Claire Scheid
Maitre de Conférences



  1. Convergence of a discretization of the Maxwell-Klein-Gordon equation based on Finite Element Methods and lattice gauge theory

    S. Christiansen, T. Halvorsen, C.Scheid, submitted, 2021


  1. Stability properties for a problem of light scattering in a dispersive metallic domain

    S. Nicaise, C.Scheid, accepted, to appear in Evolution Equations & Control Theory, 2022

  2. Limiting amplitude principle and resonances in plasmonic structures with corners: numerical investigation

    C. Carvalho, P. Ciarlet Jr., C. Scheid, Comput. Meth. Appl. Mech. Eng., Volume 388, 2022

  3. Stability and asymptotic properties of a linearized hydrodynamic medium model for dispersive media in nanophotonic,

    S. Nicaise, C. Scheid, CAMWA, Volume 79, Issue 12, 15 June 2020, Pages 3462-3494, 2020, article.

  4. Influence of spatial dispersion on surface plasmons and grating couplers,

    A. Pitelet, N. Schmitt, D. Loukresis, C. Scheid, H. De Gersem, C. Ciraci, E. Centeno, A. Moreau, Journal of the Optical Society of America B, Vol. 36, N.11, 2019. preprint, article

  5. Simulating 3D periodic structures at oblique incidences with discontinuous Galerkin time-domain methods: theoretical and practical considerations

    J. Viquerat, N. Schmitt, C. Scheid, Vol. 5. 131-159, SMAI JCM, 2019, article.

  6. The Multiscale Hybrid-Mixed Method for the Maxwell equation in heterogeneous media,

    S. Lanteri, D. Paredes, C. Scheid, F. Valentin, Multiscale Model. Simul., 16(4), 1648–1683 (2018), online version.

  7. Simulation of three-dimensional nanoscale light interaction with spatially dispersive metals using a high order curvilinear DGTD method,

    N. Schmitt, C. Scheid, J. Viquerat, S. Lanteri, Journal of Computational Physics 373 (2018) 210-229 preprint

  8. Multiple branches of travelling waves for the Gross Pitaevskii equation,

    D. Chiron, C. Scheid, Nonlinearity, 31(6), 2809-2853, (2018), online version, preprint.

  9. Analysis of a Generalized Dispersive Model coupled to a DGTD method with application to Nanophotonics,

    S. Lanteri, C. Scheid, J. Viquerat, SIAM J. Sci. Comput., 39(3), A831–A859 (2017), online version, preprint on HAL.

  10. A DGTD method for the numerical modeling of the interaction of light with nanometer scale metallic structures taking into account non-local dispersion effects,

    N. Schmitt, C. Scheid, S. Lanteri, A. Moreau, J. Viquerat, Journal of Computational Physics 316 (2016) 396-415, online version

  11. Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension two,

    D. Chiron, C. Scheid, Journal of Nonlinear Sciences (2016), 26, no. 1, 171-231 (preprint on HAL or online version).

  12. A 3D curvilinear Discontinuous Galerkin time-domain method for nanoscale light-matter interactions,

    J. Viquerat, C. Scheid, J. Computational Applied Mathematics, 289, 37-50 (2015) (online version).

  13. A parallel non-confoming multi-element DGTD method for the simulation of electromagnetic wave interaction with metallic nanoparticles,

    R. Leger, J. Viquerat, C. Durochat, C. Scheid and S. Lanteri, J. Comput. Appl. Math. (2013)(online version).

  14. High order non-conforming multi-element Discontinuous Galerkin method for time domain electromagnetics,

    C. Durochat, S. Lanteri, C. Scheid, Appl. Math. Comp. 224, 681-704 (2013) (online version)

  15. Recent advances on a DGTD method for time-domain electromagnetism,

    S. Descombes, C. Durochat, S. Lanteri, L. Moya, C. Scheid, J. Viquerat, Photonics and Nanostructures, Volume 11, issue 4, 291-302 (2013) (online version)

  16. Convergence of a Discontinuous Galerkin scheme for the mixed time domain Maxwell's equations in dispersive media,

    S. Lanteri, C. Scheid, IMA Journal of Numerical Analysis (2013), 33 (2): 432-459. (online version)

  17. Convergence of a constrained finite element discretization of the Maxwell Klein Gordon equation,

    S.H.Christiansen, C.Scheid, M2AN 45, no. 4 (2011), 739-760. (article)

  18. Electrowetting of a 3D drop: numerical modelling with electrostatic vector fields

    P.Ciarlet Jr., C.Scheid, M2AN 44 (2010) 647-670.(online version)

  19. A proof of the invariance of the contact angle in electrowetting

    C.Scheid, P.Witomski, Mathematical and Computer Modelling 49 (2009), pp. 647-665.(online version)

  20. Numerical modelling of electrowetting by a shape inverse approach,

    J.Monnier, P.Witomski, P.Chow Wing Bom, C.Scheid, SIAM J.Appl.Math., Vol.69, No.5., 2009 ( online version)(pdf)

Rapports de Recherche/Research reports

Etude de convergence a-priori d'une methode de Galerkin discontinue en maillage hybride et non conforme pour resoudre les equations de Maxwell instationnaires,

C. Durochat and C. Scheid, INRIA Research Report, n. 7933 (2012), in french (online version)

High order non-conforming multi-element Discontinuous Galerkin method for time domain electromagnetics,

C. Durochat, S. Lanteri, C. Scheid, INRIA Research Report, n. 8257 (2013) (online version)


A-priori convergence analysis of a Discontinuous Galerkin Time-domain method to solve Maxwell's equations on hybrid meshes,

C. Durochat and C. Scheid, Numerical Mathematics and Advanced Applications 2011, Proceedings of ENUMATH 2011, the 9th European Conference on Numerical Mathematics and Advanced Applications, Leicester, September 2011, 91-99 (2013).

A 3D Discontinuous Galerkin Time-Domain method for nano plasmonics with a nonlocal dispersion model,

N. Schmitt, J. Viquerat, C. Scheid, S. Lanteri, M. Moeferdt, and K. Busch. Proceedings of PIERS, 39(3):A831–A859, 2017.