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them in terms of the derivatives ζ′(−k) of zeta at the negative 
integers and Euler’s constant γ. These expressions may be 
inverted to produce new series expansions for the quotient 
ζ(2k + 1)/ζ(2k). Motivated by a theoretical interpretation of 
these series in terms of Ramanujan summation, we give an 
explicit formula for the Ramanujan sum of hyperharmonic 
numbers as an application of our results.

Video. For a video summary of this paper, please visit 
https://youtu.be/uyLmgDh9JVs.

© 2016 Published by Elsevier Inc.

0. Introduction

The series

1
2 + 1

24 + 1
72 + 19

2880 + 3
800 + 863

362880 + · · ·

* Corresponding author.
E-mail addresses: coppo@unice.fr (M.-A. Coppo), paul@math.cofc.edu (P.T. Young).
http://dx.doi.org/10.1016/j.jnt.2016.04.028
0022-314X/© 2016 Published by Elsevier Inc.

http://dx.doi.org/10.1016/j.jnt.2016.04.028
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
https://youtu.be/uyLmgDh9JVs
mailto:coppo@unice.fr
mailto:paul@math.cofc.edu
http://dx.doi.org/10.1016/j.jnt.2016.04.028
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnt.2016.04.028&domain=pdf


2 M.-A. Coppo, P.T. Young / Journal of Number Theory 169 (2016) 1–20
has a long history which goes back to the works of Lorenzo Mascheroni (1790) who was 
the first scholar to recognize Euler’s constant

γ = lim
n→∞

(
n∑

k=1

1
k
− lnn

)

as being the sum of the series. This is the first known convergent series representation 
for Euler’s constant with rational coefficients only. The Mascheroni series was subse-
quently rediscovered several times during the next centuries (cf. [B], pp. 379–380 for 
more historical references).

With modern notations (cf. [J], p. 280), Mascheroni series is nothing else than

∑
n≥1

|bn|
n

where bn denotes Bernoulli numbers of the second kind (also called Gregory coefficients
by some authors).

In this paper, we investigate shifted Mascheroni series

σr =
∑
n>r

|bn|
n− r

r = 0, 1, 2, · · ·

for which very few results are known apart from σ0 = γ and σ1 = 1
2 ln(2π) − γ

2 −
1
2 ([Y1], 

Corollary 9).1 More precisely, we show that for r ≥ 2,

σr = − 1
(r − 1)!

r−1∑
k=1

S1(r − 1, k)ζ ′(−k) + (−1)rbrγ − 1
(r − 1)!

r∑
k=1

S1(r − 1, k − 1)Bk

k2 ,

where S1(r, k) are (unsigned) Stirling numbers of the first kind and Bk are Bernoulli 
numbers (Proposition 2 and Example 1). We remark that for any positive integer r the 
sum of the negatively shifted series

∑
n≥0

(−1)nbn
n + r

= 1
r
−

∑
n≥1

|bn|
n + r

is the natural logarithm of an explicit rational number (Proposition 1 below), and there-
fore is always a period in the sense of Kontsevich and Zagier [KZ]. It is conjectured, 
however, that σ0 = γ is not a period, and it may likewise be reasonably supposed from 
the above formula that σr is not a period for any positive integer r.

1 Very recently, Blagouchine [B2] gave as well closed form expressions for σ2 and σ3.
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The above expression for σr admits the dual relation

ζ ′(−k) =
k+1∑
r=2

(−1)k−r(r − 1)!S2(k, r − 1)σr −
Bk+1

k + 1γ − Bk+1

(k + 1)2 ,

for k ≥ 1, where S2(k, r) are Stirling numbers of the second kind (Proposition 3 and 
Example 2). This decomposition of ζ ′(−k) on the “basis” of σr enables to deduce in §3
a new series representation for the quotient ζ(2k+1)/ζ(2k) which is stated in Theorem 1. 
More precisely, we show that for k ≥ 2,

ζ(2k + 1)
ζ(2k) = 4

B2k

[ ∞∑
n=2k+2

|bn|(n− 1)2Uk(n)
(n− 2) . . . (n− 2k − 1) − Ck

]
,

where Uk ∈ Z[x] is a monic polynomial of degree 2k − 3 and Ck is a rational constant. 
On the basis of advanced computations performed with PARI software, we conjecture 
that the constants Ck are always positive, and that the polynomials Uk are irreducible 
over Z[x]. In addition, we can prove the irreducibility of Uk for a presumably infinite set 
of k values. More precisely, we prove that if p = 2k + 1 is an odd prime which is not a 
Wolstenholme prime, then the polynomial Uk is irreducible in Z[x] (Theorem 2).

