≥ 1) .

The partial fraction expansion of 1
ni (n+1)j shows that Z(i, j) is a Z-linear combi-

nation of zeta values and integers, and it results from [3, Eq. (27)] that

σp =
∑

i+j=p

1
j
Z(i, j) (p ≥ 2) .
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Proposition 2. For any positive integer p ≥ 2, we have

Rp,1 = γζ(p) + ζ(p+ 1) − S1,p − σp − ζ ′(p) − (−1)pτp , (11)

where τp and σp are respectively defined by formulas (2) and (10). Moreover, for
p ≥ 2, we have the formula

R2p,1 = γζ(2p) − p ζ(2p+ 1) +
p−1∑
j=1

ζ(2p− j)ζ(j + 1) − σ2p − ζ ′(2p) − τ2p . (12)

Proof. By summing (in the sense of Ramanujan summation) the following equa-
tions :

H(p)
n

n
− 1
n
ζ(p) = − 1

n

∞∑
m=n+1

1
mp

= 1
n

(−1)p−1

(p− 1)!∂
p−1ψ(n+ 1) ,

we get
R∑

n≥1

(
H(p)

n

n
− ζ(p)

n

)
= −

R∑
n≥1

1
n

∞∑
m=n+1

1
mp

=
R∑

n≥1

1
n

(−1)p−1

(p− 1)!∂
p−1ψ(n+ 1)

= −
+∞∑
n=1

1
n

+∞∑
m=n+1

1
mp

+ (−1)p

(p− 1)!

∫ ∞

1

∂p−1ψ(x+ 1)
x

dx ,

where the symbol ∑R
n≥1 denotes the R-sum of the series (see [2] for a precise

definition). Since
∞∑

n=1

1
n

∞∑
m=n+1

1
mp

=
∞∑

n=1

Hn

np
− ζ(p+ 1) ,

this can be rewritten
R∑

n≥1

(
H(p)

n

n
− ζ(p)

n

)
= ζ(p+ 1) −

∞∑
n=1

Hn

np
+ (−1)p

(p− 1)!

∫ ∞

1

∂p−1ψ(x+ 1)
x

dx .

Thus we have
R∑

n≥1

H(p)
n

n
= γζ(p) + ζ(p+ 1) −

∞∑
n=1

Hn

np
+ (−1)p

(p− 1)!

∫ ∞

1

∂p−1ψ(x+ 1)
x

dx ,

which, with our notations, translates into

Rp,1 = γζ(p) + ζ(p+ 1) − S1,p + (−1)p

(p− 1)!

∫ ∞

1

∂p−1ψ(x+ 1)
x

dx . (13)
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The integral in the right member of (13) is evaluated by performing p−1 successive
integrations by parts. When p = 2, this is just∫ ∞

1

∂ψ(x+ 1)
x

dx =
∫ ∞

1

ψ(x+ 1) + γ

x2 dx − 1 ,

which, by (4), is −ζ ′(2) − τ2 − 1. Hence, by (13), we have

R2,1 = γζ(2) + ζ(3) − S1,2 − σ2 − ζ ′(2) − τ2 .

We now assume that p > 2. Under this assumption, we have the identity

∂p−kψ(2) = (−1)p−k(p− k)! + (−1)p−k+1(p− k)!ζ(p− k + 1) (p− k ≥ 1)

[6, Prop. 9.6.41] from which results the relation

(−1)p

(p− 1)!

∫ ∞

1

∂p−1ψ(x+ 1)
x

dx = (−1)p
∫ ∞

1

ψ(x+ 1) + γ

xp
dx

+ 1
(p− 1)!

p−3∑
k=0

(−1)kk!(p− k− 2)! ζ(p− k− 1) − 1
(p− 1)!

p−2∑
k=0

(−1)kk!(p− k− 2)! .

In this expression, the last term can be simplified by means of the formula

1
(p− 1)!

p−2∑
k=0

(−1)kk!(p− k − 2)! = 1
p− 1

p−2∑
k=0

(−1)k(
p−2

k

) = 1 + (−1)p

p

[14, Eq. (14)]. After reindexation, we can also write

1
(p− 1)!

p−3∑
k=0

(−1)kk!(p−k−2)! ζ(p−k−1) = −
p−2∑
j=1

(−1)j (j − 1)!(p− j − 1)!
(p− 1)! ζ(p−j) .

