A new class of identities involving Cauchy numbers, harmonic numbers and zeta values

Bernard Candelpergher • Marc-Antoine Coppo

Received: 26 October 2010 / Accepted: 1 December 2011 / Published online: 1 March 2012
© Springer Science+Business Media, LLC 2012

Abstract

Improving an old idea of Hermite, we associate to each natural number k a modified zeta function of order k. The evaluation of the values of these functions F_{k} at positive integers reveals a wide class of identities linking Cauchy numbers, harmonic numbers and zeta values.

Keywords Cauchy numbers • Bell polynomials • Harmonic numbers • Laplace-Borel transform • Mellin transform • Zeta values • Ramanujan summation • Hermite's formula

Mathematics Subject Classification (2000) 11B83 •11M41 • 33B15 • 40G99

1 Introduction

It has been well known since the second half of the nineteenth century that the Riemann zeta function may be represented by the (normalized) Mellin transform (cf. [14])

$$
\zeta(s)=\frac{1}{\Gamma(s)} \int_{0}^{+\infty} t^{s-1} \frac{e^{-t}}{1-e^{-t}} d t \quad \text { for } \Re(s)>1
$$

and from late works of Hermite (cf. [11]) that one also has

$$
\zeta(s)-\frac{1}{s-1}=\frac{1}{\Gamma(s)} \int_{0}^{+\infty} t^{s-1} \frac{e^{-t}}{1-e^{-t}}\left(\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!}\left(1-e^{-t}\right)^{n}\right) d t \quad \text { for } \Re(s) \geq 1
$$

[^0]where $\lambda_{1}=\frac{1}{2}$ and $\lambda_{n+1}=\int_{0}^{1} x(1-x) \cdots(n-x) d x$ are the (non-alternating) Cauchy numbers. ${ }^{1}$

Improving Hermite's idea, one may, more generally, consider Mellin transforms of type

$$
F(s)=\frac{1}{\Gamma(s)} \int_{0}^{+\infty} t^{s-1} \frac{e^{-t}}{1-e^{-t}} f\left(1-e^{-t}\right) d t \quad \text { with } f(z)=\sum_{n=1}^{\infty} \omega_{n} \frac{z^{n}}{n^{k}}
$$

for suitable sequences $\left(\omega_{n}\right)_{n \geq 1}$ of rational numbers. The simplest interesting case $\omega_{n}=1$ corresponds to the Arakawa-Kaneko zeta function and has been studied extensively in [8]. In this article, we investigate the case $\omega_{n}=\frac{\lambda_{n}}{n!}$, i.e., we study the function

$$
\begin{gathered}
F_{k}(s)=\frac{1}{\Gamma(s)} \int_{0}^{+\infty} t^{s-1} \frac{e^{-t}}{1-e^{-t}} f_{k}\left(1-e^{-t}\right) d t \\
\text { with } f_{k}(z)=\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!} \frac{z^{n}}{n^{k}}(k=0,1,2, \ldots)
\end{gathered}
$$

which is a priori defined in the half-plane $\mathfrak{R}(s) \geq 1$ but analytically continues in the whole complex s-plane (Theorem 7). We call this function F_{k} the modified zeta function of order k. An evaluation by two different methods of the values of F_{k} at positive integers q leads to a new class of identities linking Cauchy numbers, harmonic numbers, and zeta values. In the case $k=0$, Hermite's formula for ζ (cf. [7]) is regained, i.e.,

$$
F_{0}(q)=\zeta(q)-\frac{1}{q-1}=\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!n} P_{q-1}\left(H_{n}^{(1)}, H_{n}^{(2)}, \ldots, H_{n}^{(q-1)}\right)
$$

where the polynomials P_{m} are the modified Bell polynomials defined by the generating function

$$
\exp \left(\sum_{k=1}^{\infty} x_{k} \frac{z^{k}}{k}\right)=\sum_{m=0}^{\infty} P_{m}\left(x_{1}, \ldots, x_{m}\right) z^{m}
$$

evaluated at harmonic numbers $H_{n}^{(m)}=\sum_{j=1}^{n} \frac{1}{j^{m}}$. In the simplest higher case $k=1$, this extension of Hermite's formula leads to the following new relation (Theorem 10):

$$
\begin{aligned}
F_{1}(q) & =\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!n^{2}} P_{q-1}\left(H_{n}, H_{n}^{(2)}, \ldots, H_{n}^{(q-1)}\right) \\
& =\sum_{n=1}^{\infty} \frac{\log (n+1)}{n^{q}}+\gamma \zeta(q)+\zeta(q+1)-\sum_{n=1}^{\infty} \frac{H_{n}}{n^{q}}-\sum_{k=1}^{q-1} \frac{1}{k} \sum_{n=1}^{\infty} \frac{1}{(n+1)^{k} n^{q-k}},
\end{aligned}
$$

[^1]where $H_{n}=H_{n}^{(1)}$, and $\gamma=\lim _{n \rightarrow \infty}\left(H_{n}-\log n\right)$ is the Euler-Mascheroni constant.
For example, for $q=2$, since $P_{1}\left(H_{n}\right)=H_{n}$ and $\sum_{n=1}^{\infty} \frac{H_{n}}{n^{2}}=2 \zeta(3)$ (cf. [6, 7]), then the previous relation may be written
$$
F_{1}(2)=\sum_{n=1}^{\infty} \frac{\lambda_{n} H_{n}}{n!n^{2}}=\sum_{n=1}^{\infty} \frac{\log (n+1)}{n^{2}}+\gamma \zeta(2)-\zeta(3)-1,
$$
and this generalizes the known formula
$$
F_{0}(2)=\sum_{n=1}^{\infty} \frac{\lambda_{n} H_{n}}{n!n}=\zeta(2)-1 .
$$

The function F_{k} also has an interesting interpretation in terms of Ramanujan summation (cf. [3]) as underscored by Theorem 11. In particular, one shows the identity

$$
F_{k}(1)=\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!} \frac{1}{n^{k+1}}=\sum_{n \geq 1}^{\mathcal{R}} \frac{P_{k}\left(H_{n}, H_{n}^{(2)}, \ldots, H_{n}^{(k)}\right)}{n},
$$

where, in the right member, $\sum_{n \geq 1}^{\mathcal{R}}$ denotes the sum (in the sense of Ramanujan) of the divergent series. This raises a kind of reciprocity between $F_{k}(1)$ and $F_{0}(k+1)$.

2 Preliminaries

2.1 The non-alternating Cauchy numbers

Definition 1 The non-alternating Cauchy numbers (cf. [7, 12]) are the sequence of (positive) rational numbers $\left(\lambda_{n}\right)_{n \geq 1}$ defined by the exponential generating function

$$
\begin{equation*}
\frac{z}{\log (1-z)}+1=\sum_{n \geq 1} \frac{\lambda_{n}}{n!} z^{n} . \tag{1}
\end{equation*}
$$

Dividing by z and setting $z=1-e^{-t}$ and $t>0$, this relation may be rewritten

$$
\begin{equation*}
\frac{1}{1-e^{-t}}-\frac{1}{t}=\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!}\left(1-e^{-t}\right)^{n-1} \tag{2}
\end{equation*}
$$

From (1), one may easily deduce the following recursive relation:

$$
\sum_{j=1}^{n} \frac{\lambda_{j}}{j!(n-j+1)}-\frac{1}{n+1}=0 \quad \text { for } n \geq 1
$$

Example 1 The first non-alternating Cauchy numbers are

$$
\lambda_{1}=\frac{1}{2}, \quad \lambda_{2}=\frac{1}{6}, \quad \lambda_{3}=\frac{1}{4}, \quad \lambda_{4}=\frac{19}{30}, \quad \lambda_{5}=\frac{9}{4} .
$$

2.2 The modified Bell polynomials evaluated at harmonic numbers

Definition 2 The modified Bell polynomials (cf. [5, 7, 10]) are the polynomials P_{m} defined for all natural numbers m by $P_{0}=1$ and the generating function

$$
\begin{equation*}
\exp \left(\sum_{k \geq 1} x_{k} \frac{z^{k}}{k}\right)=1+\sum_{m \geq 1} P_{m}\left(x_{1}, \ldots, x_{m}\right) z^{m} \tag{3}
\end{equation*}
$$

The general explicit expression for P_{m} is

$$
P_{m}\left(x_{1}, \ldots, x_{m}\right)=\sum_{k_{1}+2 k_{2}+3 k_{3}+\cdots=m} \frac{1}{k_{1}!k_{2}!k_{3}!\cdots}\left(\frac{x_{1}}{1}\right)^{k_{1}}\left(\frac{x_{2}}{2}\right)^{k_{2}}\left(\frac{x_{3}}{3}\right)^{k_{3}} \cdots
$$