We conclude in §4 with a theoretical interpretation of these identities; we show that 
the sequence (σr) of shifted Mascheroni series is the dual sequence of the sequence 
of Ramanujan sums of hyperharmonic numbers. This enables us to give an explicit 
formula for the Ramanujan sum of hyperharmonic numbers in terms of known constants 
(Corollary 1); in particular the Ramanujan sum of the order q hyperharmonic numbers 
is a specific Q-linear combination of {1, γ, ln(2π)} ∪ {ζ ′(−k)}q−1

k=1, and this expression is 
consistent with the main result of [CGP].

1. Preliminaries

1.1. Bernoulli numbers and polynomials

The Bernoulli numbers (Bn) are defined by the generating function:

t

et − 1 =
∞∑

n=0

Bn

n! t
n

or by the equivalent recursion:

B0 = 1 and
n−1∑ Bk

k!(n− k)! = 0 for n ≥ 2.

k=0
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The first values are

B1 = −1
2 , B2 = 1

6 , B4 = − 1
30 , B6 = 1

42 ,

and

B2k+1 = 0 for k ≥ 1.

The Bernoulli numbers of the second kind (bn) are determined by the generating 
function:

t

ln(1 + t) =
∞∑

n=0
bnt

n

or by the equivalent recursion:

b0 = 1 and
n−1∑
k=0

(−1)kbk
n− k

= 0 for n ≥ 2.

The first values are

b0 = 1, b1 = 1
2 , b2 = − 1

12 , b3 = 1
24 , b4 = − 19

720 , b5 = 3
160 etc.

An explicit expression is given by

n!bn =
1∫

0

x(x− 1)(x− 2) . . . (x− n + 1) dx.

More generally, let B(z)
n (x) and b(z)n (x) be the order z Bernoulli polynomials of the 

first and second kind defined respectively by the generating functions

(
t

et − 1

)z

ext =
∞∑

n=0
B(z)

n (x) t
n

n!

and (
t

ln(1 + t)

)z

(1 + t)x =
∞∑

n=0
b(z)n (x)tn.

These are polynomials of degree n in x and of degree n in the order z. They satisfy the 
difference equations

B(z)
n (x + 1) −B(z)

n (x) = nB
(z−1)
n−1 (x), b(z)n (x + 1) − b(z)n (x) = b

(z)
n−1(x),
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and are linked together by Carlitz’s identities ([Ca], eqs. (2.11), (2.12))

n!b(z)n (x) = B(n−z+1)
n (x + 1), B(z)

n (x) = n!b(n−z+1)
n (x− 1).

In particular,

B(n)
n (1) = n!b(1)n (0) = n!bn.

When x = 0 or z = 1 that part of the notation is usually suppressed.

1.2. Stirling numbers

The (unsigned) Stirling numbers of the first kind S1(n, k) are defined by the generating 
function

[ln(1 + t)]k

k! =
∞∑

n=k

(−1)n−kS1(n, k) t
n

n! .

They also arise as the coefficients of the rising factorial

(x)n := x(x + 1) . . . (x + n− 1) =
n∑

k=0

S1(n, k)xk,

and S1(n, k) = 0 for n < k.
The Stirling numbers of the second kind S2(k, m) are defined by

S2(k,m) = 1
m!

m∑
j=0

(−1)m−j

(
m

j

)
jk,

and S2(k, m) = 0 if k < m.
The Stirling numbers of the first and second kind satisfy the difference equations

S1(n + 1, k) = S1(n, k − 1) + nS1(n, k), S2(n + 1, k) = S2(n, k − 1) + kS2(n, k),

the orthogonality relation

n∑
k=m

(−1)n−kS1(n, k)S2(k,m) =
n∑

k=m

(−1)n−kS2(n, k)S1(k,m) = δm,n

where δm,n is the Kronecker symbol, and the duality relation

fn =
n∑

m=0
(−1)n−mS1(n,m)gm ⇐⇒ gn =

n∑
m=0

S2(n,m)fm.
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1.3. Barnes multiple log gamma functions

For positive integer r, �(s) > r and �(a) > 0, let ζr(s, a) be the Barnes multiple zeta 
function of order r defined by

ζr(s, a) := 1
Γ(s)

∞∫
0

e−atts−1

(1 − e−t)r dt

=
∞∑

m=0

(
m + r − 1

m

)
(m + a)−s.

