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Abstract We provide an overview of several series identities involving the Cauchy
numbers and various types of harmonic numbers, all of which are closely related to
certain alternating series with zeta values (or harmonic zeta values). We then give,
for each of these identities, an interpretation in terms of Ramanujan summation
with the hope that this unusual but interesting interpretation of still little-known
formulas could inspire further research on the topic.
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1 Introduction
A decade ago, we showed how Ramanujan’s method of summation of series could
be useful to generate a number of identities linking together Cauchy numbers (also
known as Bernoulli numbers of the second kind), harmonic numbers, and special
values of the Riemann zeta function at positive integers [4]. This powerful method
is based on a binomial transformation formula that relates the Cauchy numbers
to the Ramanujan summation of series [3, Theorem 18]. More recently, new series
identities were obtained by a refinement of the same method, thanks notably to
the consideration of a rather natural generalization of the harmonic numbers and
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new binomial identities (see [8] for details). Some special cases of these results
are discussed in Section 3. On the other hand, an alternative efficient method for
generating such identities, based on a similar binomial transformation formula, is
presented in Section 4. Combining these two methods and reversing the proce-
dure enables us to provide an interesting interpretation in terms of Ramanujan
summation of almost all the identities mentioned above, as explained in Section 5.

2 Reminder of some basic definitions
We first recall some basic facts about the Cauchy numbers [1, 2, 4, 10]. We then
introduce various types of harmonic numbers using the notations in [8].

If s(n, k) denotes the (signed) Stirling numbers of the first kind, the non-
alternating Cauchy numbers {λn}n≥1 can be defined explicitly as follows:

λn :=
∣∣∣∣∣

n∑
k=1

s(n, k)
k + 1

∣∣∣∣∣ (n ≥ 1) .

Alternatively, they can also be defined recursively by means of the relation
n−1∑
k=1

λk

k! (n− k) = 1
n

(n ≥ 2) .

The first ones are

λ1 = 1
2 , λ2 = 1

6 , λ3 = 1
4 , λ4 = 19

30 , λ5 = 9
4 , λ6 = 863

84 , etc.

The non-alternating Cauchy numbers λn are closely linked to the Bernoulli num-
bers of the second kind bn (first introduced by Jordan [9]) through the relation

λn = (−1)n−1n! bn = n! |bn| (n ≥ 1) .

Otherwise, the exponential generating function of the non-alternating Cauchy
numbers is given by

∞∑
n=1

λn
xn

n! = 1 + x

ln(1 − x) (|x| < 1) .

In particular, the series
∑
n≥1

λn

n! converges to 1.

The classical harmonic numbers {Hn}n≥1 are defined by

Hn =
n∑

j=1

1
j

= ψ(n+ 1) + γ ,
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where ψ = Γ′/Γ denotes the digamma function and γ = −ψ(1) is the Euler
constant [5].

For any integer k ≥ 1, the generalized harmonic numbers {H(k)
n }n≥1 are defined

by H(1)
n = Hn, and

H(k)
n =

n∑
j=1

1
jk

= (−1)k−1

(k − 1)!∂
k−1ψ(n+ 1) + ζ(k) (k ≥ 2) .

For any integer k ≥ 0, the Roman harmonic numbers {Hn,k}n≥1 are defined by
Hn,0 = 1, and

Hn,k =
∑

n≥j1≥···≥jk≥1

1
j1 j2 · · · jk

(k ≥ 1).

The Roman harmonic numbers1 can be expressed as polynomials in the generalized
harmonic numbers Hn, H

(2)
n , · · · , H(k)

n [4, Equation (18)], [11, Equation (29)]. More
precisely, Hn,1 = Hn, and

Hn,k = 1
k! (Hn)k + · · · + 1

k
H(k)

n = Pk(Hn, · · · , H(k)
n ) (k ≥ 2) ,

with

Pk(x1, · · · , xk) =
∑

n1+2n2+···+knk=k

1
n1!n2! · · ·nk!

(
x1

1

)n1 (x2

2

)n2

· · ·
(
xk

k

)nk

.

