Bendersky-Adamchik constants, hyperfactorials, and Ramanujan summation of series

Marc-Antoine COPPO
MICOPAM Conference, Evry

August 2023

Stirling's constant

The story starts with the famous Stirling approximation for the factorial:

$$
n!\sim \sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n} \quad \text { as } \quad n \rightarrow \infty
$$

which dates back from the middle of the 18th century. In fact, Stirling never explicitly stated this formula. The first appearance of this result occured in a letter from Euler to Goldbach dated June 1744.

The constant $\sqrt{2 \pi}$ is known as the Stirling constant.

Stirling's asymptotic series

A much more accurate version of Stirling's formula was given a century later by Laplace:

$$
\begin{aligned}
\Gamma(x+1) & \sim \sqrt{2 \pi} x^{x+\frac{1}{2}} e^{-x} \exp \left(\frac{B_{2}}{1 \cdot 2 x}+\frac{B_{4}}{3 \cdot 4 x^{3}}+\frac{B_{6}}{5 \cdot 6 x^{5}}+\cdots\right) \\
& =\sqrt{2 \pi} x^{x+\frac{1}{2}} e^{-x}\left(1+\frac{1}{12 x}+\frac{1}{288 x^{2}}-\frac{139}{51840 x^{3}}-\cdots\right)
\end{aligned}
$$

as $x \rightarrow+\infty$, where Γ is Euler's gamma function, and B_{n} are the Bernoulli numbers. This classical expansion is one of the oldest appearance of an asymptotic series. This series is improperly called Stirling's series even though Stirling never wrote it!

Glaisher-Kinkelin constant

A similar (but less well-known) approximation also applies to the hyperfactorial function:

$$
\prod_{\nu=1}^{n} \nu^{\nu}=1^{1} 2^{2} \cdots n^{n} \sim A n^{\frac{n^{2}}{2}+\frac{n}{2}+\frac{1}{12}} e^{-\frac{n^{2}}{4}} \quad \text { as } \quad n \rightarrow \infty
$$

The constant

$$
A=\lim _{n \rightarrow \infty} \frac{\prod_{\nu=1}^{n} \nu^{\nu}}{n^{\frac{n^{2}}{2}+\frac{n}{2}+\frac{1}{12}} e^{-\frac{n^{2}}{4}}}=1.282427 \ldots
$$

is called Glaisher's constant or the Glaisher-Kinkelin constant after James Glaisher (1848-1928) and Hermann Kinkelin (1832-1913). Glaisher introduced this constant for the first time in 1877 in his research on the gamma function.

Glaisher-Kinkelin constant

The asymptotic expansion of the hyperfactorial is

$$
\begin{aligned}
1^{1} 2^{2} \cdots n^{n} & \sim A n^{\frac{n^{2}}{2}+\frac{n}{2}+\frac{1}{12}} e^{-\frac{n^{2}}{4}} \exp \left(-\frac{B_{4}}{2 \cdot 3 \cdot 4 n^{2}}-\frac{B_{6}}{4 \cdot 5 \cdot 6 n^{4}}-\cdots\right) \\
& =A n^{\frac{n^{2}}{2}+\frac{n}{2}+\frac{1}{12}} e^{-\frac{n^{2}}{4}}\left(1+\frac{1}{720 n^{2}}-\frac{1433}{7257600 n^{4}}+\cdots\right)
\end{aligned}
$$

as $n \rightarrow \infty$. All the coefficients in this asymptotic series can be computed by a recursive formula (Chen and Lin, 2013).

Bendersky's gamma function

In 1933, Bendersky studies the product $\prod_{\nu=1}^{n} \nu^{\nu^{k}}$ for $k=0,1,2, \ldots$ which reduces to the classical factorial when $k=0$, and to the classical hyperfactorial when $k=1$. The reference for Bendersky's work is
L. Bendersky, Sur la function gamma généralisée (On the generalized gamma function), Acta Mathematica 61 (1933).

This masterpiece seems to be his one and only published article!