One may also compute recursively the polynomials P_{m} by means of the following relation:

$$
m P_{m}\left(x_{1}, \ldots, x_{m}\right)=\sum_{k=1}^{m} x_{k} P_{m-k}\left(x_{1}, \ldots, x_{m-k}\right) \quad(m \geq 1)
$$

Proposition 1 For all natural numbers m, and each integer $n \geq 1$,

$$
\begin{equation*}
\int_{0}^{+\infty} e^{-t}\left(1-e^{-t}\right)^{n-1} \frac{t^{m}}{m!} d t=\frac{P_{m}\left(H_{n}, \ldots, H_{n}^{(m)}\right)}{n} \tag{4}
\end{equation*}
$$

with

$$
H_{n}^{(m)}=\sum_{j=1}^{n} \frac{1}{j^{m}} \quad \text { and } \quad H_{n}=H_{n}^{(1)}
$$

Proof One starts from the classical Euler relation (cf. [14])

$$
\mathrm{B}(a, b)=\int_{0}^{1} u^{a-1}(1-u)^{b-1} d u=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)},
$$

and substitute $u=e^{-t}, a=1-z$, and $b=n+1$; then one obtains

$$
\int_{0}^{+\infty} e^{-t}\left(1-e^{-t}\right)^{n} e^{t z} d t=\frac{n!}{(1-z)(2-z) \cdots(n+1-z)}
$$

Moreover, one has

$$
\begin{aligned}
\frac{n!}{(1-z)(2-z) \cdots(n+1-z)} & =\frac{n!}{(n+1)!} \times \prod_{j=0}^{n}\left(1-\frac{z}{j+1}\right)^{-1} \\
& =\frac{1}{(n+1)} \times \exp \left(-\sum_{j=0}^{n} \log \left(1-\frac{z}{j+1}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{(n+1)} \times \exp \left(\sum_{j=0}^{n} \sum_{k=1}^{\infty} \frac{z^{k}}{k(j+1)^{k}}\right) \\
& =\frac{1}{(n+1)} \exp \left(\sum_{k=1}^{\infty} H_{n+1}^{(k)} \frac{z^{k}}{k}\right) \\
& =\sum_{m=0}^{\infty} \frac{P_{m}\left(H_{n+1}^{(1)}, \ldots, H_{n+1}^{(m)}\right)}{n+1} z^{m} \quad \text { (by (3)). }
\end{aligned}
$$

Thus (4) results by identification of the term in z^{m}.

Example 2 For small values of m, one has

$$
\begin{aligned}
& P_{1}\left(H_{n}\right)=H_{n}, P_{2}\left(H_{n}, H_{n}^{(2)}\right)=\frac{\left(H_{n}\right)^{2}}{2}+\frac{H_{n}^{(2)}}{2}, \\
& P_{3}\left(H_{n}, H_{n}^{(2)}, H_{n}^{(3)}\right)=\frac{\left(H_{n}\right)^{3}}{6}+\frac{H_{n} H_{n}^{(2)}}{2}+\frac{H_{n}^{(3)}}{3} .
\end{aligned}
$$

2.3 The Laplace-Borel transformation

We consider the vector space E of complex-valued functions $f \in \mathcal{C}^{1}(] 0,+\infty[)$ such that

$$
\text { for all } \left.\varepsilon>0 \text {, there exists } C_{\varepsilon}>0 \quad \text { such that } \quad|f(t)| \leq C_{\varepsilon} e^{\varepsilon t} \quad \text { for all } t \in\right] 0,+\infty[\text {. }
$$

In particular, a function $f \in E$ satisfies the following two properties:
(a) for all x with $\mathfrak{R}(x)>0, t \mapsto e^{-x t} f(t)$ is integrable on $] 0,+\infty[$,
(b) for all β with $0<\beta<1, t \mapsto|f(t)| \frac{1}{t^{\beta}}$ is integrable on $] 0,1[$.

We recall now some basic properties (cf. [13]) of the Laplace transformation in this frame which are appropriate for our purpose.

Definition 3 Let f be a function in E. The Laplace transform $\mathcal{L}(f)$ of f is defined by

$$
\mathcal{L}(f)(x)=\int_{0}^{+\infty} e^{-x t} f(t) d t \quad \text { for } \mathfrak{R}(x)>0
$$

Proposition 2 (cf. [13]) Let $\mathcal{E}=\mathcal{L}(E)$ be the image of E under \mathcal{L}. If a is a function in \mathcal{E}, then
(a) a is an analytic function of x in the half-plane $\mathfrak{R}(x)>0$,
(b) $a(x) \rightarrow 0$ when $\mathfrak{R}(x) \rightarrow+\infty$,
(c) $\mathcal{L}: E \rightarrow \mathcal{E}$ is an isomorphism.

Definition 4 Let $a \in \mathcal{E}$. The Borel transform of a is the unique function $\widehat{a} \in E$ such that $a=\mathcal{L}(\widehat{a})$. One has the two reciprocal formulas

$$
\widehat{a}(t)=\frac{1}{2 i \pi} \int_{c-i \infty}^{c+i \infty} e^{z t} a(z) d z \quad \text { for all } c>0 \text { and } t>0
$$

and

$$
a(x)=\int_{0}^{+\infty} e^{-x t} \widehat{a}(t) d t \quad \text { for } \mathfrak{R}(x)>0
$$

Definition 5 Let f and g be two functions in E. The convolution product $f * g$ of f and g is the function defined for all $t>0$ by

$$
(f * g)(t)=\int_{0}^{t} f(u) g(t-u) d u
$$

Proposition 3 (cf. [13]) If $f \in E$ and $g \in E$, then $f * g \in E$ and

$$
\begin{equation*}
\mathcal{L}(f * g)=\mathcal{L}(f) \mathcal{L}(g) . \tag{5}
\end{equation*}
$$

Hence, if $a \in \mathcal{E}$ and $b \in \mathcal{E}$ then $a b \in \mathcal{E}$ since $a b=\mathcal{L}(\widehat{a} * \widehat{b})$.

Theorem 1 Let a be a function in \mathcal{E}. Then the series

$$
\sum_{n \geq 1} \frac{\lambda_{n}}{n!} \int_{0}^{+\infty} e^{-t}\left(1-e^{-t}\right)^{n-1} \widehat{a}(t) d t
$$

converges and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!} \int_{0}^{+\infty} e^{-t}\left(1-e^{-t}\right)^{n-1} \widehat{a}(t) d t=\int_{0}^{+\infty}\left(\frac{1}{1-e^{-t}}-\frac{1}{t}\right) e^{-t} \widehat{a}(t) d t \tag{6}
\end{equation*}
$$

Proof By (2)

$$
\int_{0}^{+\infty}\left(\frac{1}{1-e^{-t}}-\frac{1}{t}\right) e^{-t} \widehat{a}(t) d t=\int_{0}^{+\infty} \sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!}\left(1-e^{-t}\right)^{n-1} e^{-t} \widehat{a}(t) d t
$$

In the right member, the order of $\int_{0}^{+\infty}$ and $\sum_{n=1}^{\infty}$ may be interchanged since

$$
\begin{aligned}
\int_{0}^{+\infty} \sum_{n=1}^{\infty}\left|\frac{\lambda_{n}}{n!}\left(1-e^{-t}\right)^{n-1} e^{-t} \widehat{a}(t)\right| d t & =\int_{0}^{+\infty} \sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!}\left(1-e^{-t}\right)^{n-1} e^{-t}|\widehat{a}(t)| d t \\
& =\int_{0}^{+\infty}\left(\frac{1}{1-e^{-t}}-\frac{1}{t}\right) e^{-t}|\widehat{a}(t)| d t
\end{aligned}
$$

and the convergence of this last integral follows from the assumption that $a \in \mathcal{E}$.

