Mathematical Statistics

course # 11

Damien Garreau

Université Côte d'Azur

April 16, 2020
Recap (I)

▶ Gaussian linear model with centered data:

\[Y = X\beta^* + \epsilon \in \mathbb{R}^n, \]

with \(\epsilon \sim \mathcal{N}(0, \sigma^2 I_n) \), \(X \in \mathbb{R}^{n \times d} \), and \(\beta^* \in \mathbb{R}^d \)

▶ Linear regression:

\[\hat{\beta}_{\text{LS}} \in \arg\min_{\beta \in \mathbb{R}^d} \left\{ \| Y - X\beta \|^2 \right\}. \]

▶ solution given by

\[\hat{\beta}_{\text{LS}} = (X^T X)^\dagger X^T Y, \]

where \(\dagger \) denotes the generalized inverse

▶ Ridge regression:

\[\hat{\beta}_{\text{Ridge}} \in \arg\min_{\beta \in \mathbb{R}^d} \left\{ \| Y - X\beta \|^2 + \lambda \| \beta \|^2 \right\}, \]

with \(\lambda > 0 \)
Recap (II)

- Solution given by
 \[\hat{\beta}_{\text{Ridge}} = (X^\top X + \lambda I_d)^{-1} X^\top Y. \]

- Bias-variance tradeoff:

![Bias-variance trade-off for ridge regression](image)

- Graph showing the bias-variance trade-off for ridge regression with the equation:
 \[\text{MSE} = \text{bias}^2 + \text{variance} \]
 - Orange line represents \(\text{bias}^2 \)
 - Blue line represents variance
 - Black line represents MSE = \(\text{bias}^2 + \text{variance} \)
 - The graph illustrates that as \(\lambda \) increases, the bias decreases, and the variance increases, leading to a trade-off between bias and variance.
Outline

1. Least Absolute Shrinkage and Selection Operator
2. Introduction to statistical learning
3. Cross-validation
1. Least Absolute Shrinkage and Selection Operator
The Lasso (I)

▶ **Idea:** Least Absolute Shrinkage (Lasso) replaces the L^2 norm by the L^1 norm (Tibshirani, Regression Shrinkage and Selection via the Lasso, 1986)

▶ namely, for some $\lambda > 0$, find

$$\hat{\beta}_{\text{Lasso}} \in \arg\min_{\beta \in \mathbb{R}^d} \left\{ \| Y - X \beta \|^2 + \lambda \| \beta \|_1 \right\}.$$

▶ recall that $\| x \|_1 = \sum_{i=1}^d |x_i|$:

![L2 ball](image1.png) ![L1 ball](image2.png)
The Lasso (II)

- recall that we are looking for:
 \[\hat{\beta}_{\text{Lasso}} \in \arg \min_{\beta \in \mathbb{R}^d} \left\{ \| Y - X\beta \|^2 + \lambda \| \beta \|_1 \right\}. \]
 \hspace{1cm} (1)

- equivalent formulation (see TD):
 \[\hat{\beta}_{\text{Lasso}} \in \arg \min_{\beta \in \mathbb{R}^d} \| Y - X\beta \|^2 \]
 subject to \(\| \beta \|_1 \leq t \).

- **Question:** how do we find \(\hat{\beta}_{\text{Lasso}} \)?

- **Problem:** (1) is convex, but **not differentiable**

- several possibilities:
 - subgradient methods
 - Least-angle regression: also gives the regularization path (for the same computational cost)
The Lasso (III)

Lasso regularization path

\[\hat{\beta}_i \]

\[t \]

\[0 \quad 2 \quad 4 \quad 6 \quad 8 \quad 10 \]

\[0 \quad 1 \quad 2 \quad 3 \quad 4 \]

\[-3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \]

\[0 \quad 2 \quad 4 \quad 6 \quad 8 \quad 10 \]
The Lasso (IV)

- **Intuition:** L^1 norm promotes sparsity (sparse = “parcimonieux”)

![Graph showing L^2 and L^1 balls](image)

- in red, the constraint $||\beta|| \leq t$
- in black the level sets of $||Y - X\beta||^2$
- L^1 ball has many facets and edges: often the solution has many zero coordinates!
The Lasso (IV)

▶ let us define
\[\|\beta\|_0 = |\{i \text{ s.t. } \beta_i \neq 0\}|, \]
the number of non-zero coordinates of vector β