These polynomials are a (slight) modification of the Bell polynomials [4, 6]. A
natural generalization of the ordinary Roman harmonic numbers, noted H(r)

n,k, such
that H(r)

n,1 = H(r)
n was also introduced in [8]. It is given by the following expression

[8, Definition 2]:

H
(r)
n,k =

∑
n≥j1≥···≥jk≥1

1
j1 j2 · · · jr

k

(k ≥ 1, r ≥ 1) .

3 Overview of some known formulas
In this section, we enumerate a number of more or less known identities, starting
with the most classic examples and ending with the lesser-known, and make some
comments about them.

The formula ∞∑
n=1

λn

n!n =
∞∑

n=2

(−1)n

n
ζ(n) = γ (1)

1. Introduced three decades ago by S. Roman, G-C. Rota and D. Loeb (see [11] for historical
details).
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is a classical representation of γ dating back to Mascheroni and Euler which can
be slightly modified as follows:

∞∑
n=1

λn

(n+ 1)!n =
∞∑

n=2

(−1)n

n
{ζ(n) − 1} = γ + ln 2 − 1 . (2)

A non-trivial generalization of Equation (1) is given by
∞∑

n=1

λn

n!n2 = 1
2γ

2 + 1
2ζ(2) + γ1 −

∞∑
n=2

(−1)n

n
ζ(n+ 1) , (3)

where γ1 = lim
n→∞


n∑

j=1

ln j
j

− 1
2 ln2 n

 is the first Stieltjes constant. This nice iden-

tity is already known and appears in [7, 8].
The formula ∞∑

n=1

λn Hn

n!n = ζ(2) − 1 (4)

is a fairly known representation of ζ(2) = π2

6 . It is in fact a special case of the
more general formula

∞∑
n=1

λn Hn,k

n!n = ζ(k + 1) − 1
k

(k ≥ 1) ,

which is called Hermite’s formula in [4, 6]. A non-trivial generalization of Equation
(4) is given by

∞∑
n=1

λn H
(2)
n

n!n = ζ(3) + {γ + ln(2π) − 12 lnA)} ζ(2) +
∞∑

n=2

(−1)n

n
ζ(n+ 2) , (5)

where A = lim
n→∞

{ ∏n
k=1 k

k

n
n2
2 + n

2 + 1
12 e− n2

4

}
= exp

{ 1
12 − ζ ′(−1)

}
is the Glaisher-Kinkelin

constant2. This identity is a direct consequence of [8, Equation (19)] and of the
well-known relation:

ζ ′(2) = {γ + ln(2π) − 12 lnA} ζ(2) .

2. This constant plays a role similar to the Stirling constant
√

2π in the celebrated formula

√
2π = lim

n→∞

{
n!

nn+ 1
2 e−n

}
= exp {−ζ ′(0)} .
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Furthermore, Equation (5) admits a kind of reciprocal which is given by [8, Equa-
tion (18)]. More precisely, this is the following identity:

∞∑
n=1

λn Hn

n!n2 = {12 lnA− ln(2π)} ζ(2) − 1 −
∞∑

n=2

(−1)n

n
ζ(n+ 2) , (6)

which is another non-trivial generalization of Equation (4).
Remark 1. When k is greater than 2, no explicit formula, even conjectural, ap-

pears to be known for the sum
∞∑

n=1

λn H
(k)
n

n!n , nor for the reciprocal sum
∞∑

n=1

λn Hn

n!nk

(see however Remark 4 below where an interpretation of these sums in terms of
Ramanujan summations is given).

4 New supplementary formulas
The following binomial formula is nothing else than a variant of [2, Proposition
1] which is an elementary but efficient tool to generate several series identities
with Cauchy and harmonic numbers. For appropriate analytic functions f with
moderate growth, we have the relation:

∞∑
n=1

λn

n!

n∑
k=1

(−1)k−1
(
n

k

)
f(k) =

∫ 1

0
f(x) dx . (7)

For instance, using adequate functions f , we can easily derive from Equation (7)
the identities given by Equations (1) and (4) above (see [2, Example 4]). We now
present a number of interesting new identities that can also be deduced from this
method.