Example 3 Let $a(x)=\frac{1}{x^{s}}$ with $\mathfrak{R}(s) \geq 1$. Then $a \in \mathcal{E}$ and $\widehat{a}(t)=\frac{t^{s-1}}{\Gamma(s)}$. Hence

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!} \int_{0}^{+\infty} e^{-t}\left(1-e^{-t}\right)^{n-1} \frac{t^{s-1}}{\Gamma(s)} d t & =\frac{1}{\Gamma(s)} \int_{0}^{+\infty} e^{-t}\left(\frac{1}{1-e^{-t}}-\frac{1}{t}\right) t^{s-1} d t \\
& = \begin{cases}\gamma & \text { if } s=1 \\
\zeta(s)-\frac{1}{s-1} & \text { if } s \neq 1\end{cases}
\end{aligned}
$$

where γ refers to the Euler constant. In particular, since

$$
\int_{0}^{+\infty} e^{-t}\left(1-e^{-t}\right)^{n-1} d t=\frac{1}{n} \quad \text { for each integer } n \geq 1
$$

then

$$
\gamma=\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!} \frac{1}{n} .
$$

3 The operator D

Proposition 4 If $a \in \mathcal{E}$, then the integral

$$
\int_{0}^{+\infty} e^{-t}\left(1-e^{-t}\right)^{x-1} \widehat{a}(t) d t
$$

converges for all x with $\mathfrak{R}(x)>0$.
Proof If $a \in \mathcal{E}$ and $\mathfrak{R}(x)>0$, we may write for $t \in] 0,+\infty[$,

$$
\left|e^{-t}\left(1-e^{-t}\right)^{x-1} \widehat{a}(t)\right| \leq e^{-t} e^{(1-\Re(x))\left(-\log \left(1-e^{-t}\right)\right)}|\widehat{a}(t)|
$$

The convergence when $t \rightarrow+\infty$ results from the inequality

$$
e^{-t} e^{(1-\Re(x))\left(-\log \left(1-e^{-t}\right)\right)}|\widehat{a}(t)| \leq \frac{e^{-t}}{1-e^{-t}}|\widehat{a}(t)| \leq 2 e^{-t}|\widehat{a}(t)| \quad(\text { for } t \geq \log 2)
$$

The convergence when $t \rightarrow 0$ results from the inequality

$$
e^{(1-\Re(x))\left(-\log \left(1-e^{-t}\right)\right)} \leq \begin{cases}1 & \text { if } \Re(x) \geq 1, \\ \frac{1}{\left(1-e^{-t}\right)^{(1-\Re(x))}} & \text { if } 0<\Re(x)<1\end{cases}
$$

since the function $t \mapsto e^{-t}|\widehat{a}(t)| \frac{1}{\left(1-e^{-t}\right)^{\beta}}$ is integrable at 0 for $0<\beta<1$ by the definition of E (note that $\left(1-e^{-t}\right)^{-\beta} \leq(k t)^{-1}$ for small enough t).

Definition 6 Let a be a function in \mathcal{E}. We call $D(a)$ the function defined for all x with $\Re(x)>0$ by

$$
\begin{equation*}
D(a)(x)=\int_{0}^{+\infty} e^{-t}\left(1-e^{-t}\right)^{x-1} \widehat{a}(t) d t \tag{7}
\end{equation*}
$$

Remark 1

(a) By Theorem 1, the series $\sum_{n \geq 1} \frac{\lambda_{n}}{n!} D(a)(n)$ converges and its sum is given by formula (6).
(b) The values of $D(a)$ at positive integers may be computed directly without recourse to \widehat{a}. The development of $\left(1-e^{-t}\right)^{n}$ by the binomial theorem gives

$$
\begin{equation*}
D(a)(n+1)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} a(k+1) \quad \text { for all integer } n \geq 0 \tag{8}
\end{equation*}
$$

Definition 7 We call Λ the C^{1}-diffeomorphism of \mathbb{R}_{+}defined by $\Lambda(u)=-\log (1-$ e^{-u}). In particular, it is important to note that Λ is involutive:

$$
\Lambda^{-1}=\Lambda
$$

Theorem 2 Let a be a function in \mathcal{E}. Then the function $D(a) \in \mathcal{E}$ and, moreover, verifies the relation

$$
\begin{equation*}
\widehat{D(a)}=\widehat{a}(\Lambda), \tag{9}
\end{equation*}
$$

where $\widehat{a}(\Lambda)$ denotes $\widehat{a} \circ \Lambda$.
Proof The change of variables $t=\Lambda(u)$ in (7) gives

$$
D(a)(x)=\int_{0}^{+\infty} e^{-x u} \widehat{a}(\Lambda(u)) d u \quad \text { for } \mathfrak{R}(x)>0
$$

Thus, $D(a)=\mathcal{L}(\widehat{a}(\Lambda))$. It remains to prove that $D(a) \in \mathcal{E}$. One has only to check that the function $\widehat{a}(\Lambda)$ is in E. This function being in $\mathcal{C}^{1}(] 0,+\infty[)$, it suffices to show that for all $\varepsilon>0$, the function $u \mapsto e^{-\varepsilon u}\left|\widehat{a}\left(-\log \left(1-e^{-u}\right)\right)\right|$ is bounded on $] 0,+\infty[$. This results from the existence of $C_{\varepsilon}>0$ such that

$$
\left.\left|\widehat{a}\left(-\log \left(1-e^{-u}\right)\right)\right| \leq C_{\varepsilon}\left(1-e^{-u}\right)^{\varepsilon} \quad \text { for all } u \in\right] 0,+\infty[\text {. }
$$

Example 4 Let $a(x)=\frac{1}{x^{s}}$ with $\mathfrak{R}(s) \geq 1$. Then $\widehat{a}(t)=\frac{t^{s-1}}{\Gamma(s)}$. Thus, by (9),

$$
\begin{equation*}
D\left(\frac{1}{x^{s}}\right)=\mathcal{L}\left(\frac{\Lambda^{s-1}}{\Gamma(s)}\right) \tag{10}
\end{equation*}
$$

and if $s=m+1$ with m a natural number and $n \geq 1$, then by (4),

$$
\begin{equation*}
D\left(\frac{1}{x^{m+1}}\right)(n)=\frac{P_{m}\left(H_{n}, \ldots, H_{n}^{(m)}\right)}{n} . \tag{11}
\end{equation*}
$$

Remark 2 Theorem 2 may be summarized in the following diagram:

where $\Lambda^{\star}(\widehat{a})=\widehat{a}(\Lambda)$. The algebraic properties of D are summed up in the following theorem.

Theorem 3 The operator D is an automorphism of \mathcal{E} which verifies $D=D^{-1}$ and lets the function $x \mapsto \frac{1}{x}$ invariant.

Proof We can write $D=\mathcal{L} \Lambda^{\star} \mathcal{L}^{-1}$ and Λ^{\star} is an automorphism of E, which verifies $\Lambda^{\star}=\left(\Lambda^{\star}\right)^{-1}$ since $\Lambda=\Lambda^{-1}$. Furthermore,

$$
D\left(\frac{1}{x}\right)=\mathcal{L}(1)=\frac{1}{x} .
$$

4 The harmonic product

Our aim is to define the harmonic product of two functions a and b in \mathcal{E} as being the unique function f of \mathcal{E} such that

$$
D(a)(x) \cdot D(b)(x)=D(f)(x)
$$

Thus, we have to establish that such a function exists and is unique. In order to do this, we introduce first a Λ-convolution product of two functions in E.

4.1 The Λ-convolution product

Proposition 5 If a and b are in \mathcal{E}, then $\widehat{a}(\Lambda) * \widehat{b}(\Lambda) \in E$.
Proof From the definition of the convolution product, one may write

$$
(\widehat{a}(\Lambda) * \widehat{b}(\Lambda))(t)=\int_{0}^{t} \widehat{a}(\Lambda(u)) \widehat{b}(\Lambda(t-u)) d u
$$

Now, for all $\varepsilon>0$, there exists $C_{\varepsilon}>0$ and $D_{\varepsilon}>0$ such that

$$
\begin{aligned}
& \left|\widehat{a}\left(-\log \left(1-e^{-u}\right)\right)\right| \leq C_{\varepsilon}\left(1-e^{-u}\right)^{\varepsilon} \quad \text { and } \\
& \left.\left|\widehat{b}\left(-\log \left(1-e^{-(t-u)}\right)\right)\right| \leq D_{\varepsilon}\left(1-e^{-(t-u)}\right)^{\varepsilon} \quad \text { for all } u \in\right] 0,+\infty[
\end{aligned}
$$

It follows that

$$
|(\widehat{a}(\Lambda) * \widehat{b}(\Lambda))(t)| \leq C_{\varepsilon} D_{\varepsilon} \int_{0}^{t}\left(1-e^{-u}\right)^{\varepsilon}\left(1-e^{-(t-u)}\right)^{\varepsilon} d u
$$

One has also

$$
\begin{aligned}
& \int_{0}^{t}\left(1-e^{-u}\right)^{\varepsilon}\left(1-e^{-(t-u)}\right)^{\varepsilon} d u \\
&=\left(1-e^{-t}\right)^{1+2 \varepsilon} \int_{0}^{1} u^{\varepsilon}(1-u)^{\varepsilon} \frac{1}{\left(1-\left(1-e^{-t}\right) u\right)^{\varepsilon+1}} d u \\
& \leq\left(1-e^{-t}\right)^{1+2 \varepsilon} \int_{0}^{1} \frac{1}{\left(1-\left(1-e^{-t}\right) u\right)^{\varepsilon+1}} d u \\
& \leq\left(1-e^{-t}\right)^{1+2 \varepsilon} \frac{e^{t \varepsilon}-1}{\left(1-e^{-t}\right) \varepsilon} \\
& \quad \leq\left(1-e^{-t}\right)^{2 \varepsilon} \frac{e^{t \varepsilon}-1}{\varepsilon} \leq \frac{e^{t \varepsilon}}{\varepsilon} .
\end{aligned}
$$

Hence, $|(\widehat{a}(\Lambda) * \widehat{b}(\Lambda))(t)| \leq C_{\varepsilon} D_{\varepsilon} \frac{e^{t \varepsilon}}{\varepsilon}$, which proves that this function belongs to E as required.