Bendersky's gamma function

For his purpose, Bendersky introduces a natural generalization Γ_{k} of the Γ-function, whose fundamental properties are $\Gamma_{k}(1)=1$ and

$$
\Gamma_{k}(x+1)=x^{x^{k}} \Gamma_{k}(x) \text { for } \quad x>0 .
$$

In particular,

$$
\Gamma_{k}(n+1)=\prod_{\nu=1}^{n} \nu^{\nu^{k}} \quad \text { for } \quad k=0,1,2, \ldots
$$

Notably, $\Gamma_{0}=\Gamma$, and Γ_{1} is the Kinkelin hyperfactorial K-function.

Bendersky-Adamchik constants

For any integer $k \geq 0$, Bendersky shows the existence of a constant A_{k} and two polynomials P_{k} and Q_{k} of degree $k+1$ such that

$$
\Gamma_{k}(x+1) \sim A_{k} x^{P_{k}(x)} e^{-Q_{k}(x)} \quad \text { as } \quad x \rightarrow+\infty .
$$

The numbers A_{k} (for $k=0,1,2, \ldots$) are called the Bendersky-Adamchik constants or generalized Glaisher-Kinkelin constants. In particular, the constant A_{0} is nothing else than the Stirling constant, and the constant A_{1} is the Glaisher-Kinkelin constant.

Bendersky-Adamchik constants

A general formula which allows to evaluate explicitly these polynomials P_{k} and Q_{k} is given by:

$$
P_{k}(x)=\frac{x^{k+1}}{k+1}+\frac{x^{k}}{2}+\sum_{r=1}^{\left[\frac{k+1}{2}\right]} \frac{B_{2 r}}{(2 r)!}\left(\prod_{j=1}^{2 r-1}(k-j+1)\right) x^{k+1-2 r}
$$

and

$$
\begin{aligned}
Q_{k}(x) & =\frac{x^{k+1}}{(k+1)^{2}} \\
& -\sum_{r=1}^{\left[\frac{k+1}{2}\right]+\frac{(-1)^{k}-1}{2}} \frac{B_{2 r}}{(2 r)!}\left\{\prod_{j=1}^{2 r-1}(k-j+1) \sum_{j=1}^{2 r-1} \frac{1}{k-j+1}\right\} x^{k+1-2 r}
\end{aligned}
$$

Bendersky-Adamchik constants

In particular, for the first values of k, this somewhat cumbersome (but efficient) formula gives the following polynomials:

$$
\begin{aligned}
& P_{0}(x)=x+\frac{1}{2} \quad \text { and } \quad Q_{0}(x)=x \\
& P_{1}(x)=\frac{x^{2}}{2}+\frac{x}{2}+\frac{1}{12} \quad \text { and } \quad Q_{1}(x)=\frac{x^{2}}{4} \\
& P_{3}(x)=\frac{x^{3}}{3}+\frac{x^{2}}{2}+\frac{x}{6} \quad \text { and } \quad Q_{1}(x)=\frac{x^{3}}{9}-\frac{x}{12}
\end{aligned}
$$

etc.

Bendersky himself successfully calculated P_{k} and Q_{k} for $k \leq 4$.

Bendersky-Adamchik constants

Example: In the case $k=2$ (hyper-hyperfactorial function), we have

$$
1^{1} 2^{4} \cdots n^{n^{2}} \sim A_{2} n^{\frac{n^{3}}{3}+\frac{n^{2}}{2}+\frac{n}{6}} e^{-\frac{n^{3}}{9}+\frac{n}{12}} \quad \text { as } \quad n \rightarrow \infty
$$

with $A_{2}=1.030916 \ldots$ More precisely,

$$
1^{1} 2^{4} \cdots n^{n^{2}} \sim A_{2} n^{\frac{n^{3}}{3}+\frac{n^{2}}{2}+\frac{n}{6}} e^{-\frac{n^{3}}{9}+\frac{n}{12}}\left(1-\frac{1}{360 n}+\frac{1}{259200 n^{2}}+\cdots\right)
$$

All the coefficients of this asymptotic series can be computed recursively (Wang, 2017).