When r = 1 and a = 1 we have the Riemann zeta function ζ1(s, 1) = ζ(s). The Barnes 
multiple log gamma function Ψr(a) of order r is defined for �(a) > 0 by

Ψr(a) := ∂

∂s
ζr(s, a) |s=0 .

Let us remind (cf. [Y1], Corollary 4) that the function Ψr(a) admits the following 
expansion:

Ψr(a) =
∑
n≥0
n �=r

(−1)nB(n)
n (a)

n!(n− r) + (−1)rB(r)
r (a)

r! γ + (−1)r

r!

[
∂

∂s
B(r+s)

r (a)
]
s=0

.

2. Shifted Mascheroni series

We begin this section by disposing of the simpler case of the negatively shifted Masche-
roni series, which may be evaluated using only natural logarithms of integers.

Proposition 1. For all integers r ≥ 1 we have

∑
n≥1

|bn|
n + r

= 1
r

+
r∑

k=1

(−1)k
(
r

k

)
ln(k + 1).

Proof. We actually prove the more general assertion

∞∑
n=0

(−1)nbn(a− 1)
n + r

=
r∑

k=0

(−1)k−1
(
r

k

)
ln(k + a) (1)

for �(a) > 0 and positive integers r. The case r = 1 of this identity is given in ([Y1], 
Corollary 8). Assuming the statement is true for r, we use the difference equation

bn(x + 1) − bn(x) = bn−1(x)
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to compute
∞∑

n=0

(−1)nbn(a− 1)
n + r + 1 =

∞∑
n=0

(−1)nbn+1(a)
n + r + 1 −

∞∑
n=0

(−1)nbn+1(a− 1)
n + r + 1

=
∞∑

n=0

(−1)n−1bn(a)
n + r

−
∞∑

n=0

(−1)n−1bn(a− 1)
n + r

=
r∑

k=0

(−1)k−1
(
r

k

)
ln(k + a) −

r∑
k=0

(−1)k−1
(
r

k

)
ln(k + a + 1)

=
r∑

k=0

(−1)k−1
(
r

k

)
ln(k + a) −

r+1∑
k=1

(−1)k
(

r

k − 1

)
ln(k + a)

=
r+1∑
k=0

(−1)k−1
(
r + 1
k

)
ln(k + a),

which proves the statement for r + 1. By induction, the assertion holds for all positive 
integers r; the statement of the proposition is then obtained by taking a = 1. �
Remark 1. By integration of the well-known decomposition of the rational fraction 

1
x(x+1)...(x+r) , we deduce from (1) the following equivalent identity, for a > 0 and positive 
integers r,

∞∑
n=0

(−1)nbn(a− 1)
n + r

= (r − 1)!
a+1∫
a

dt

t(t + 1) . . . (t + r − 1) ,

which explicitly exhibits the negatively shifted Mascheroni series as periods in the sense 
of [KZ].

As observed in the introduction, it appears that the nature of the forward shifted 
series σr is not as simple as that of the negatively shifted Mascheroni series.

Proposition 2. For all nonnegative integers r, let

σr :=
∞∑

n=r+1
(−1)n−1 bn

n− r
=

∞∑
n=r+1

|bn|
n− r

,

then

σ0 = γ, σ1 = 1
2 (ln(2π) − γ − 1) ,

and for r ≥ 2,

σr = − 1
(r − 1)!

r−1∑
k=1

S1(r − 1, k)ζ ′(−k) + (−1)rbrγ + tr,
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with

tr = − 1
(r − 1)!

r∑
k=1

S1(r − 1, k − 1)Bk

k2 .

Proof. From Corollary 4 of [Y1] with a = 1 we have

Ψr(1) =
∑
n≥0
n �=r

(−1)nbn
n− r

+ (−1)rγbr + (−1)r

r!

[
∂

∂s
B(r+s)

r (1)
]
s=0

,

which implies

σr = −Ψr(1) + (−1)rγbr + tr

where tr ∈ Q, by means of the recursion

r−1∑
n=0

(−1)nbn
n− r

= 0.