Moreover, by (3), we have

(−1)p
∫ ∞

1

ψ(x+ 1) + γ

xp
dx =

p−2∑
j=1

(−1)j

j
ζ(p− j) − ζ ′(p) − (−1)pτp .

Thanks to these simplifications, formula (13) can then be rewritten

Rp,1 = γζ(p) + ζ(p+ 1) − S1,p − ζ ′(p) − (−1)pτp − σp ,

with

σp = 1 + (−1)p

p
+

p−2∑
j=1

(−1)j (j − 1)!(p− j − 1)!
(p− 1)! ζ(p− j) −

p−2∑
j=1

(−1)j

j
ζ(p− j) .

This completes the demonstration of the expected formula (11). Formula (12) is
immediately deduced from (11) and Euler’s formula (9).

9



Example 4.

R2,1 = γζ(2) − ζ(3) − 1 − ζ ′(2) − τ2

R3,1 = γζ(3) − 1
4ζ(4) − 1

2ζ(2) − ζ ′(3) + τ3 ,

R4,1 = γζ(4) − 2ζ(5) + ζ(3)ζ(2) − 2
3ζ(3) + 1

3ζ(2) − 1
2 − ζ ′(4) − τ4 ,

R5,1 = γζ(5) − 3
4ζ(6) − 3

4ζ(4) + 1
2(ζ(3))2 + 5

12ζ(3) − 1
4ζ(2) − ζ ′(5) + τ5 .

Remark 4. Formula (11) plays a crucial role in the proof of [4, Prop. 6].

4 Values of Rp,p

4.1 The case p = 1
The following formula [2, Eq. (3.23)] allows us to extend formula (11) to the case
p = 1. We have

R1,1 = 1
2γ

2 − 1
2ζ(2) + γ1 + τ1 , (14)

where γ1 is the first Stieltjes constant and τ1 is the constant defined by (2). A new
direct proof of this formula is given below.

Proof of formula (14). The relation

R1,1 = 1
2γ

2 + 1
2ζ(2) − 1

2 + 1
2

∫ 1

0
ψ2(x+ 1) dx

[2, Eq. (2.6)] is a direct consequence of [2, Thm. 3]. Since ψ(x+ 1) = ψ(x) + 1/x,
this relation can be rewritten∫ 1

0

(
ψ2(x) + 2ψ(x)

x
+ 1
x2

)
dx = 2R1,1 − γ2 − ζ(2) + 1 .

Moreover, from [6, p. 145], we have∫ 1

0

(
ψ2(x) − 2γ

x
− 1
x2

)
dx = 2γ1 − 2ζ(2) + 1 .

Subtracting these two expressions, we obtain the following

2
∫ 1

0

(
(ψ(x) + γ) 1

x
+ 1
x2

)
dx = R1,1 − γ2 − ζ(2) + 1 − (2γ1 − 2ζ(2) + 1) .
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Since
(ψ(x) + γ) 1

x
+ 1
x2 = ψ(x+ 1) + γ

x
,

we deduce the relation

2
∫ 1

0

ψ(x+ 1) + γ

x
dx = 2R1,1 + ζ(2) − γ2 − 2γ1 .

Applying Lemma 1 with p = 1, we obtain formula (14) after division by 2.

4.2 The case p > 1
For p ≥ 2, the R-sums Rp,p may be easily evaluated by means of the relation

Rp,p = Sp,p −
∫ ∞

1

ψp(x)
xp

dx ,

with
ψp(x) = (−1)p−1

(p− 1)!∂
p−1ψ(x+ 1) + ζ(p)

which results from Definition 1, and the expression

Sp,p = 1
2ζ(p)

2 + 1
2ζ(2p)

which results directly from Euler’s reciprocity formula. By performing p−1 succes-
sive integrations by parts, we obtain an expression of Rp,p in terms of zeta values
ζ(2p), ζ(2p − 2), · · · , ζ(2), as well as ζ ′(2p − 1), τ2p−1 and a rational constant. In
this way, we get

R2,2 = 7
4ζ(4) + ζ(2) + 2ζ ′(3) − 2τ3 − 1 , (15)

and the general formula is given by

Rp,p = 1
2ζ(p)