Adamchik's formula

In 1998, Adamchik rediscovers the constants A_{k} and gives a nice expression of the constants $\ln A_{k}$ in terms of the derivatives of the Riemann zeta function. Let us recall that

$$
\ln A_{k}=\lim _{n \rightarrow \infty}\left\{\sum_{\nu=1}^{n} \nu^{k} \ln \nu-P_{k}(n) \ln n+Q_{k}(n)\right\}
$$

This expression (called Adamchik's formula) is the following:

$$
\ln A_{k}=\frac{H_{k} B_{k+1}}{k+1}-\zeta^{\prime}(-k)
$$

where H_{k} is the k th harmonic number (with the usual convention $H_{0}=0$).

Adamchik's formula

Thanks to the Adamchik formula, we can derive from the functional equation of zeta the following identities:

$$
\ln A_{2 k-1}=\frac{B_{2 k}}{2 k}\left(\gamma+\ln 2 \pi-\frac{\zeta^{\prime}(2 k)}{\zeta(2 k)}\right) \quad \text { for } \quad k \geq 1
$$

where γ is Euler's constant, and

$$
\ln A_{2 k}=\frac{B_{2 k}}{4} \cdot \frac{\zeta(2 k+1)}{\zeta(2 k)} \quad \text { for } \quad k \geq 1
$$

In particular,

$$
\begin{aligned}
& \ln A_{0}=\ln \sqrt{2 \pi}=-\zeta^{\prime}(0) \\
& \ln A_{1}=\frac{1}{12}-\zeta^{\prime}(-1)=\frac{\gamma+\ln 2 \pi}{12}-\frac{\zeta^{\prime}(2)}{12 \zeta(2)} \\
& \ln A_{2}=-\zeta^{\prime}(-2)=\frac{\zeta(3)}{24 \zeta(2)}
\end{aligned}
$$

Link with the Ramanujan summation

The Bendersky-Adamchik constants have an interesting interpretation in terms of the Ramanujan summation of divergent series that motivates my interest in these constants.

If $\sum_{n \geq 1}^{\mathcal{R}} a_{n}$ denotes the \mathcal{R}-sum of the series $\sum_{n \geq 1} a_{n}$ (i.e. the sum of the series in the sense of Ramanujan's summation method), then we have

$$
\sum_{n \geq 1}^{\mathcal{R}} n^{k} \ln n=\ln A_{k}-\frac{H_{k} B_{k+1}}{k+1}-\frac{1}{(k+1)^{2}} \quad \text { for } \quad k=0,1,2, \ldots
$$

An equivalent expression for this sum is

$$
\sum_{n \geq 1}^{\mathcal{R}} n^{k} \ln n=\int_{0}^{1} \ln \Gamma_{k}(x+1) d x
$$

where Γ_{k} is Bendersky's gamma function.

Link with the Ramanujan summation

In particular, we have the following identities:

$$
\sum_{n \geq 1}^{\mathcal{R}} \ln n=\int_{0}^{1} \ln \Gamma(x+1) d x=\ln \sqrt{2 \pi}-1
$$

and

$$
\sum_{n \geq 1}^{\mathcal{R}} n \ln n=\int_{0}^{1} \ln K(x+1) d x=\ln A-\frac{1}{3}
$$

Furthermore, we mention another (independant) notable result:

$$
\sum_{n \geq 1}^{\mathcal{R}} n^{-1} \ln n=\gamma_{1}
$$

where $\gamma_{1}=\lim _{n \rightarrow \infty}\left\{\sum_{\nu=1}^{n} \frac{\ln \nu}{\nu}-\frac{1}{2} \ln ^{2} n\right\}$ is the first Stieltjes constant.

Cauchy numbers

We now present some new convergent series towards $\ln A_{k}$ which can be deduced from Adamchik's formula and from an expression of $\zeta^{\prime}(-k)$ given in a more recent study (see Coppo and Young, 2016). As these series involve the Cauchy numbers, we make a few preliminary remarks.