Applying Equation (7) with f(x) = ψ(x+ 1) + γ

x+ 1 , we can use the binomial
identity [1, Equation (9.32)]

Hn

n+ 1 =
n∑

k=1
(−1)k−1

(
n

k

)
Hk

k + 1 ,

to derive the following identity:
∞∑

n=1

λnHn

(n+ 1)! = 1
2ζ(2) + ln 2 − 1 +

∞∑
n=3

(−1)n

n

{
n∑

k=2
(ζ(k) − 1)

}
, (8)

which is a refinement of a formula previously given by Boyadzhiev [2, Example 5].
Moreover, subtracting Equation (8) from Equation (4) leads to the new identity:

∞∑
n=1

λn Hn

(n+ 1)!n = 1
2ζ(2) − ln 2 −

∞∑
n=3

(−1)n

n

{
n∑

k=2
(ζ(k) − 1)

}
, (9)
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which can be seen as a modification of Equation (4) quite similar to Equation (2).

Applying Equation (7) with f(x) = ψ(x+ 1) + γ

x
, we can use the binomial

identity [1, Equation (5.22)]

H(2)
n =

n∑
k=1

(−1)k−1
(
n

k

)
Hk

k
,

to obtain the following new identity:
∞∑

n=1

λn H
(2)
n

n! =
∫ 1

0

ψ(x+ 1) + γ

x
dx = ζ(2) −

∞∑
n=2

(−1)n

n
ζ(n+ 1) . (10)

Moreover, writing H(2)
n = H

(2)
n−1 + 1

n2 in the left member of Equation (10), we can
deduce from Equation (3) yet another interesting new identity:

∞∑
n=1

λn+1 H
(2)
n

(n+ 1)! = 1
2ζ(2) − 1

2γ
2 − γ1 . (11)

Remark 2. If ζH denotes the harmonic zeta function defined by

ζH(s) =
∞∑

n=1

Hn

ns
(Re(s) > 1) ,

the following nice identity [7, Equation (14)]:
∞∑

n=2

(−1)n

n
ζH(n) = 1

2ζ(2) + 1
2γ

2 + γ1 ,

allows us to rewrite Equation (11) above as follows:
∞∑

n=1

λn+1 H
(2)
n

(n+ 1)! = ζ(2) −
∞∑

n=2

(−1)n

n
ζH(n) . (12)

Remark 3. Very recently, using a more powerful method, Young [12] has established
the identity below which significantly generalizes Equation (10):

∞∑
n=1

λn H
(k)
n

n! = ζ(k) −
∞∑

n=2

(−1)n

n
ζ(n+ 1, 1, . . . , 1︸ ︷︷ ︸

k−2

) (k ≥ 2) .

However, it should be noted that this formula cannot be extended to the case
k = 1. Indeed, the series

∑
n≥1

λn Hn

n! is divergent since λn Hn

n! ∼ 1
n lnn .
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5 Interpretation as Ramanujan summation

If ∑R
n≥1 f(n) denotes the R-sum of the series ∑n≥1 f(n) (i.e. the sum of the series in

the sense of Ramanujan’s summation method, following the masterful exposition
in [3]), then, under certain appropriate conditions of growth and analyticity, we
can make use of the following binomial transformation formula [8, Equation (10)]:

∞∑
n=1

λn

n!n

n∑
k=1

(−1)k−1
(
n

k

)
kf(k) =

R∑
n≥1

f(n) . (13)

This formula allows us to give an interesting interpretation in terms of Ramanujan
summation of almost all the series identities mentioned above.