We now make use of the formula

ζr(s, 1) =
∞∑

m=0

(
m + r − 1

r − 1

)
(m + 1)−s

([Y2], eq. (3.3)) for Barnes multiple zeta functions to write

ζr(s, 1) = 1
(r − 1)!

r−1∑
k=1

S1(r − 1, k)ζ(s− k),

from which it follows by differentiating at s = 0 that

Ψr(1) = 1
(r − 1)!

r−1∑
k=1

S1(r − 1, k)ζ ′(−k).

Therefore we have

σr = − 1
(r − 1)!

r−1∑
k=1

S1(r − 1, k)ζ ′(−k) + (−1)rγbr + tr

where

tr = (−1)r

r!

[
∂

∂s
B(r+s)

r (1)
]
s=0

= (−1)r

r!

r∑(
r

j

)
(−1)j+1Bj

j
B

(r)
r−j(1)
j=1



M.-A. Coppo, P.T. Young / Journal of Number Theory 169 (2016) 1–20 9
by means of ([Y1], eq. (3.13)). By Carlitz’ identities ([Ca], eqs. (2.11), (2.12)) and com-
parison of the generating functions, we have

B
(r)
r−j(1) = (r − j)!b(1−j)

r−j (0)

= (r − j)! · coefficient of tr−j in
(

log(1 + t)
t

)j−1

= (−1)r−j(r − j)!(j − 1)!S1(r − 1, j − 1)/(r − 1)!,

from which the stated formula for tr follows directly. �
Example 1.

σ2 = −ζ ′(−1) − 1
12γ − 1

24

σ3 = −1
2ζ

′(−1) − 1
2ζ

′(−2) − 1
24γ − 1

48

σ4 = −1
3ζ

′(−1) − 1
2ζ

′(−2) − 1
6ζ

′(−3) − 19
720γ − 13

960

σ5 = −1
4ζ

′(−1) − 11
24ζ

′(−2) − 1
4ζ

′(−3) − 1
24ζ

′(−4) − 3
160γ − 19

1920

σ6 = −1
5ζ

′(−1) − 5
12ζ

′(−2) − 7
24ζ

′(−3) − 1
12ζ

′(−4) − 1
120ζ

′(−5) − 863
60480γ − 5611

725760 .

This formula for σr may be inverted to produce the following formula for the deriva-
tives ζ ′(−k):

Proposition 3. For all integers k ≥ 1, ζ ′(−k) admits the following decomposition:

ζ ′(−k) =
k+1∑
r=2

(−1)k−r(r − 1)!S2(k, r − 1)σr −
Bk+1

k + 1γ − Bk+1

(k + 1)2 .

Proof. By the duality of Stirling numbers, since {S1(r − 1, k)} gives the connection 
coefficients passing from the sequence {ζ ′(−k)} to {−(r − 1)!(σr − (−1)rγbr − tr)}, the 
reverse connection is given by {(−1)k−r+1S2(k, r − 1)}, that is,

ζ ′(−k) =
k+1∑
r=2

(−1)k−rS2(k, r − 1)(r − 1)! (σr − (−1)rγbr − tr) .

By means of the a = 0 case of identity (5.9) in [Y3], the coefficient of γ in the right 
side of this expression is given by

(−1)k−1
k∑

r!S2(k, r)br+1 = (−1)kBk+1

k + 1 , (2)

r=1
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which equals −Bk+1/(k + 1) if k > 0. Therefore we may write

ζ ′(−k) =
k+1∑
r=2

(−1)k−rS2(k, r − 1)(r − 1)!σr −
Bk+1

k + 1
γ + uk,

where uk ∈ Q may be calculated as

uk =
k+1∑
r=2

(−1)k−r+1(r − 1)!S2(k, r − 1)tr

=
k+1∑
r=2

(−1)k−rS2(k, r − 1)
r∑

j=1
S1(r − 1, j − 1)Bj

j2

=
k+1∑
j=1

Bj

j2

k+1∑
r=j

(−1)k−rS2(k, r − 1)S1(r − 1, j − 1)

= −
k+1∑
j=1

Bj

j2 δj−1,k = − Bk+1

(k + 1)2

by the orthogonality of Stirling numbers. This completes the proof. �
Example 2.

ζ ′(−1) = −σ2 −
1
12γ − 1

24
ζ ′(−2) = σ2 − 2σ3

ζ ′(−3) = −σ2 + 6σ3 − 6σ4 + 1
120γ + 1

480
ζ ′(−4) = σ2 − 14σ3 + 36σ4 − 24σ5

ζ ′(−5) = −σ2 + 30σ3 − 150σ4 + 240σ5 − 120σ6 −
1

252γ − 1
1512

ζ ′(−6) = σ2 − 62σ3 + 540σ4 − 1560σ5 + 1800σ6 − 720σ7.