▶ **Definition:** when
\[\|\beta\|_0 \ll d, \]
we say that β is *sparse* ("parcimonieux")

▶ **Bet on sparsity:** assume that the groundtruth is sparse
 ▶ if it is, we do well with the Lasso
 ▶ if not, then no method is going to perform well

▶ also important to have a **variable selection** method

▶ quickly identify which covariates are important
The Lasso (V)

- let us try to understand why in the orthonormal case \((X^\top X = I_d)\)
- we write

\[
R(\beta) = \|Y - X\beta\|^2 + \lambda \|\beta\|_1 \\
= (Y - X\beta)^\top (Y - X\beta) + \lambda \|\beta\|_1 \\
R(\beta) = Y^\top Y - 2\beta^\top X^\top Y + \beta^\top X^\top X\beta + \lambda \|\beta\|_1
\]

- recall that \(\hat{\beta}^{LS} = (X^\top X)^{-1}X^\top Y = X^\top Y\):

\[
R(\beta) = -2\beta^\top \hat{\beta}^{LS} + \beta^\top \beta + \lambda \|\beta\|_1 + \text{cst} \\
= \sum_{j=1}^{d} \left\{-2\beta_j\hat{\beta}_j^{LS} + \beta_j^2 + \lambda |\beta_j|\right\} + \text{cst}
\]
The Lasso (VI)

that is,

\[R(\beta) = \sum_{j=1}^{d} R_j(\beta_j) + \text{cst}, \]

with \(R_j(x) = -2\hat{\beta}_j^{LS}x + x^2 + \lambda |x| \)

let us look at a coordinate such that \(\hat{\beta}_j^{\text{Lasso}} \neq 0 \)

then we can differentiate:

\[\frac{\partial R(\beta)}{\partial \beta_j} = \frac{\partial R_j(\beta_j)}{\partial \beta_j} = -2\hat{\beta}_j^{LS} + 2\beta_j + \lambda \text{sign} (\beta_j) \]

\(\hat{\beta}_j^{\text{Lasso}} \) solves

\[-2\hat{\beta}_j^{LS} + 2x + \lambda \text{sign} (x) = 0. \]
The Lasso (VII)

- a nonzero solution must satisfy, depending on its sign,
 \[-2\hat{\beta}_j^{LS} + 2x + \lambda = 0 \quad \text{or} \quad -2\hat{\beta}_j^{LS} + 2x - \lambda = 0.\]

- that is,
 \[x = \hat{\beta}_j^{LS} - \frac{\lambda}{2} \quad \text{if} \quad x > 0 \quad \text{or} \quad x = \hat{\beta}_j^{LS} + \frac{\lambda}{2} \quad \text{if} \quad x > 0.\]

- we deduce the three possibilities:
 \[
 \begin{cases}
 \hat{\beta}_j^{LS} - \frac{\lambda}{2} > 0 & \Rightarrow \hat{\beta}_j^{Lasso} = \hat{\beta}_j^{LS} - \frac{\lambda}{2} \\
 \hat{\beta}_j^{LS} + \frac{\lambda}{2} < 0 & \Rightarrow \hat{\beta}_j^{Lasso} = \hat{\beta}_j^{LS} + \frac{\lambda}{2} \\
 \hat{\beta}_j^{LS} \in \left(-\frac{\lambda}{2}, \frac{\lambda}{2}\right) & \Rightarrow \hat{\beta}_j^{Lasso} = 0
 \end{cases}
 \]

In short,

\[
\hat{\beta}_j^{Lasso} = \text{sign} (\hat{\beta}_j^{LS}) \cdot \left(\left|\hat{\beta}_j^{LS}\right| - \frac{\lambda}{2}\right)^+.
\]
The Lasso (VIII)

Soft thresholding operator
2. Introduction to statistical learning
we are given an i.i.d. sample \((X_i, Y_i)_{1 \leq i \leq n}\) distributed according to a distribution \(P\) on \(\mathbb{R}^d \times \mathbb{R}\)

Goal: construct a good predictor \(\hat{f} : \mathbb{R}^d \rightarrow \mathbb{R}\)

More precisely: construct \(\hat{f}\) from the observations \(X_1, \ldots, X_n\) such that, for any new observation \(x_{\text{new}}\), the prediction \(\hat{Y} = \hat{f}(x_{\text{new}})\) is close to the groundtruth \(y_{\text{new}}\), where \((x_{\text{new}}, y_{\text{new}}) \sim P\)

