Item: $\mathbf{1}$ of $\mathbf{3} \mid \underline{\text { Return to headlines }|\underline{\text { Next }}| \underline{\text { Last }} \quad \underline{\text { MSN-Support }} \mid \underline{\text { Help }}, ~}$
Select alternative format: BibTeX $\mid \underline{\text { ASCII }}$

MR0264551 (41 \#9143)
Gromoll, Detlef; Meyer, Wolfgang

Periodic geodesics on compact riemannian manifolds.

J. Differential Geometry 31969 493-510
53.72

Dolivery

References: 0
Reference Citations: 6
Review Citations: 21
The authors make an essential contribution to the problem of the existence of "many" prime closed geodesics on a compact Riemannian manifold M. For simplicity, let us assume that $\pi_{1} M=0$, which is the most difficult part anyhow. Associated to M we have the Hilbert manifold $\Lambda M=$ $H^{1}\left(S^{1}, M\right)$ of H^{1}-maps of the circle into M, the so-called space of parametrized closed curves [cf. the reviewer, Ann. of Math. (2) 89 (1969), 69-91; MR0239624 (39\#981)]. The authors denote ΛM by ΩM. On ΛM there are naturally given a Riemannian metric and a differentiable function E, the energy integral, which satisfy the condition (C) of Palais and Smale and therefore permit one to develop the Morse-Ljusternik-Šnirel'man theory on ΛM with respect to E. The critical points of E are the closed geodesics. The main result of the paper is the following theorem: If $(*)$ the sequence $\left\{b_{k}(\Lambda M)\right\}$ of real Betti numbers of ΛM is not bounded, then there exists an infinite number of prime closed geodesics on M, i.e., closed geodesics on M that are not coverings of other closed geodesics. To understand the beautiful simple basic idea of the proof, the reader should first consider the case that all closed geodesics on M are non-degenerate. In that case, the Morse inequalities and Bott's formula [R. Bott, Comm. Pure Appl. Math. 9 (1956), 171-206; MR0090730 (19,859f)] for the index of a covering of a prime closed geodesic imply immediately: The existence of only a finite number of prime closed geodesics on M contradicts the hypothesis $(*)$. The bulk of the paper is devoted to the general case where one allows degenerate closed geodesics. Here the authors rely upon an earlier paper [Topology 8 (1969), 361-369; MR0246329 (39\#7633)] in which they define a local invariant of a degenerate closed geodesic.
It is easy to give examples of M for which $(*)$ is satisfied, but it is also clear that there are M where $(*)$ is not satisfied, e.g., M of the homotopy type of a symmetric space of rank 1 . The results of P. Klein quoted in the paper are not yet proved in full generality. In any case it seems reasonable to say that the hypothesis $(*)$ means for M that its real cohomology ring must contain a subring
isomorphic to the product of the cohomology of two manifolds.

Reviewed by W. Klingenberg

(c) Copyright American Mathematical Society 1971, 2005

