L1MD - examen du 3 mai 2016

Durée 2H. Tout document et matériel électronique interdit

1. L'énoncé suivant est il syntaxiquement correct ? Si ce n'est pas le cas, expliquer pourquoi.

$$(x \in A \text{ ou } x \in B) \Rightarrow A \cap B$$

Que dire de l'énoncé

$$x \in A$$
 ou $(x \in B \Rightarrow A \cap B = \emptyset)$

- 2. Formaliser les énoncés suivants (dans les trois premiers énoncés E est une variable libre de type partie de \mathbb{R} et dans les deux premiers a est une variable libre de type \mathbb{R}).
 - a. a est un majorant de E.
 - b. a est le plus grand élément de E.
 - c. E admet un plus grand élément.
 - d. Toute partie non vide de \mathbb{Z}_{-} (les entiers négatifs ou nuls) admet un plus grand élément.
 - e. Pas toutes les parties non vides de $\mathbb Z$ admettent un plus grand élément.
 - f. Pour qu'une partie de \mathbb{Z} admette un plus grand élément, il faut qu'elle soit non vide et majorée.
- **3.** Soient $n \ge p > 0$ deux entiers et a_1, \ldots, a_p p-élements distincts de $\{1, \ldots, n\}$. On note $(a_1 \ a_2 \ \ldots \ a_p)$ la bijection de $\{1, \ldots, n\}$ dans lui même définie par $a_1 \mapsto a_2, \ a_2 \mapsto a_3, \ldots, \ a_p \mapsto a_1$ et $k \mapsto k$ si $k \notin \{a_1, \ldots, a_p\}$. On dit qu'une telle bijection est un cycle de longueur p.
- **a.** Conbien y a t-il de cycles de longueur 3 parmi les bijections de $\{1,2,3\}$?

Conbien y a t-il de cycles de longueur 3 parmi les bijections de $\{1, \ldots, 5\}$? On pourra considérer l'application qui à un cycle $(a_1 \ a_2 \ a_3)$ associe la partie $\{a_1 \ a_2 \ a_3\}$ de $\{1, \ldots, 5\}$.

- **b.** La bijection réciproque du cycle $(2\ 5\ 1\ 3)$ (considéré comme bijection de $\{1,\ldots,5\}$ dans lui même) est elle un cycle ? Si oui comment s'écrit il ?
- c. On considère la composée de cycles de $\{1, \ldots, 7\}$:

$$\sigma = (2\ 5\ 1\ 3) \circ (7\ 2\ 3\ 4)$$

Quelle est l'image de 3 par σ ? Quelle est l'orbite de 3 sous l'action de σ ? La bijection σ est elle un cycle ?

- **d.** On note τ la composée (2 5 1 3)(4 7 6). Quel est le plus petit entier n>0 tel que τ^n soit l'application identité ?
- **4.a.** Donner une forme fractionnaire $(\frac{p}{q}$ avec p, q entiers) du développent décimal périodique $3, \underline{15}...$
- **b.** Donner la forme décimale périodique de $\frac{9}{14}$.
- **c.** Calculer $3, \underline{15}... 2, \underline{726}...$ (détailler les calculs).
- **5.** Soient A et B deux énoncés. Comparer les tables de vérité de " $(\neg A)$ ou B" et de " $\neg (A \text{ ou } B)$ ". Peut on écrire l'expression " $\neg A \text{ ou } B$ "?

6.1. A, B désignent deux énoncés. Pour que $A \Rightarrow B$ soit vrai,

a. faut il que A soit vrai ?

 \mathbf{c} . faut il que B soit vrai?

e. faut il que A soit faux ?

b. suffit il que A soit vrai?

d. suffit il que B soit vrai ?

 \mathbf{f} . suffit il que A soit faux ?

6.2 Un théorème bien connu dit que toute suite convergeante de nombres réels est majorée.

g. Pour qu'une suite de nombres réels soit majorée, faut il qu'elle converge ?

h. Pour qu'une suite de nombres réels soit majorée, suffit il qu'elle converge ?

i. Pour qu'une suite de nombres réels soit convergente, faut il qu'elle soit majorée ?

j. Pour qu'une suite de nombres réels soit convergente, suffit il qu'elle soit majorée ?

k. Faut il qu'une suite de nombres réels soit non majorée pour qu'elle ne converge pas ?

1. Suffit il qu'une suite de nombres réels soit non majorée pour qu'elle ne converge pas ?

6.3 On note (E) l'énoncé

$$(S \circ uR) \Rightarrow \Big(\big((Q \Rightarrow P) \Rightarrow (R \Rightarrow Q) \big) \circ u(R \Rightarrow P) \circ u(R \Rightarrow S) \Big)$$

où P, Q, R, S sont des variables de type énoncé.

m. Combien de lignes a la table de vérité de (E) comme fonction des valeurs de vérité de P,Q,R,S?

n. On suppose dans cette question que R est vrai. Soit A un énoncé, à quelle formule simple en A équivaut $R \Rightarrow A$ au sens des tables de vérité ? A quelle formule simple en P, Q, S se réduit (E) ?

o. On suppose maintenant que R est faux. A quoi se réduit $R \Rightarrow A$ comme fonction de A? Que peut on dire de la valeur de vérité de (E)?

p. Pour quelles valeurs de vérité de P, Q, R, S a t-on (E) faux ?

q. Un enseignant fait lui-même le calcul algébrique dans $(\mathbb{F}_2, +, x)$ de (E) et trouve l'expression

$$\overline{R} + (1 + \overline{P})(1 + \overline{Q})(1 + \overline{S})$$

Ce calcul est il compatible avec votre réponse à la question (p)?