From the binomial identities
n∑

k=1
(−1)k−1

(
n

k

)
= 1 and

n∑
k=1

(−1)k−1
(
n

k

)
k

k + 1 = 1
n+ 1 ,

we derive respectively the formulas

∞∑
n=1

λn

n!n =
R∑

n≥1

1
n
, (14)

and
∞∑

n=1

λn

(n+ 1)!n =
R∑

n≥1

1
n+ 1 , (15)

whose expressions are given by Equations (1) and (2).
From the reciprocal binomial identities

n∑
k=1

(−1)k−1
(
n

k

)
Hk = 1

n
and

n∑
k=1

(−1)k−1
(
n

k

)
1
k

= Hn ,

we derive respectively the reciprocal formulas

∞∑
n=1

λn

n!n2 =
R∑

n≥1

Hn

n
, (16)

and
∞∑

n=1

λn Hn

n!n =
R∑

n≥1

1
n2 , (17)

whose expressions are given by Equations (3) and (4).
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From the reciprocal binomial identities
n∑

k=1
(−1)k−1

(
n

k

)
Hk

k
= H(2)

n and
n∑

k=1
(−1)k−1

(
n

k

)
H

(2)
k = Hn

n
,

we derive respectively the reciprocal formulas
∞∑

n=1

λn H
(2)
n

n!n =
R∑

n≥1

Hn

n2 , (18)

and
∞∑

n=1

λn Hn

n!n2 =
R∑

n≥1

H(2)
n

n
, (19)

whose expressions are given by Equations (5) and (6).
Remark 4. 1) Formulas (14) and (16) are two particular cases of the more gen-

eral relation [8, Equation (12)]:

∞∑
n=1

λn

n!nk
=

R∑
n≥1

Hn,k−1

n
(k ≥ 1) .

2) Formulas (17) and (18) are two particular cases of the more general relation
[8, Equation (11)]:

∞∑
n=1

λn H
(k)
n

n!n =
R∑

n≥1

Hn,k−1

n2 (k ≥ 1) .

3) Formula (19) is also a special case of the more general formula:

∞∑
n=1

λn Hn

n!nk
=

R∑
n≥1

H
(2)
n,k−1

n
(k ≥ 2) ,

where H(r)
n,k are the generalized Roman harmonic numbers introduced in [8].

From the the self-reciprocal binomial identity
n∑

k=1
(−1)k−1

(
n

k

)
Hk

k + 1 = Hn

n+ 1 ,

we derive the formula
∞∑

n=1

λn Hn

(n+ 1)!n =
R∑

n≥1

Hn

n(n+ 1) , (20)
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whose expression is given by Equation (9).
Applying Equation (13) to the function

f(x) = ψ(x+ 1) + γ − 1
x(x− 1) ,

whose values at positive integers are

f(n) = Hn − 1
n(n− 1) (n ≥ 2) ,

and
f(1) = ζ(2) − 1 = lim

x→1

ψ(x+ 1) + γ − 1
x(x− 1) ,

then, using the binomial identity
n∑

k=2
(−1)k−1

(
n

k

)
1 −Hk

k − 1 = nH(2)
n − n ,

which is the reciprocal of the identity [1, Equation (5.24)]:
n∑

k=1
(−1)k−1

(
n

k

)
kH

(2)
k = 1 −Hn

n− 1 (n ≥ 2) ,

allows us to deduce the nice formula
∞∑

n=1

λn H
(2)
n

n! = ζ(2) −
R∑

n≥1

Hn − 1
n(n− 1) , (21)

where the R-summed sequence in the right member of Equation (21) has the
value ζ(2) − 1 when n = 1; this is the interpretation of Equation (10) in terms of
Ramanujan summation. Furthermore, subtracting Equation (16) from Equation
(21) allows us to derive yet another formula:

∞∑
n=1

λn+1 H
(2)
n

(n+ 1)! = ζ(2) −
R∑

n≥1

Hn−1

n− 1 , (22)

where the R-summed sequence in the right member of Equation (22) has the
value ζ(2) when n = 1; this provides an interpretation of Equation (12) in terms
of Ramanujan summation.
Remark 5. Very recently, using a more sophisticated method, Young [12] has es-
tablished the relation below which is a substantial improvement of Equation (21):

∞∑
n=1

λn H
(k)
n

n! = ζ(k) −
R∑

n≥1

Hn,k−1 −Hn,k−2

n(n− 1) (k ≥ 2) .
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