The non-alternating Cauchy numbers, denoted by λ_{n}, are positive rational numbers which can be defined recursively by means of the relation

$$
\sum_{k=1}^{n-1} \frac{\lambda_{k}}{k!(n-k)}=\frac{1}{n} \quad \text { for } \quad n \geq 2
$$

The first ones are the following:

$$
\lambda_{1}=\frac{1}{2}, \lambda_{2}=\frac{1}{6}, \lambda_{3}=\frac{1}{4}, \lambda_{4}=\frac{19}{30}, \lambda_{5}=\frac{9}{4}, \lambda_{6}=\frac{863}{84}, \text { etc. }
$$

Cauchy numbers

The numbers λ_{n} are closely linked to the Bernoulli numbers of the second kind b_{n} defined by their generating function

$$
\frac{x}{\ln (1+x)}=\sum_{n=0}^{\infty} b_{n} x^{n}, \quad|x|<1
$$

through the relation

$$
\lambda_{n}=n!\left|b_{n}\right| \quad \text { for } \quad n \geq 1
$$

In particular, we can easily deduce from this relation the integral expression

$$
\lambda_{n}=\int_{0}^{1} x(1-x) \cdots(n-1-x) d x \text { for } n \geq 2
$$

New convergent series for $\ln A_{k}$

The convergent representation:

$$
\ln A_{0}=\ln \sqrt{2 \pi}=\sum_{n=2}^{\infty} \frac{\lambda_{n}}{n!(n-1)}+\frac{1}{2} \gamma+\frac{1}{2}
$$

is a fairly known result. In addition, we have the following new identities:

$$
\begin{aligned}
& \ln A_{1}=\sum_{n=3}^{\infty} \frac{\lambda_{n}}{n!(n-2)}+\frac{1}{12} \gamma+\frac{1}{8} \\
& \ln A_{2}=\sum_{n=4}^{\infty} \frac{\lambda_{n}(n-1)}{n!(n-2)(n-3)}-\frac{1}{24} \\
& \ln A_{3}=\sum_{n=5}^{\infty} \frac{\lambda_{n} n(n-1)}{n!(n-2)(n-3)(n-4)}-\frac{1}{120} \gamma-\frac{29}{240}, \\
& \ln A_{4}=\sum_{n=6}^{\infty} \frac{\lambda_{n}(n-1)^{2}(n+4)}{n!(n-2)(n-3)(n-4)(n-5)}-\frac{113}{480} .
\end{aligned}
$$

New convergent series for $\ln A_{k}$

A general expression for these sums is given by the following formula:

$$
\ln A_{2 k}=\sum_{n=2 k+2}^{\infty} \frac{\lambda_{n}}{n!}\left\{\sum_{r=1}^{2 k} \frac{(-1)^{r} r!S(2 k, r)}{n-1-r}\right\}+C_{2 k} \quad \text { for } \quad k \geq 1
$$

and

$$
\begin{aligned}
\ln A_{2 k-1}= & \sum_{n=2 k+1}^{\infty} \frac{\lambda_{n}}{n!}\left\{\sum_{r=1}^{2 k-1} \frac{(-1)^{r-1} r!S(2 k-1, r)}{n-1-r}\right\} \\
& +\frac{B_{2 k}}{2 k}\left(H_{2 k}+\gamma\right)+C_{2 k-1} \text { for } k \geq 1
\end{aligned}
$$

with $S(k, r)$ the Stirling numbers of the second kind, $C_{1}=0$, and

$$
C_{k}=(-1)^{k} \sum_{r=1}^{k-1}(-1)^{r} r!S(k, r) \sum_{j=r+2}^{k+1} \frac{\lambda_{j}}{j!(j-1-r)} \quad \text { for } \quad k \geq 2 \text {. }
$$

Main references for this talk

B. Candelpergher, Ramanujan Summation of Divergent Series, Lecture Notes in Math. 2185, Springer, 2017.

M-A. Coppo and P.T. Young, On shifted Mascheroni series and hyperharmonic numbers, J. Number Theory, 169 (2016).

M-A. Coppo, Generalized Glaisher-Kinkelin constants and Ramanujan summation of series, to appear in Research in Number Theory

All available on my website: https://math.univ-cotedazur.fr/~coppo/