Definition 8 Let a and b be two functions in \mathcal{E}. The Λ-convolution product $\widehat{a} \circledast \widehat{b}$ of \widehat{a} and \widehat{b} is defined by

$$
\widehat{a} \circledast \widehat{b}=\Lambda^{\star}\left(\Lambda^{\star}(\widehat{a}) * \Lambda^{\star}(\widehat{b})\right),
$$

or equivalently (since $\left.\Lambda^{\star}=\left(\Lambda^{\star}\right)^{-1}\right)$

$$
(\widehat{a} \circledast \widehat{b})(\Lambda)=\widehat{a}(\Lambda) * \widehat{b}(\Lambda)
$$

Remark 3 The Λ-convolution product inherits the algebraic properties of the ordinary convolution product, i.e., bilinearity, commutativity, and associativity.

4.2 The harmonic product

Definition 9 Let a and b be two functions in \mathcal{E}. The harmonic product $a \bowtie b$ of a and b is defined by

$$
a \bowtie b=\mathcal{L}(\widehat{a} \circledast \widehat{b}) \in \mathcal{E} .
$$

This construction may be summarized in the following diagram:

Remark 4 The harmonic product inherits the properties of the Λ-convolution product: it is bilinear, commutative, and associative.

Theorem 4 Let a and b be in \mathcal{E}. Then,

$$
\begin{equation*}
D(a \bowtie b)=D(a) D(b), \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
D(a b)=D(a) \bowtie D(b) . \tag{13}
\end{equation*}
$$

Proof One knows from Theorem 2 that

$$
D=\mathcal{L} \Lambda^{\star} \mathcal{L}^{-1} .
$$

Hence

$$
D(a \bowtie b)=\mathcal{L} \Lambda^{\star} \mathcal{L}^{-1}(a \bowtie b)=\mathcal{L} \Lambda^{\star}(\widehat{a} \circledast \widehat{b})=\mathcal{L}\left(\Lambda^{\star}(\widehat{a}) * \Lambda^{\star}(\widehat{b})\right),
$$

and it follows from (5) and (9) that

$$
\mathcal{L}\left(\Lambda^{\star}(\widehat{a}) * \Lambda^{\star}(\widehat{b})\right)=\mathcal{L}\left(\Lambda^{\star}(\widehat{a})\right) \mathcal{L}\left(\Lambda^{\star}(\widehat{b})\right)=D(a) D(b)
$$

which proves (12). Moreover, (12) enables us to write

$$
\left.D(D(a) \bowtie D(b))=D^{2}(a) D^{2}(b)=a b \quad \text { (since } D=D^{-1}\right)
$$

and so

$$
D(a b)=D^{2}(D(a) \bowtie D(b))=D(a) \bowtie D(b)
$$

which proves (13).
Remark 5 The values of $(a \bowtie b)(n)$ may be computed without recourse to \widehat{a} and \widehat{b}. By elementary transformations, it can be shown that

$$
(a \bowtie b)(n+1)=\int_{0}^{+\infty} \int_{0}^{+\infty}\left(e^{-t-s}\right)\left(e^{-t}+e^{-s}-e^{-t} e^{-s}\right)^{n} \widehat{a}(t) \widehat{b}(s) d t d s
$$

Hence, if the numbers $C_{n}^{k, l}$ are defined by

$$
(X+Y-X Y)^{n}=\sum_{\substack{0 \leq k \leq n, 0 \leq l \leq n}} C_{n}^{k, l} X^{k} Y^{l},
$$

then one has the following explicit formula:

$$
(a \bowtie b)(n+1)=\sum_{\substack{0 \leq k \leq n, 0 \leq l \leq n}} C_{n}^{k, l} a(k+1) b(l+1) .
$$

For small values of n, this enables one to compute

$$
(a \bowtie b)(1)=a(1) b(1),
$$

$$
\begin{aligned}
(a \bowtie b)(2)= & a(2) b(1)+a(1) b(2)-a(2) b(2), \\
(a \bowtie b)(3)= & a(3) b(1)+a(1) b(3)+2 a(2) b(2)-2 a(3) b(2) \\
& -2 a(2) b(3)+a(3) b(3) .
\end{aligned}
$$

Theorem 5 Let

$$
\left(\frac{1}{x}\right)^{\bowtie k}=\underbrace{\frac{1}{x} \bowtie \frac{1}{x} \bowtie \cdots \bowtie \frac{1}{x}}_{k} \quad(k=1,2,3, \ldots),
$$

where $\frac{1}{x}$ denotes (improperly) the function $x \mapsto \frac{1}{x}$. Then, for all natural numbers $m \geq 0$,

$$
\left(\frac{1}{x}\right)^{\bowtie(m+1)}=D\left(\frac{1}{x^{m+1}}\right) .
$$

In particular, for all integers $n \geq 1$,

$$
\begin{equation*}
\left(\frac{1}{x}\right)^{\bowtie(m+1)}(n)=\frac{P_{m}\left(H_{n}, \ldots, H_{n}^{(m)}\right)}{n} . \tag{14}
\end{equation*}
$$

Proof By (13) we have

$$
\begin{aligned}
D\left(\frac{1}{x^{m+1}}\right) & =D(\underbrace{\frac{1}{x} \cdots \frac{1}{x}}_{m+1})=\left(D\left(\frac{1}{x}\right)\right)^{\bowtie(m+1)} \\
& =\left(\frac{1}{x}\right)^{\bowtie(m+1)} \quad \text { since } D\left(\frac{1}{x}\right)=\frac{1}{x} .
\end{aligned}
$$

Thus, (14) results from (11).

4.3 The harmonic property

The following theorem explains the main reason why the harmonic product is called 'harmonic'.

Theorem 6 Let $a \in \mathcal{E}$. Then

$$
\frac{1}{x} \bowtie a=\frac{A(x)}{x},
$$

where A denotes the function defined for $\Re(x)>0$ by

$$
A(x)=\int_{0}^{+\infty} \frac{e^{-x t}-1}{e^{-t}-1} e^{-t \widehat{a}(t) d t}
$$

In particular, for each integer $n \geq 1$,

$$
\begin{equation*}
\left(\frac{1}{x} \bowtie a\right)(n)=\frac{A(n)}{n}=\frac{1}{n}\left(\sum_{k=1}^{n} a(k)\right) . \tag{15}
\end{equation*}
$$

Proof By the definition of the harmonic product, one has

$$
\frac{1}{x} \bowtie a=\mathcal{L}(1 \circledast \widehat{a}) .
$$

Now

$$
(1 \circledast \widehat{a})(\Lambda(u))=(1 * \widehat{a}(\Lambda))(u)=\int_{0}^{u} \widehat{a}(\Lambda(v)) d v=-\int_{+\infty}^{\Lambda(u)} \widehat{a}(t) \frac{e^{-t}}{1-e^{-t}} d t
$$

(by the change of variables $t=\Lambda(v)$). Hence,

$$
(1 \circledast \widehat{a})(u)=\int_{u}^{+\infty} \widehat{a}(t) \frac{e^{-t}}{1-e^{-t}} d t
$$

Thus, we have

$$
\begin{aligned}
\frac{1}{x} \bowtie a & =\int_{0}^{+\infty} e^{-x u}\left(\int_{u}^{+\infty} \widehat{a}(t) \frac{e^{-t}}{1-e^{-t}} d t\right) d u \\
& =\int_{0}^{+\infty}\left(\int_{0}^{t} e^{-x u} d u\right) \widehat{a}(t) \frac{e^{-t}}{1-e^{-t}} d t \\
& =\frac{1}{x} \int_{0}^{+\infty}\left(1-e^{-x t}\right) \widehat{a}(t) \frac{e^{-t}}{1-e^{-t}} d t \\
& =\frac{A(x)}{x}
\end{aligned}
$$

