Exercices sur la dualité

On désigne par K un corps commutatif, et par $\mathbf{M}_n(K)$ l'espace des matrices carrées d'ordre n à coefficients dans K.

1) Soient \mathcal{F} l'espace vectoriel réel des fonctions de \mathbb{R} dans \mathbb{R} , et V un sous-espace vectoriel de dimension finie de \mathcal{F} . Les formes linéaires $f \mapsto f(x)$, pour $x \in \mathbb{R}$, engendrent-elles V^* ?

Application: montrer qu'il existe des nombres réels x_1, \ldots, x_n tels que l'application $f \mapsto (f(x_1), \ldots, f(x_n))$ soit un isomorphisme de V sur \mathbb{R}^n .

- 2) Soit E un espace vectoriel de dimension finie sur K, et $\varphi, \varphi_1, \ldots, \varphi_n$ des formes linéaires sur E. Montrer que φ est combinaison linéaire de $\varphi_1, \ldots, \varphi_n$ si et seulement si $\operatorname{Ker} \varphi \supset \bigcap \operatorname{Ker} \varphi_i$.
 - 3) Quel est le déterminant de l'endomorphisme $A \mapsto {}^{t}A$ de $\mathbf{M}_{n}(K)$?
 - 4) Soient $A \in \mathbf{M}_n(K)$. La matrice ^tA est-elle semblable à A?
- 5) a) Pour $L \in \mathbf{M}_n(K)$, on note t_L la forme linéaire $A \mapsto Tr(LA)$ sur $\mathbf{M}_n(K)$. Montrer que l'application $L \mapsto t_L$ est un isomorphisme de $\mathbf{M}_n(K)$ sur son dual.
- b) Soit ℓ une forme linéaire sur $\mathbf{M}_n(K)$, telle que $\ell(AB) = \ell(BA)$ pour A, $B \in \mathbf{M}_n(K)$. Montrer que ℓ est proportionnelle à la trace (utiliser a).
- c) En déduire que le sous-espace de $\mathbf{M}_n(\mathbf{K})$ engendré par les matrices de la forme $\mathbf{AB} \mathbf{BA}$ est l'ensemble des matrices de trace nulle.