4.1 Fisher information

Exercise 4.1 (Additivity). Consider X_1, \ldots, X_n independent random variables. Show that the Fisher information is additive. That is, show that the Fisher information of the sample (X_1, \ldots, X_n) is given by

$$I_\theta = I_\theta^{(1)} + \cdots + I_\theta^{(n)},$$

where $I_\theta^{(i)}$ is the Fisher information corresponding to the random variable X_i.

Exercise 4.2 (Bernoulli random variables). Let X_1, \ldots, X_n be an i.i.d. sample of a Bernoulli random variable of parameter θ. Show that the likelihood can be written $p_\theta(x) = \theta^x (1 - \theta)^{1-x}$ in that case. Compute the Fisher information. What happens when $\theta \to 0$ or 1? Does it correspond to the intuition given in the lecture? *Hint:* Use the equivalent formulation $I_\theta = -E_\theta \left[\frac{\partial^2}{\partial \theta^2} \log p_\theta \right]$ and use the previous exercise.

Exercise 4.3 (Poisson random variables). Consider i.i.d. Poisson random variables of parameter $\lambda > 0$. In that case, recall that the likelihood is $p_\lambda(k) = \frac{\lambda^k e^{-\lambda}}{k!}$. Show that the Fisher information is $I_\lambda = n/\lambda$.

Exercise 4.4 (Gaussian random variables). Consider i.i.d. Gaussian random variables of parameter $\theta = (\mu, \sigma^2)$. Show that the Fisher information in that case is

$$I_\theta = n \begin{pmatrix} \frac{1}{\sigma^2} & 0 \\ 0 & \frac{1}{\sigma^4} \end{pmatrix}.$$

Hint: look closely at our choice of parameters.

Exercise 4.5 (Link with Kullback-Leibler). Show that the Fisher information matrix is the Hessian of the Kullback-Leibler divergence, that is,

$$\forall i, j, \quad (I_{\theta_0})_{i,j} = \frac{\partial^2}{\partial \theta_i \partial \theta_j} D_{\text{KL}}(P_{\theta_0} \parallel P_\theta) \bigg|_{\theta = \theta_0}.$$

4.2 Cramér-Rao

Exercise 4.6 (Gaussian distribution). Let X_1, \ldots, X_n be an i.i.d. sample from $N(\mu, \sigma^2)$. Find the Cramér-Rao lower bound for an unbiased estimator of

1. μ when σ^2 is known;
2. σ^2 when μ is known;
3. μ when σ^2 is unknown;
4. σ^2 when μ is unknown;
5. the coefficient of variation σ/μ.

In cases 1. and 2., can you provide an estimator that achieves the bound?

Exercise 4.7 (Trinomial distribution). Let X_1, \ldots, X_n be an i.i.d. sample from the trinomial distribution. The likelihood of observation (x_1, x_2) is given by

$$p_\theta(x) = \frac{m!}{x_1!x_2!(m-x_1-x_2)!} \theta_1^{x_1} \theta_2^{x_2} (1 - \theta_1 - \theta_2)^{m-x_1-x_2},$$

with known parameter $m \in \mathbb{N}$ and unknown parameters $\theta = (\theta_1, \theta_2)$. Find lower bounds for the variance of unbiased estimators of θ_1 and θ_2. *Hint:* compute the Fisher information matrix and use the following formula to invert it in closed-form:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}. $$