Furthermore, for each integer $n \geq 1$, we have

$$
A(n)=\int_{0}^{+\infty} \frac{e^{-n t}-1}{e^{-t}-1} e^{-t} \widehat{a}(t) d t=\sum_{k=1}^{n} a(k)
$$

Example 5

$$
\frac{1}{x} \bowtie \frac{1}{x}=D\left(\frac{1}{x^{2}}\right)=\mathcal{L}(\Lambda)=\frac{H(x)}{x} \quad \text { with } H(x)=\psi(x+1)+\gamma,
$$

ψ denoting the logarithmic derivative of Γ. In particular, for each integer $n \geq 1$,

$$
\left(\frac{1}{x} \bowtie \frac{1}{x}\right)(n)=\frac{H(n)}{n}=\frac{H_{n}}{n} .
$$

Example 6 For $\Re(s) \geq 1$,

$$
\frac{1}{x} \bowtie \frac{1}{x^{s}}=\frac{H^{(s)}(x)}{x}
$$

with

$$
H^{(s)}(x)=\frac{1}{\Gamma(s)} \int_{0}^{+\infty} \frac{1-e^{-x t}}{1-e^{-t}} e^{-t} t^{s-1} d t
$$

For each integer $n \geq 1$,

$$
\left(\frac{1}{x} \bowtie \frac{1}{x^{s}}\right)(n)=\frac{H^{(s)}(n)}{n}=\frac{H_{n}^{(s)}}{n}=\frac{1}{n}\left(\sum_{m=1}^{n} \frac{1}{m^{s}}\right) .
$$

From (15), by induction on k, we deduce the following important corollary.
Corollary 1 For each integer $k \geq 2$,

$$
\begin{equation*}
\left(\left(\frac{1}{x}\right)^{\bowtie k} \bowtie a\right)(n)=\frac{1}{n}\left(\sum_{n \geq n_{1} \geq \cdots \geq n_{k} \geq 1} \frac{a\left(n_{k}\right)}{n_{1} \cdots n_{k-1}}\right) . \tag{16}
\end{equation*}
$$

Example 7 Applying (16) with $a(x)=\frac{1}{x}$ (and $k=m$), we get

$$
\begin{equation*}
\left(\frac{1}{x}\right)^{\bowtie(m+1)}(n)=\frac{1}{n}\left(\sum_{n \geq n_{1} \geq \cdots \geq n_{m} \geq 1} \frac{1}{n_{1} \cdots n_{m}}\right) . \tag{17}
\end{equation*}
$$

Hence, it follows from (14) and (17) that

$$
\begin{equation*}
P_{m}\left(H_{n}, H_{n}^{(2)}, \ldots, H_{n}^{(m)}\right)=\sum_{n \geq n_{1} \geq \cdots \geq n_{m} \geq 1} \frac{1}{n_{1} \cdots n_{m}} \tag{18}
\end{equation*}
$$

which is a nice reformulation of Dilcher's formula (cf. [2, 9]).

5 The modified zeta function $\boldsymbol{F}_{\boldsymbol{k}}$

5.1 Integral representation

Definition 10 For all $s \in \mathbb{C}$ with $\mathfrak{R}(s) \geq 1$ and each natural number k, the modified zeta function of order k is defined by

$$
\begin{equation*}
F_{k}(s)=\frac{1}{\Gamma(s)} \int_{0}^{+\infty} t^{s-1} \frac{e^{-t}}{1-e^{-t}} f_{k}\left(1-e^{-t}\right) d t \quad \text { with } f_{k}(z)=\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!} \frac{z^{n}}{n^{k}} \tag{19}
\end{equation*}
$$

Remark 6 By (2) and Example 3, one has $F_{0}(s)=\zeta(s)-\frac{1}{s-1}$.

The fact that F_{k} may be represented by a Mellin transform enables us to analytically continue this function outside its half-plane of definition by a standard analytic method (cf. [14, Sect. 6.7]).

Theorem 7 The function F_{k} analytically continues in the whole complex plane as an entire function.

Proof The function $z \mapsto \frac{1}{\log (1-z)}+\frac{1}{z}$ being analytic in the disc $D(0,1)$ with a singularity at 1 , we deduce from (1) that the radius of convergence of the series $\sum_{n=1}^{\infty} \frac{\lambda_{n} z^{n}}{n!}$ is equal to 1 . Thus 1 is also the radius of convergence of the series $\sum_{n=1}^{\infty} \frac{\lambda_{n} z^{n}}{n!n^{k}}$ which defines an analytic function f_{k} in the disc $D(0,1)$. Hence, the function

$$
g_{k}: \quad t \mapsto f_{k}\left(1-e^{-t}\right)
$$

is analytic for all $t \in \mathbb{C}$ such that $1-e^{-t} \in D(0,1)$. Since $1-e^{0}=0$, it follows that g_{k} is analytic in a neighbourhood of 0 . Since $g_{k}(0)=0$, the function $t \mapsto g_{k}(t) \frac{e^{-t}}{1-e^{-t}}$ is itself analytic in a neighbourhood of 0 . It follows that its Mellin transform analytically continues in the complex plane with simple poles at negative integers which are all cancelled by the poles of Γ.

Theorem 8 For all s with $\mathfrak{R}(s)>1$ and each integer $k \geq 1$,

$$
\begin{align*}
F_{k}(s)= & \vartheta(k) \zeta(s)+\sum_{j=1}^{k}(-1)^{j} \vartheta(k-j) Z_{j}(s) \\
& +(-1)^{k} \frac{1}{\Gamma(s)} \int_{0}^{+\infty} t^{s-1} \frac{e^{-t}}{1-e^{-t}} T^{k}\left(\frac{e^{-t}-1}{t}\right) d t \tag{20}
\end{align*}
$$

with

$$
\begin{align*}
\vartheta(k) & =\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!} \frac{1}{n^{k}} \tag{21}\\
Z_{j}(s) & =\sum_{n>n_{1}>n_{2}>\cdots>n_{j}>0} \frac{1}{n^{s} n_{1} n_{2} \cdots n_{j}}, \tag{22}\\
T f(t) & =\int_{t}^{+\infty} \frac{e^{-u}}{1-e^{-u}} f(u) d u . \tag{23}
\end{align*}
$$

Proof Formula (20) results from the integral representation (19) and the two following lemmas.

Lemma 1 For all $t>0$,

$$
f_{k}\left(1-e^{-t}\right)=\sum_{j=0}^{k}(-1)^{j} \vartheta(k-j) \frac{\Lambda^{j}(t)}{j!}+(-1)^{k} T^{k}\left(\frac{e^{-t}-1}{t}\right)
$$

where ϑ is defined by (21) and T is the operator defined by (23).
Proof Let $g_{k}(t)=f_{k}\left(1-e^{-t}\right)$. The function g_{k} verifies the recursive relation

$$
g_{k}^{\prime}(t)=e^{-t} f_{k}^{\prime}\left(1-e^{-t}\right)=\frac{e^{-t}}{1-e^{-t}} f_{k-1}\left(1-e^{-t}\right)=\frac{e^{-t}}{1-e^{-t}} g_{k-1}(t)
$$

Thus

$$
g_{k}(t)=\int_{0}^{t} \frac{e^{-u}}{1-e^{-u}} g_{k-1}(u) d u=g_{k}(+\infty)-\int_{t}^{+\infty} \frac{e^{-u}}{1-e^{-u}} g_{k-1}(u) d u
$$

with

$$
g_{k}(+\infty)=f_{k}(1)=\vartheta(k)
$$

Thus, one has

$$
g_{k}(t)=\vartheta(k)-\int_{t}^{+\infty} \frac{e^{-u}}{1-e^{-u}} g_{k-1}(u) d u=\vartheta(k)-T\left(g_{k-1}\right),
$$

and a repeated iteration k times of this relation gives

$$
g_{k}(t)=\sum_{j=0}^{k-1} \vartheta(k-j)(-1)^{j} T^{j}(1)+(-1)^{k} T^{k}\left(g_{0}\right)
$$

Now, by (2),

$$
g_{0}(t)=\sum_{n=1}^{\infty} \frac{\lambda_{n}\left(1-e^{-t}\right)^{n}}{n!}=\frac{e^{-t}-1}{t}+1,
$$

and thus

$$
T^{k}\left(g_{0}\right)=T^{k}\left(\frac{e^{-t}-1}{t}\right)+T^{k}(1)
$$

Hence

$$
g_{k}(t)=\sum_{j=0}^{k-1} \vartheta(k-j)(-1)^{j} T^{j}(1)+(-1)^{k} T^{k}(1)+(-1)^{k} T^{k}\left(\frac{e^{-t}-1}{t}\right)
$$