2 + 1
2ζ(2p) − ζ(p)

p− 1

+ (−1)p

(
2p− 2
p− 1

)2p−3∑
j=1

(−1)j+1

j
ζ(2p− 1 − j) + ζ ′(2p− 1) − τ2p−1


+ 1

((p− 1)!)2

p−1∑
k=2

(−1)k(p− k)!(p+ k − 3)! ζ(p+ 1 − k)

− 1
((p− 1)!)2

p∑
k=2

(−1)k(p− k)!(p+ k − 3)! (p ≥ 3) . (16)
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5 Reciprocity formulas

5.1 The even case
Proposition 3. For any integer p ≥ 1, we have

R1,2p + R2p,1 = γζ(2p) + ζ(2p+ 1) −
2p−2∑
j=0

(−1)jAj,p ζ(2p− j) − 1
p

(17)

with A0,p = 0, and

Aj,p = (j − 1)!(2p− 1 − j)!
(2p− 1)! (j ≥ 1) .

Proof. By adding identities (8) and (12), we get for p ≥ 2,

R1,2p + R2p,1 = γζ(2p) + ζ(2p+ 1) −
2p−2∑
j=1

(−1)j

j
ζ(2p− j) − σ2p .

Thus, for p > 1, formula (17) follows immediately by replacing σ2p by its expression
given by (10) and is extendable to the case p = 1 by setting A0 = 0.

Example 5. We have the following relations:

R1,2 + R2,1 = γζ(2) + ζ(3) − 1 ,

R1,4 + R4,1 = γζ(4) + ζ(5) + 1
3ζ(3) − 1

6ζ(2) − 1
2 ,

R1,6 + R6,1 = γζ(6) + ζ(7) + 1
5ζ(5) − 1

20ζ(4) + 1
30ζ(3) − 1

20ζ(2) − 1
3 .

5.2 The odd case
Proposition 4. For any integer p ≥ 2, we have

R1,2p−1 + R2p−1,1

= γζ(2p− 1) + ζ(2p) −
2p−3∑
j=1

(−1)jCj,p ζ(2p− 1 − j)

− 2ζ ′(2p− 1) + 2τ2p−1 (18)

with
Cj,p = (j − 1)!(2p− 2 − j)!

(2p− 2)! − 2
j

(j ≥ 1) .
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Proof. By adding identities (7) and (11), we get

R1,p + Rp,1 = γζ(p) + ζ(p+ 1) − σp − (−1)p
p−2∑
j=1

(−1)j

j
ζ(p− j)

+ (1 − (−1)p)τp + ((−1)p − 1)ζ ′(p) .

Hence we have the following relation

R1,2p−1 + R2p−1,1 = γζ(2p− 1) + ζ(2p) − σ2p−1 +
2p−3∑
j=1

(−1)j

j
ζ(2p− 1 − j)

− 2ζ ′(2p− 1) + 2τ2p−1 ,

from which formula (18) is derived by replacing σ2p−1 by its expression given by
(10). Note that, in the odd case, the constant term of σ2p−1 is null.

Example 6. We have the following relations:

R1,3 + R3,1 = γζ(3) + ζ(4) − 3
2ζ(2) − 2ζ ′(3) + 2τ3 ,

R1,5 + R5,1 = γζ(5) + ζ(6) − 7
4ζ(4) + 11

12ζ(3) − 7
12ζ(2) − 2ζ ′(5) + 2τ5 ,

R1,7 + R7,1 = γζ(7) + ζ(8) − 11
6 ζ(6) + 29

30ζ(5) − 17
30ζ(4) + 2

5ζ(3) − 11
30ζ(2)

− 2ζ ′(7) + 2τ7 .

Remark 5. a) It should be noted that, in constrast to the even case, the reci-
procity relation between R1,p and Rp,1 when p is odd involves the constants
ζ ′(p) and τp .

b) Another type of reciprocity formula linking Rp,q to Rq,p is given by [2, Eq.
(2.10)]. If q = p+ 1, we have the following nice formula:

Rp,p+1 + Rp+1,p = ζ(2p+ 1) +
(
ζ(p) − 1

p− 1

)
ζ(p+ 1) − 1

p
(p ≥ 2) .

Moreover, this relation extends to the case p = 1 for which the formula

R1,2 + R2,1 = ζ(3) + γζ(2) − 1

is regained. Unfortunately, no general “simple” reciprocity formula, valid for
any p and q, is known.
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