3. Rational series for the quotient ζ(2k + 1)/ζ(2k)

Proposition 3 shows that for even k the derivative ζ ′(−k) is a specific integer linear 
combination of the shifted Mascheroni series σr. In this section we use that proposition 
to deduce a new series representation for the quotient ζ(2k + 1)/ζ(2k).

Lemma. For k ≥ 1,

ζ ′(−2k) = −1
4B2k

ζ(2k + 1)
ζ(2k) .
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Proof. Differentiation of the functional equation

ζ(s) = 2(2π)s−1Γ(1 − s)ζ(1 − s) sin(πs2 )

leads to the relation

ζ ′(−2k)π2k = (−1)k (2k)!
22k+1 ζ(2k + 1)

which is equivalent to the stated relation by means of Euler’s formula

ζ(2k) = −1
2(2iπ)2k B2k

(2k)! . �
Theorem 1. For all integers k ≥ 1, there is a monic polynomial Pk ∈ Z[x] of degree 2k−1
and a rational constant Ck such that

ζ(2k + 1)
ζ(2k) = 4

B2k

[ ∞∑
n=2k+2

|bn|Pk(n)
(n− 2k − 1)2k

− Ck

]
,

and, moreover, the polynomial Pk(x) is divisible by (x − 1)2 for all k ≥ 2.

Proof. From Proposition 3, for k even and positive, we have

ζ ′(−k) =
k∑

r=1
(−1)r−1r!S2(k, r)σr+1

=
∑

n>k+1

|bn|
[

k∑
r=1

(−1)r−1r!S2(k, r)
n− r − 1

]
+ C̃k

with

C̃k =
k−1∑
r=1

(−1)r−1r!S2(k, r)
k+1∑

i=r+2

|bi|
i− r − 1 .

Considering the rational function

Qk(n) =
k∑

r=1

(−1)r−1r!S2(k, r)
n− r − 1 = − P̃k(n)

(n− 2) · · · (n− k − 1) ,

it is clear that the polynomial P̃k(n) is monic with integer coefficients and degree k− 1. 
To complete the proof we must show that when k is even and k > 2, P̃k(n) is divisible 
by (n − 1)2, which is equivalent to showing that Qk(1) = 0 and Q′

k(1) = 0.
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Since S2(n + 1, k) = S2(n, k − 1) + kS2(n, k), for any k > 0 we can compute

Qk(1) =
k∑

r=1
(−1)r−1(r − 1)!S2(k, r)

=
k∑

r=1
(−1)r−1((r − 1)!S2(k − 1, r − 1) + r!S2(k − 1, r))

=
k∑

r=1
(ck,r−1 − ck,r) = 0

as a telescoping sum, where ck,r = (−1)rr!S2(k − 1, r).
By the same identity of Stirling numbers, for any k > 0 we may compute

Q′
k(1) =

k∑
r=1

(−1)r−1(r − 1)!S2(k, r)
r

=
k∑

r=1

(−1)r−1(r − 1)!S2(k − 1, r − 1)
r

+
k∑

r=1
(−1)r−1(r − 1)!S2(k − 1, r)

= (−1)k−1Bk−1 + Qk−1(1) = (−1)k−1Bk−1,

by means of ([Y3], eq. (2.7)). Therefore for even k > 2, we have Q′
k(1) = 0, as desired.

Then, using the previous lemma, we obtain the stated relation by writing Ck := C̃2k
and Pk := P̃2k. �
Remark 2. From the proof above, the constant Ck may be evaluated by the explicit 
formula

Ck =
2k−1∑
m=1

(−1)m−1m!S2(2k,m)
2k+1∑

i=m+2

|bi|
i− 1 −m

=
2k−1∑
j=1

(−1)j−1j2k
2k−1∑
m=j

(
m

j

) 2k+1∑
i=m+2

|bi|
i− 1 −m

,

and the polynomial Pk is given by

Pk(x) = (x− 2k − 1)2k
2k∑

m=1

(−1)mm!S2(2k,m)
x− 1 −m

.