Since $\vartheta(0)=\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!}=1$ (by (1) and a Tauberian theorem), one deduces that

$$
g_{k}(t)=\sum_{j=0}^{k} \vartheta(k-j)(-1)^{j} T^{j}(1)+(-1)^{k} T^{k}\left(\frac{e^{-t}-1}{t}\right),
$$

and, now, it remains to prove that

$$
\frac{\Lambda^{j}(t)}{j!}=T^{j}(1)
$$

which follows from the recursive relation

$$
\frac{\Lambda^{j}(t)}{j!}=-\int_{+\infty}^{t} \frac{e^{-u}}{1-e^{-u}} \frac{\Lambda^{j-1}(u)}{(j-1)!} d u=T\left(\frac{\Lambda^{j-1}}{(j-1)!}\right)
$$

Lemma 2 Let $Z_{j}(s)$ be defined by (22). Then, for all $s \in \mathbb{C}$ with $\Re(s)>1$,

$$
Z_{j}(s)=\frac{1}{\Gamma(s)} \int_{0}^{+\infty} t^{s-1} \frac{e^{-t}}{1-e^{-t}} \frac{\Lambda^{j}(t)}{j!} d t
$$

Proof From the recursive relation

$$
\partial \frac{\Lambda^{j}(t)}{j!}=\frac{\Lambda^{j-1}(t)}{(j-1)!} \partial \Lambda(t)=-\frac{e^{-t}}{1-e^{-t}} \frac{\Lambda^{j-1}(t)}{(j-1)!}=-\sum_{m>0} e^{-m t} \frac{\Lambda^{j-1}(t)}{(j-1)!},
$$

and $\Lambda(t)=\sum_{n>0} \frac{e^{-n t}}{n}$, one may check by induction on j that

$$
\frac{\Lambda^{j}(t)}{j!}=\sum_{n_{1}>n_{2}>\cdots>n_{j}>0} \frac{e^{-n_{1} t}}{n_{1}} \frac{1}{n_{2}} \cdots \frac{1}{n_{j}}
$$

Furthermore, one has

$$
\frac{1}{\Gamma(s)} \int_{0}^{+\infty} t^{s-1} e^{-N t} \frac{e^{-t}}{1-e^{-t}} d t=\sum_{n>N} \frac{1}{n^{s}} \quad(\text { for } \Re(s)>1)
$$

Hence

$$
\frac{1}{\Gamma(s)} \int_{0}^{+\infty} t^{s-1} \frac{e^{-t}}{1-e^{-t}} \frac{\Lambda^{j}(t)}{j!} d t=\sum_{n>n_{1}>n_{2}>\cdots>n_{j}>0} \frac{1}{n^{s}} \frac{1}{n_{1}} \frac{1}{n_{2}} \cdots \frac{1}{n_{j}}=Z_{j}(s)
$$

5.2 Values of F_{k} at integers

Theorem 9 For all s in \mathbb{C} with $\mathfrak{R}(s) \geq 1$ and each natural number k, then

$$
\begin{equation*}
F_{k}(s)=\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!n^{k}} D\left(\frac{1}{x^{s}}\right)(n) \tag{24}
\end{equation*}
$$

In particular, for all natural numbers m,

$$
\begin{equation*}
F_{k}(m+1)=\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!} \frac{P_{m}\left(H_{n}, H_{n}^{(2)}, \ldots, H_{n}^{(m)}\right)}{n^{k+1}} \tag{25}
\end{equation*}
$$

Proof The change of variables $t=\Lambda(u)$ in (19) enables to write

$$
F_{k}(s)=\frac{1}{\Gamma(s)} \int_{0}^{+\infty} f_{k}\left(e^{-u}\right)(\Lambda(u))^{s-1} d u
$$

Since $D\left(\frac{1}{x^{s}}\right)=\mathcal{L}\left(\frac{\Lambda^{s-1}}{\Gamma(s)}\right)$, we deduce (24) from this last expression of $F_{k}(s)$. Moreover, by (11), one also has $D\left(\frac{1}{x^{m+1}}\right)(n)=\frac{P_{m}\left(H_{n}, \ldots, H_{n}^{(m)}\right)}{n}$, which proves (25).

Corollary 2 Let $\vartheta(s)$ be the Dirichlet series defined for $\mathfrak{R}(s)>0$ by

$$
\vartheta(s)=\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!} \frac{1}{n^{s}} .
$$

Then for each natural number k,

$$
\begin{equation*}
\vartheta(k+1)=F_{k}(1) . \tag{26}
\end{equation*}
$$

Example 8

$$
\begin{aligned}
& F_{0}(1)=\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!n}=\gamma=\vartheta(1), \\
& F_{0}(2)=\sum_{n=1}^{\infty} \frac{\lambda_{n} H_{n}}{n!n}=\zeta(2)-1, \\
& F_{0}(3)=\frac{1}{2} \sum_{n=1}^{\infty} \frac{\lambda_{n} H_{n}^{2}}{n!n}+\frac{1}{2} \sum_{n=1}^{\infty} \frac{\lambda_{n} H_{n}^{(2)}}{n!n}=\zeta(3)-\frac{1}{2}, \\
& F_{1}(1)=\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!n^{2}}=\vartheta(2), \\
& F_{1}(2)=\sum_{n=1}^{\infty} \frac{\lambda_{n} H_{n}}{n!n^{2}}, \\
& F_{1}(3)=\frac{1}{2} \sum_{n=1}^{\infty} \frac{\lambda_{n} H_{n}^{2}}{n!n^{2}}+\frac{1}{2} \sum_{n=1}^{\infty} \frac{\lambda_{n} H_{n}^{(2)}}{n!n^{2}} .
\end{aligned}
$$

5.3 Identities linking Cauchy numbers, harmonic numbers and zeta values

Theorem 10 For all integers $q \geq 2$,

$$
\begin{align*}
F_{1}(q) & =\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!n^{2}} P_{q-1}\left(H_{n}, H_{n}^{(2)}, \ldots, H_{n}^{(q-1)}\right) \\
& =\sum_{n=1}^{\infty} \frac{\log (n+1)}{n^{q}}+\gamma \zeta(q)+\zeta(q+1)-\sum_{n=1}^{\infty} \frac{H_{n}}{n^{q}}-\sum_{k=1}^{q-1} \frac{1}{k} \sum_{n=1}^{\infty} \frac{1}{(n+1)^{k} n^{q-k}} . \tag{27}
\end{align*}
$$

Proof By (20) and (25), one may write

$$
\begin{align*}
F_{k}(q)= & \sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!n^{k+1}} P_{q-1}\left(H_{n}, H_{n}^{(2)}, \ldots, H_{n}^{(q-1)}\right) \\
= & \vartheta(k) \zeta(q)+\sum_{j=1}^{k}(-1)^{j} \vartheta(k-j) Z_{j}(q) \\
& +(-1)^{k} \frac{1}{\Gamma(q)} \int_{0}^{+\infty} t^{q-1} \frac{e^{-t}}{1-e^{-t}} T^{k}\left(\frac{e^{-t}-1}{t}\right) d t . \tag{28}
\end{align*}
$$

We apply now (28) with $k=1$. This gives

$$
F_{1}(q)=\gamma \zeta(q)-\sum_{n \geq 1} \frac{H_{n-1}}{n^{q}}+\frac{1}{\Gamma(q)} \int_{0}^{+\infty} t^{q-1} \frac{e^{-t}}{1-e^{-t}} \mathrm{E}_{1}(t) d t
$$

with $\mathrm{E}_{1}(t)=-\operatorname{Ei}(-t)=\int_{t}^{+\infty} \frac{e^{-u}}{u} d u$. Thus

$$
F_{1}(q)=\gamma \zeta(q)-\sum_{n \geq 1} \frac{H_{n}}{n^{q}}+\zeta(q+1)+I(q)
$$

where

$$
I(q)=\frac{1}{\Gamma(q)} \int_{0}^{+\infty} t^{q-1} \frac{e^{-t}}{1-e^{-t}} \mathrm{E}_{1}(t) d t=\frac{1}{\Gamma(q)} \sum_{n=1}^{\infty} \int_{0}^{+\infty} e^{-n t} t^{q-1} \mathrm{E}_{1}(t) d t
$$

Since

$$
\mathrm{E}_{1}(t)=-\gamma-\log t+\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \frac{t^{n}}{n!},
$$

and $-\gamma-\log t=\widehat{\frac{\log x}{x}}\left(\right.$ cf. [13]), then $\mathrm{E}_{1}=\frac{\widehat{\log (x+1)}}{x}$. Thus

$$
\int_{0}^{+\infty} e^{-n t} t^{q-1} \mathrm{E}_{1}(t) d t=(-1)^{q-1}\left(\frac{\log (x+1)}{x}\right)^{(q-1)}(n)
$$