Question: what does “close” mean?

we quantify the quality of prediction with a loss function

\[
\ell : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_+
\]

\[(y, \hat{y}) \mapsto \ell(y, \hat{y})\]

generally, we require

\[
\ell(y, y) = 0
\]

\[
\ell \geq 0
\]

\[
\ell(\cdot, \cdot) \text{ is symmetric}
\]
a typical choices for regression is the **squared loss**:
\[\ell(y, \hat{y}) = (y - \hat{y})^2 \]

Classical losses for regression

- **squared loss**
- **absolute deviation**
- **Huber loss**
given a loss function ℓ, we can look at the quality of our predictor

given a realization (x_i, y_i), we first define the **generalization error** (also **test error**) of $\hat{f} = \hat{f}(x_1, \ldots, x_n)$ by

$$E_{\text{test}} = \mathbb{E} \left[\ell(Y, \hat{f}(X)) \mid X_1 = x_1, \ldots, X_n = x_n \right].$$

in the previous display, only the new observation (X, Y) is random

Intuition: how well our predictor does on *new, unseen* data

this is truly what we want to minimize!

unfortunately, we do not have access to E_{test}

best we can do: **empirical risk** (or **train error**)

$$E_{\text{train}} = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \hat{f}(x_i)).$$
Statistical learning (IV)

- classical strategy: **empirical risk minimization** (ERM) and variations thereof:

\[\hat{f} \in \arg\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i)), \]

where \(\mathcal{H} \) is a function space

- this is the second restriction: we cannot choose the best predictor of all possible functions!

- **Example (i)**: ordinary least squares, we pick

\[\hat{\beta}^{\text{LS}} \in \arg\min_{\beta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^\top x_i)^2, \]

which is ERM with \(\ell = \) squared loss and \(\mathcal{H} = \) linear functions
Example (ii): ridge regression, for $t > 0$ we pick

$$\hat{\beta}_t^{\text{Ridge}} \in \arg \min_{\beta \in \mathbb{R}^d, \|\beta\| \leq t} \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^T x_i)^2,$$

which is ERM with $\ell = \text{squared loss}$ and $\mathcal{H} = \text{linear functions of prescribed } L^2 \text{ norm}$

Example (iii): Lasso, for $t > 0$ we pick

$$\hat{\beta}_t^{\text{Lasso}} \in \arg \min_{\beta \in \mathbb{R}^d, \|\beta\|_1 \leq t} \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^T x_i)^2,$$

which is ERM with $\ell = \text{squared loss}$ and $\mathcal{H} = \text{linear functions of prescribed } L^1 \text{ norm}$
Statistical learning (VI)

- Slightly different from statistics!
- Recall the Gaussian linear model

\[Y = X\beta^* + \varepsilon, \]

with \(\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n) \)

- **Statistics** is about inference: we want to find \(\hat{\beta} \) that is as close as possible to \(\beta^* \), and the key quantity is **mean squared error**

\[\text{MSE}(\hat{\beta}) = \mathbb{E} \left[||\hat{\beta} - \beta^*||^2 \right]. \]

- **Statistical learning** is about generalization: we want to find \(\hat{\beta} \) that predicts well on unseen data, and the key quantity is **test error**

\[E_{\text{test}} = \mathbb{E} \left[\ell(Y, \hat{f}(X)) \mid X_1 = x_1, \ldots, X_n = x_n \right]. \]
But what is the problem with ERM?

train error consistently decrease with model complexity!

thus if we just minimize E_{train}, **we will always choose the model with highest complexity**

generally, this is bad in terms of test error (**overfitting**)

let us first see several example to understand model complexity

Example (i): 1D polynomial regression, we assume that

$$ y_i = \beta_0 + \beta_1 x_i + \cdots + \beta_{d-1} x_i^{d-1} + \epsilon_i, $$

with ϵ_i i.i.d. $\mathcal{N}(0, \sigma^2)$

in this example, d is a good measure of the model complexity: higher d gives higher degree polynomials that **can fit any data**
Statistical learning (VIII)

Polynomial regression in dimension 1

- groundtruth
- degree = 0
- degree = 1
- degree = 2
- degree = 10

23
Example (ii): ridge regression

Intuition: take the trace of the hat matrix

in linear regression, this is the rank of \(X \), \(\approx \) number of independent fixed predictors (prove this!)