Example 3. a)

C1 = |b3| = 1 and P1(x) = x− 1,
24
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hence

ζ(3)
ζ(2) = 24

∞∑
n=4

|bn|(n− 1)
(n− 2)(n− 3) − 1.

b)

C2 = (|b3| + 1/2|b4| + 1/3|b5|) − 14(|b4| + 1/2|b5|) + 36|b5| = 113
480

and

P2(x) = (x− 1)2(x + 4),

hence

ζ(5)
ζ(4) = 113

4 − 120
∞∑

n=6

|bn|(n− 1)2(n + 4)
(n− 2)(n− 3)(n− 4)(n− 5) .

c)

C3 = (|b3| + 1/2|b4| + 1/3|b5| + 1/4|b6| + 1/5|b7|)

− 62(|b4| + 1/2|b5| + 1/3|b6| + 1/4|b7|) + 540(|b5| + 1/2|b6| + 1/3|b7|)

− 1560(|b6| + 1/2|b7|) + 1800|b7|

= 99325
36288

and

P3(x) = (x− 1)2(x3 + 39x2 + 38x− 120)

hence

ζ(7)
ζ(6) = 168

∞∑
n=8

|bn|(n− 1)2(n3 + 39n2 + 38n− 120)
(n− 2)(n− 3)(n− 4)(n− 5)(n− 6)(n− 7) − 99325

216 .

Remark 3. Kellner [Ke] recently gave a similar expression of the quotients ζ(2k+1)/ζ(2k)
as the values of a certain linear functional on a sequence of monic polynomials of de-
gree 2k. Our representation does not appear to be related to that of Kellner.

On the basis of advanced computations performed with PARI software, we raise the 
following conjectures.

Conjecture 1. The constants Ck are always positive.
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Conjecture 2. For all k ≥ 2, the polynomials Uk defined by Uk(x) := Pk(x)/(x − 1)2 are 
irreducible over Z[x].

The positivity of the constants Ck was verified numerically for k ≤ 100, and the 
irreducibility of Uk verified for k ≤ 50. In addition, we can prove the irreducibility of Uk

for a presumably infinite set of k values.
A Wolstenholme prime is a prime p for which 

(2p
p

)
≡ 2 (mod p4), or equivalently for 

which p3 divides the numerator of the (p − 1)-st harmonic number Hp−1, or equivalently 
for which p divides the numerator of the Bernoulli number Bp−3. The only known Wol-
stenholme primes are p = 16843 and p = 2124679; there are none other less than 109, 
although there are conjecturally infinitely many. Conversely, the Wolstenholme primes 
form a thin subsequence of the irregular primes, and one also conjectures that infinitely 
many primes are non-Wolstenholme.

Theorem 2. Suppose that p = 2k+1 is an odd prime which is not a Wolstenholme prime. 
Then the polynomial Uk is irreducible in Z[x].

Proof. We will show that the shifted polynomial Uk(t + 1) is a p-Eisenstein polynomial 
in Z[t] under the stated conditions. If p = 2k + 1 is a prime, then j2k ≡ 1 for 1 ≤ j < p

and therefore

m!S2(2k,m) ≡
m∑
j=1

(−1)m−j

(
m

j

)
≡ (−1)m−1 (mod p)

for 1 ≤ m ≤ 2k by the definition. Therefore

Pk(t + 1) = (t− 1) · · · (t− 2k)
2k∑
r=1

(−1)rr!S2(2k, r)
t− r

≡ (t− 1) · · · (t− 2k)
2k∑
r=1

−1
t− r

(mod pZ[t])

≡ t2k−1 (mod pZ[t]).

This last congruence follows from the partial fraction decomposition

t2k−1

(t− 1) · · · (t− 2k) =
2k∑
r=1

ar
t− r

in which ar = (−1)r
(2k
r

)
r2k/(2k)! ≡ −1 (mod pZ(p)). Therefore we deduce that the 

shifted polynomial Uk(t + 1) ≡ t2k−3 (mod pZ[t]). To complete the proof, we must show 
that the constant term Uk(1) of Uk(t +1), considered as an element of Z[t], is not divisible 
by p2.
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In a calculation similar to the proof of Theorem 1, we compute

Q′′
2k(1) = 2

2k∑
r=1

(−1)r(r − 1)!S2(2k, r)
r2

= 2
( 2k∑

r=1

(−1)r(r − 1)!S2(2k − 1, r − 1)
r2 +

2k∑
r=1

(−1)r(r − 1)!S2(2k − 1, r)
r

)