Hence, by a calculation of the $(q-1)$ th derivative, we get

$$
\begin{aligned}
I(q) & =\frac{(-1)^{q-1}}{(q-1)!} \sum_{n=1}^{\infty}\left(\frac{\log (x+1)}{x}\right)^{(q-1)}(n) \\
& =\sum_{n=1}^{\infty} \frac{\log (n+1)}{n^{q}}-\sum_{k=1}^{q-1} \frac{1}{k} \sum_{n=1}^{\infty} \frac{1}{(n+1)^{k} n^{q-k}} .
\end{aligned}
$$

Remark 7

(1) We recall Euler's formula (cf. [6])

$$
\sum_{n=1}^{\infty} \frac{H_{n}}{n^{q}}= \begin{cases}\frac{1}{2}(q+2) \zeta(q+1)-\frac{1}{2} \sum_{k=1}^{q-2} \zeta(k+1) \zeta(q-k) & \text { for } q>2 \\ 2 \zeta(3) & \text { for } q=2\end{cases}
$$

(2) From $\sum_{n=1}^{\infty} \frac{1}{(n+1) n}=1$, and the decomposition

$$
\frac{1}{(n+1)^{k} n^{q-k}}=\frac{1}{(n+1)^{k-1} n^{q-k}}-\frac{1}{(n+1)^{k} n^{q-k-1}} \quad(0<k<q)
$$

the sum of the series $\sum_{n=1}^{\infty} \frac{1}{(n+1)^{k} n^{q-k}}$ may be expressed as a linear combination of zeta values and integers.

Example 9

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{\log (n+1)}{n^{2}}+\gamma \zeta(2)-\zeta(3)-1=\sum_{n=1}^{\infty} \frac{\lambda_{n} H_{n}}{n!n^{2}} \\
& \sum_{n=1}^{\infty} \frac{\log (n+1)}{n^{3}}+\gamma \zeta(3)-\frac{1}{10} \zeta(2)^{2}-\frac{1}{2} \zeta(2)=\frac{1}{2} \sum_{n=1}^{\infty} \frac{\lambda_{n} H_{n}^{2}}{n!n^{2}}+\frac{1}{2} \sum_{n=1}^{\infty} \frac{\lambda_{n} H_{n}^{(2)}}{n!n^{2}} \\
& \sum_{n=1}^{\infty} \frac{\log (n+1)}{n^{4}}+\gamma \zeta(4)-2 \zeta(5)+\zeta(2) \zeta(3)-\frac{2}{3} \zeta(3)+\frac{1}{3} \zeta(2)-\frac{1}{2} \\
& \quad=\frac{1}{6} \sum_{n=1}^{\infty} \frac{\lambda_{n} H_{n}^{3}}{n!n^{2}}+\frac{1}{2} \sum_{n=1}^{\infty} \frac{\lambda_{n} H_{n} H_{n}^{(2)}}{n!n^{2}}+\frac{1}{3} \sum_{n=1}^{\infty} \frac{\lambda_{n} H_{n}^{(3)}}{n!n^{2}} .
\end{aligned}
$$

5.4 Link with the Ramanujan summation

The function F_{k} has strong connections with the Ramanujan summation (cf. [3, 4]).
If $a \in \mathcal{E}$, then the series $\sum_{n \geq 1} a(n)$ may be written

$$
\sum_{n \geq 1} a(n)=\sum_{n \geq 1} \int_{0}^{+\infty} e^{-n t} \widehat{a}(t) d t
$$

and a formal permutation of $\sum_{n \geq 1}$ and $\int_{0}^{+\infty}$ would lead us to write

$$
\sum_{n \geq 1} a(n)=\int_{0}^{+\infty} \frac{1}{1-e^{-t}} e^{-t} \widehat{a}(t) d t
$$

However, this last integral may be divergent at 0 . Nevertheless we can renormalize it by removing the singularity at zero. This may be done merely by subtracting the
polar part $\frac{1}{t}$ of $\frac{1}{1-e^{-t}}$. From Theorem 1, we know that

$$
\begin{aligned}
\int_{0}^{+\infty}\left(\frac{1}{1-e^{-t}}-\frac{1}{t}\right) e^{-t} \widehat{a}(t) d t & =\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!} \int_{0}^{+\infty} e^{-t}\left(1-e^{-t}\right)^{n-1} \widehat{a}(t) d t \\
& =\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!} D(a)(n)
\end{aligned}
$$

This justifies the following definition.

Definition 11 Let a be a function in $\mathcal{E}=\mathcal{L}(E)$. The Ramanujan sum of the series $\sum_{n \geq 1} a(n)$ is defined by

$$
\begin{equation*}
\sum_{n \geq 1}^{\mathcal{R}} a(n)=\int_{0}^{+\infty}\left(\frac{1}{1-e^{-t}}-\frac{1}{t}\right) e^{-t \widehat{a}(t) d t=\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!} D(a)(n) ~} \tag{29}
\end{equation*}
$$

Lemma 3 Let a and b in \mathcal{E}. Then

$$
\begin{equation*}
\sum_{n \geq 1}^{\mathcal{R}}(a \bowtie b)(n)=\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!} D(a)(n) D(b)(n) . \tag{30}
\end{equation*}
$$

Proof This results directly from (12) and (29).

Theorem 11 For all $s \in \mathbb{C}$ with $\Re(s) \geq 1$, one has

$$
\begin{equation*}
F_{0}(s)=\sum_{n \geq 1}^{\mathcal{R}} \frac{1}{n^{s}} \quad \text { and } \quad F_{k}(s)=\sum_{n \geq 1}^{\mathcal{R}}\left(\left(\frac{1}{x}\right)^{\bowtie k} \bowtie \frac{1}{x^{s}}\right)(n) \quad \text { for } k \geq 1 \tag{31}
\end{equation*}
$$

Proof By (24) and (30), taking into account the invariance of $\frac{1}{x}$ by D, one may write

$$
\begin{aligned}
\sum_{n \geq 1}^{\mathcal{R}}\left(\left(\frac{1}{x}\right)^{\bowtie k} \bowtie \frac{1}{x^{s}}\right)(n) & =\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!} D\left(\left(\frac{1}{x}\right)^{\bowtie k}\right)(n) D\left(\frac{1}{x^{s}}\right)(n) \\
& =\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!}\left(\frac{1}{x}\right)^{k}(n) D\left(\frac{1}{x^{s}}\right)(n) \\
& =\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!n^{k}} D\left(\frac{1}{x^{s}}\right)(n)=F_{k}(s) .
\end{aligned}
$$

In particular, by (14), one deduces from (31) the following identity.

Corollary 3 For each natural number k,

$$
\begin{equation*}
F_{k}(1)=\vartheta(k+1)=\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!} \frac{1}{n^{k+1}}=\sum_{n \geq 1}^{\mathcal{R}} \frac{P_{k}\left(H_{n}, H_{n}^{(2)}, \ldots, H_{n}^{(k)}\right)}{n} . \tag{32}
\end{equation*}
$$

Example 10

$$
\begin{aligned}
& \vartheta(1)=\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!n}=\sum_{n \geq 1}^{\mathcal{R}} \frac{1}{n}=\gamma, \\
& \vartheta(2)=\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!n^{2}}=\sum_{n \geq 1}^{\mathcal{R}} \frac{H_{n}}{n}, \\
& \vartheta(3)=\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!n^{3}}=\frac{1}{2} \sum_{n \geq 1}^{\mathcal{R}} \frac{H_{n}^{2}}{n}+\frac{1}{2} \sum_{n \geq 1}^{\mathcal{R}} \frac{H_{n}^{(2)}}{n} .
\end{aligned}
$$

Remark 8 Comparing (32) with

$$
F_{0}(k+1)=\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n!n} P_{k}\left(H_{n}, H_{n}^{(2)}, \ldots, H_{n}^{(k)}\right)
$$

one may observe a kind of reciprocity between $F_{k}(1)$ and $F_{0}(k+1)$. This results from the fact that $D=D^{-1}$.