in the case of ridge regression,

\[
\text{trace}(H_\lambda) = \text{trace}\left(X(X^\top X + \lambda I_d)^{-1}X^\top \right) \\
= \text{trace}\left(U\Sigma(\Sigma \Sigma^\top + \lambda I_d)^{-1}\Sigma^\top U^\top \right) \\
= \sum_{j=1}^{d} \frac{\sigma_j^2}{(\sigma_j^2 + \lambda)^2} \left(= \frac{d}{(\lambda + 1)^2} \text{ for orthonormal data} \right)
\]

we call it degrees of freedom and write

\[
df(\lambda) = \sum_{j=1}^{d} \frac{\sigma_j^2}{(\sigma_j^2 + \lambda)^2}.
\]
Train and test error for ridge regression

- **Train error**
- **Test error (est.)**
Example (iii): the Lasso

possible to define a similar notion:

$\text{df}(\hat{y}_i) = \frac{1}{\sigma^2} \sum_{i=1}^{n} \text{Cov}(\hat{y}_i, y_i)$.

similar picture (figure from Hastie, Tibshirani, Friedman, The Elements of Statistical Learning, 2011)
Statistical learning (XII)

- short summary: only relying on train error can lead to overfitting, what we really want to optimize is the test error
- **Disclaimer!** this is not the whole picture
- some models are able to generalize well even when the complexity is over the roof
- especially true when they have some inductive bias, allowing to choose the “best” solution among many
- conceptualized recently as the **double descent** paradigm (Belkin, Hsu, Ma, Mandal, Reconciling modern machine learning practice and the bias-variance trade-off, 2018)
- what is always true: if the model complexity is too low, then underfitting (high bias)
Statistical learning (XIII)

- double descent behavior for random features with ReLU activation

(figure from Mei and Montanari, The generalization error of random features regression: Precise asymptotics and double descent curve, 2019)
3. Cross-validation
Cross-validation (I)

- model \hat{f} trained on
 \[x_{\text{train}} = \{(x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}, 1 \leq i \leq n\} . \]

- we assume that our model \hat{f}_λ depends on a parameter λ
- we want to find λ that minimizes the test error
- **Idea:** estimate the test error by creating a test set from the train set
- we call this new set the **validation set**
- **Ideally,** with enough data, the picture is the following:
Cross-validation (II)

- **Problem:** in general, data is scarce
- we want to use all the available data
- **Idea:** K-fold cross-validation ("validation croisée"):
 - split the training set in K parts
 - for each $i \in \{1, \ldots, K\}$, train on $K - 1$ parts
 - and compute the test error on the remaining part
 - aggregate the errors
- typical choice: $K = 5, 10$ or n (*leave-one-out*)
- schematically:
Cross-validation (III)

- more details: \(\kappa : \{1, \ldots, n\} \rightarrow \{1, \ldots, K\} \) indexing function
- \(\kappa(i) \) tells us in which box observation \(i \) belongs
- we define \(\hat{f}^{-k} \) the model trained on all observations not in box \(k \)
- then the cross-validation estimate of the prediction error is

\[
CV(\hat{f}) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \hat{f}^{-\kappa(i)}(x_i)).
\]

- when our model depends on a parameter \(\lambda \), we define similarly

\[
CV(\hat{f}, \lambda) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \hat{f}_{\lambda}^{-\kappa(i)}(x_i)).
\]

- then \(\lambda \mapsto CV(\hat{f}, \lambda) \) is an estimate of the test error curve, and we can choose \(\hat{\lambda} \) minimizing \(CV(\hat{f}, \lambda) \)
Cross-validation (IV)

- **Computational cost of cross-validation:** $K \times$ cost of training our model on $(1 - 1/K)n$ points + $n \times$ cost of prediction
- this can be **huge** and generally constrains K to small values
- but for small K, we are estimating the **averaged test error**

$$
\overline{E}_{\text{test}} = \mathbb{E}_{X_1, \ldots, X_n}[E_{\text{test}}],
$$

since the training sets for \hat{f}^{-k} are quite different
- generally we are interested in E_{test}, pushing for larger K
- $K = 5$ or 10 is a good in-between (empirically)
- **Remark:** in certain cases, it is possible to compute CV faster (see TD)