= 2
(
B

(2)
2k−1 −Q′

2k−1(1)
)

= 2
(
B

(2)
2k−1 −B2k−2

)
,

where B(2)
2k−1 denotes the second-order poly-Bernoulli number defined by Kaneko ([K], 

Theorem 1) and Qk(x) is as in the proof of Theorem 1. Kaneko also proved ([K], The-
orem 3(1)) that for odd n we have B(2)

n = (2 − n)Bn−1/4, and therefore we find that 
Q′′

2k(1) = −(2k + 1)B2k−2/2. Elementary calculus shows that Q′′
2k(1) = −P ′′

k (1)/(2k)!
and P ′′

k (1) = 2Uk(1), so we finally arrive at the formula

Uk(1) = (2k + 1)!B2k−2

4 .

If p = 2k + 1 is a prime, this gives Uk(1) = p!Bp−3/4, which is divisible by p2 if and 
only if p divides the numerator of Bp−3, that is, p is a Wolstenholme prime. Thus if p is 
a prime that is not a Wolstenholme prime, Uk(t + 1) is p-Eisenstein and therefore Uk is 
irreducible over Z. �
4. Link with the Ramanujan summation of divergent series

Definition (Dual sequences). Let a = (an)n≥0 be a sequence of complex numbers. The 
dual sequence of a is the sequence a∗ defined for all n ≥ 0 by

a∗n =
n∑

k=0

(−1)k
(
n

k

)
ak.

It is well known (cf. [S]) that (a∗)∗ = a, i.e.

an =
n∑

k=0

(−1)k
(
n

k

)
a∗k.

Definition (Hyperharmonic numbers). For all integers n ≥ 1 and q ≥ 0, let H(q)
n be the 

numbers defined recursively by

H(0)
n = 1

n
and H(q)

n =
n∑

j=1
H

(q−1)
j for q ≥ 1.

The sequence (H(q)
n )n≥1 is the sequence of hyperharmonic numbers of order q.
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Example 4.

H(1)
n =

n∑
j=1

1
j

= Hn = 1 + 1
2 + 1

3 + · · · + 1
n
,

and

H(2)
n =

n∑
j=1

Hj = (n + 1)Hn − n.

More generally, for q ≥ 2, H(q)
n admits the following expression ([Ka,DB]):

H(q)
n =

(
n + q − 1
q − 1

)
(Hn+q−1 −Hq−1)

= 1
(q − 1)!

[
q∑

k=1

S1(q, k)nk−1 (Hn −Hq−1) +
q−1∑
k=1

S1(q, k + 1)knk−1

]
. (3)

A general definition of the Ramanujan summation of a series was given in [CGP], §2.1: 
If x 
→ a(x) is an analytic function on the right half-plane �(x) > 0 satisfying certain 
growth conditions, the Ramanujan sum 

∑R
n≥1 a(n) is defined to equal the value R(1), 

where R is the unique analytic solution to the difference equation R(x) −R(x +1) = a(x)
satisfying 

∫ 2
1 R(t) dt = 0. Here, we use the following slightly restrictive definition which 

is more convenient for our purpose (cf. [CC2], §5.4, Definition 11).

Definition (Ramanujan summation). Let x 
→ a(x) be an analytic function of moderate 
growth on the right half-plane �(x) > 0, and let

D(a)(n + 1) =
n∑

j=0
(−1)j

(
n

j

)
a(j + 1) for all integers n ≥ 0.

Then the series 
∑

n≥0 |bn+1|D(a)(n +1) converges, and the Ramanujan sum of the series ∑
n≥1 a(n) is given by

R∑
n≥1

a(n) =
∞∑

n=1
|bn|D(a)(n).

Proposition 4. Let (Φq)q≥0 be the sequence defined by

Φq :=
R∑

n≥1
H(q)

n .

Then (Φq)q≥0 and (σr)r≥0 are dual sequences.
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Proof. Let R, S and D be respectively the operators of shifting, summation and finite dif-
ference on the space of sequences defined in [CC1]. Let us remind (cf. [CC1], Corollary 1) 
that the operator D is auto-inverse and leaves invariant the sequence H(0) := (H(0)

n )n≥1

i.e. D(D(a)) = a for all sequences and

D(H(0))(n) = H(0)
n = 1

n
.

Let us consider the r-times shifted sequence

Rr(H(0)) := (0, . . . , 0︸ ︷︷ ︸
r

, 1, 1
2 ,

1
3 , . . . ,

1
n− r

, . . .).