Remark 9 In the case $q=1$, (27) is meaningless since both the series $\sum_{n \geq 1} \frac{\log (n+1)}{n}$ and $\sum_{n \geq 1} \frac{H_{n}}{n}$ diverge. However, since

$$
\log (x+1)-(\psi(x+1)+\gamma)=\int_{0}^{+\infty}\left(e^{-x u}-1\right)\left(\frac{1}{1-e^{-u}}-\frac{1}{u}\right) e^{-u} d u
$$

it follows that

$$
\left(\frac{\widehat{\log (x+1)}}{x}-\frac{\psi(\widehat{x+1)}+\gamma}{x}\right)(t)=\int_{t}^{+\infty}\left(\frac{1}{1-e^{-u}}-\frac{1}{u}\right) e^{-u} d u
$$

and then one may easily deduce from (29) the relation

$$
\sum_{n \geq 1}^{\mathcal{R}} \frac{\log (n+1)}{n}-\sum_{n \geq 1}^{\mathcal{R}} \frac{H_{n}}{n}=-\frac{\gamma^{2}}{2}
$$

which may be rewritten in the following form (cf. Example 10):

$$
\sum_{n \geq 1}^{\mathcal{R}} \frac{\log (n+1)}{n}=\vartheta(2)-\frac{1}{2} \vartheta(1)^{2} .
$$

5.5 Link with the Arakawa-Kaneko zeta function

For $\mathfrak{R}(s) \geq 1$ and $k \geq 1$, one can define in an algebraic fashion the function ξ_{k} by

$$
\begin{equation*}
\xi_{k}(s)=\sum_{n=1}^{\infty} D\left(\left(\frac{1}{x}\right)^{\bowtie k} \bowtie \frac{1}{x^{s}}\right)(n)=\sum_{n=1}^{\infty} \frac{1}{n^{k}} D\left(\frac{1}{x^{s}}\right)(n) . \tag{33}
\end{equation*}
$$

In particular, for all natural numbers m, one has (cf. [8, Corollary 1])

$$
\xi_{k}(m+1)=\sum_{n=1}^{\infty} \frac{1}{n^{k}} D\left(\frac{1}{x^{m+1}}\right)(n)=\sum_{n=1}^{\infty} \frac{P_{m}\left(H_{n}, H_{n}^{(2)}, \ldots, H_{n}^{(m)}\right)}{n^{k+1}}
$$

Since $D\left(\frac{1}{x^{s}}\right)=\mathcal{L}\left(\frac{\Lambda^{s-1}}{\Gamma(s)}\right)$, one may also rewrite (33) as

$$
\xi_{k}(s)=\frac{1}{\Gamma(s)} \int_{0}^{+\infty} \operatorname{Li}_{k}\left(e^{-u}\right)(\Lambda(u))^{s-1} d u
$$

and the change of variables $t=\Lambda(u)$ leads to the integral representation

$$
\xi_{k}(s)=\frac{1}{\Gamma(s)} \int_{0}^{+\infty} t^{s-1} \frac{e^{-t}}{1-e^{-t}} \operatorname{Li}_{k}\left(1-e^{-t}\right) d t
$$

which is the analogue of (19) (with Li_{k} in place of f_{k}) and also the original definition of the Arakawa-Kaneko zeta function (cf. [1, 8]).

Thus, taking into account the facts that $\xi_{k}(1)=\zeta(k+1)$ and $\operatorname{Li}_{1}\left(1-e^{-t}\right)=t$, and following the same process as in the proof of Theorem 8, one obtains the following analogue of (20):

$$
\begin{align*}
\xi_{k+1}(s)= & \zeta(k+1) \zeta(s)+\sum_{j=1}^{k-1}(-1)^{j} \zeta(k+1-j) Z_{j}(s) \\
& +(-1)^{k} \frac{1}{\Gamma(s)} \int_{0}^{+\infty} t^{s-1} \frac{e^{-t}}{1-e^{-t}} T^{k}(t) d t \tag{34}
\end{align*}
$$

In particular, in the simplest case $k=1$, since

$$
T(t)=\int_{t}^{+\infty} \frac{e^{-u}}{1-e^{-u}} u d u=\sum_{m>0} \int_{t}^{+\infty} e^{-m u} u d u=\sum_{m>0} \frac{e^{-t m}}{m} t+\sum_{m>0} \frac{e^{-t m}}{m^{2}}
$$

(34) again gives the formula

$$
\xi_{2}(s)=\zeta(2) \zeta(s)-s \sum_{n>m>0} \frac{1}{n^{s+1}} \frac{1}{m}-\sum_{n>m>0} \frac{1}{n^{s}} \frac{1}{m^{2}}
$$

already obtained by Arakawa and Kaneko (cf. [1, Theorem 6(ii)]).

6 Conclusion

Most of the general results given for the modified zeta function F_{k}, especially Theorems 7, 8, and 9, also apply (with minor adaptations) to a wide class of functions including the Arakawa-Kaneko zeta function ξ_{k}, specifically to the class of functions represented by normalized Mellin transforms of type

$$
F_{k, \omega}(s)=\frac{1}{\Gamma(s)} \int_{0}^{+\infty} t^{s-1} \frac{e^{-t}}{1-e^{-t}} f_{k, \omega}\left(1-e^{-t}\right) d t
$$

with $\omega=\left(\omega_{n}\right)_{n \geq 1}$ and $f_{k, \omega}(z)=\sum_{n=1}^{\infty} \frac{\omega_{n}}{n^{k}} z^{n}$. In particular, under the assumption that $\frac{\left|\omega_{n}\right|}{n^{k}}=O\left(\frac{1}{n}\right)$, we have for positive integers m the nice formula

$$
F_{k, \omega}(m+1)=\sum_{n=1}^{\infty} \frac{\omega_{n}}{n^{k}} D\left(\frac{1}{x^{m+1}}\right)(n)=\sum_{n=1}^{\infty} \omega_{n} \frac{P_{m}\left(H_{n}, H_{n}^{(2)}, \ldots, H_{n}^{(m)}\right)}{n^{k+1}},
$$

which extends (25). However, this formula is more theoretical than practical because of the fast increase in the size of polynomials P_{m} : the number of monomials in P_{m} is equal to the number $p(m)$ of partitions of m, as shown by the explicit expression of the m th modified Bell polynomial.

References

1. Arakawa, T., Kaneko, M.: Multiple zeta values, Poly-Bernoulli numbers and related zeta functions. Nagoya Math. J. 153, 189-209 (1999)
2. Boyadzhiev, K.: Harmonic number identities via Euler's transform. J. Integer Seq. 12, Article 09.6.1 (2009)
3. Candelpergher, B., Coppo, M.A., Delabaere, E.: La sommation de Ramanujan. Enseign. Math. 43, 93-132 (1997)
4. Candelpergher, B., Gadiyar, H., Padma, R.: Ramanujan summation and the exponential generating function $\sum_{k=0}^{\infty} \frac{z^{k}}{k!} \zeta^{\prime}(-k)$. Ramanujan J. 21, 99-122 (2010)
5. Chen, X., Chu, W.: Dixon's $F_{2}(1)$-series and identities involving harmonic numbers and the Riemann zeta function. Discrete Math. 310, 83-91 (2010)
6. Choi, J., Srivastava, H.M.: Explicit evaluation of Euler and related sums. Ramanujan J. 10, 51-70 (2005)
7. Coppo, M.-A.: Nouvelles expressions des formules de Hasse et de Hermite pour la fonction zêta d'Hurwitz. Expo. Math. 27, 79-86 (2009)
8. Coppo, M.-A., Candelpergher, B.: The Arakawa-Kaneko zeta function. Ramanujan J. 22, 153-162 (2010)
9. Dilcher, K.: Some q-series identities related to divisors functions. Discrete Math. 145, 83-93 (1995)
10. Flajolet, P., Sedgewick, R.: Mellin transforms and asymptotics: finite differences and Rice's integrals. Theor. Comput. Sci. 144, 101-124 (1995)
11. Hermite, C.: Extrait de quelques lettres de M.Ch. Hermite à M.S. Pincherle. Ann. Mat. Pura Appl. 5, 55-72 (1901)
12. Merlini, D., Sprugnoli, R., Verri, C.: The Cauchy numbers. Discrete Math. 306, 1906-1920 (2006)
13. Schiff, J.: The Laplace Transform: Theory and Applications. Springer, New York (1999)
14. Zeidler, E.: Quantum Field Theory I: Basics in Mathematics and Physics. Springer, Berlin (2006)

[^0]: B. Candelpergher • M.-A. Coppo (\boxtimes)

 Laboratory Jean Alexandre Dieudonné, University of Nice Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
 e-mail: Marc-Antoine.COPPO@unice.fr
 B. Candelpergher
 e-mail: Bernard.CANDELPERGHER @unice.fr

[^1]: ${ }^{1}$ The sequence of numbers $\frac{\lambda_{n}}{n!}$ appeared for the first time in a letter of James Gregory dated back to 1670 (cf. The correspondence of Isaac Newton, vol. 1, p. 46). For this reason, they are sometimes called Gregory coefficients.