The relation DR = (I − S)D, and the invariance of H(0) by D, allows to write the 
following binomial expansion

DRr(H(0))(n) = (I − S)r(H(0))(n) =
r∑

q=0
(−1)k

(
r

q

)
Sq(H(0))(n) =

r∑
q=0

(−1)q
(
r

q

)
H(q)

n

since Sq(H(0))(n) = H
(q)
n by definition of the q order hyperharmonic numbers. Now, 

the basic properties of the Ramanujan’s summation (cf. [CGP], §2.2) and the expansion 
above enable to write the following identities

σr =
∞∑

n=1
|bn|Rr(H(0))(n)

=
R∑

n≥1
D

(
Rr(H(0))

)
(n)

=
R∑

n≥1

r∑
q=0

(−1)q
(
r

q

)
H(q)

n

=
r∑

q=0
(−1)q

(
r

q

) R∑
n≥1

H(q)
n

=
r∑

q=0
(−1)q

(
r

q

)
Φq,

and this shows that (σr) is the dual sequence of (Φq). �
Conversely, (Φq) is the dual sequence of (σr), and this leads to the following statement 

which is a direct consequence of Proposition 2 and Proposition 4.
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Corollary 1 (Ramanujan’s sum of the order q hyperharmonic numbers).

R∑
n≥1

H(q)
n =

q∑
r=0

(−1)r
(
q

r

)
σr

= −q

2 ln(2π) + γ

[
q∑

r=0

(
q

r

)
br

]
+ q

2

−
∑

1≤k<r≤q

(−1)r
(
q

r

)
1

(r − 1)!S1(r − 1, k)ζ ′(−k)

−
∑

2≤k≤r≤q

(−1)r
(
q

r

)
1

(r − 1)!S1(r − 1, k − 1)Bk

k2 .

Remark 4. The coefficient of γ in this expression may also be written more simply in 
term of the Bernoulli polynomials of the second kind as

q∑
r=0

(
q

r

)
br = bq(q).

Example 5.

R∑
n≥1

H(0)
n =

R∑
n≥1

1
n

= σ0 = γ

R∑
n≥1

H(1)
n =

R∑
n≥1

Hn = σ0 − σ1 = −1
2 ln(2π) + 3

2γ + 1
2

R∑
n≥1

H(2)
n = − ln(2π) + 23

12γ − ζ ′(−1) + 23
24

R∑
n≥1

H(3)
n = −3

2 ln(2π) + 55
24γ − 5

2ζ
′(−1) + 1

2ζ
′(−2) + 67

48

R∑
n≥1

H(4)
n = −2 ln(2π) + 1901

720 γ − 13
3 ζ ′(−1) + 3

2ζ
′(−2) − 1

6ζ
′(−3) + 1747

960 .

Remark 5. Candelpergher et al. have shown ([CGP], Corollary 1) that for k ≥ 1,

R∑
nkHn = γ

(
1 −Bk+1

k + 1

)
− 1

2 ln(2π) +
k∑ (

k

m

)
(−1)mζ ′(−m) + rk with rk ∈ Q.
n≥1 m=1
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Our expression of the Ramanujan sum of the order q hyperharmonic numbers as a 
Q-linear combination of {1, γ, ln(2π)} ∪{ζ ′(−k)}q−1

k=1 is linked to this result since summing 
identity (3) allows to write

q!Φq+1 =
q∑

k=0

S1(q + 1, k + 1)
R∑

n≥1
nkHn −

q∑
k=0

S1(q + 1, k + 1)
R∑

n≥1
nkHq

+
q∑

k=1

S1(q + 1, k + 1)k
R∑

n≥1
nk−1,

where 
∑R

n≥1 n
k = ζ(−k) + 1

k+1 (cf. [CGP], Example 1). The demonstration that the 
formula for Φq obtained in this way is in fact the same as the one in Corollary 1 requires 
some unusual identities involving Bernoulli and Stirling numbers such as

1
(q − 1)!

q∑
k=1

S1(q, k)(1 −Bk

k
) = bq(q).

This identity, which arises from equating the coefficients of γ in the two expressions, 
may be proved by means of the Stirling dual identity to (2), the identities in [Ca], and 
manipulations of the generating functions. We view our method to obtain 

∑R
n≥1 H

(q)
n as 

straightforward and more enlightening.
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