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Abstract

The velocity profiles under crest of a total of 62 different steep wave events in deep water are measured in laboratory using particle image

velocimetry. The waves take place in the leading unsteady part of a wave train, focusing wave fields and random wave series.

Complementary fully nonlinear theoretical/numerical wave computations are performed. The experimental velocities have been put on a

nondimensional form in the following way: from the wave record (at a fixed point) the (local) trough-to-trough period, TTT and the maximal

elevation above mean water level, hm of an individual steep wave event are identified. The local wavenumber, k and an estimate of the wave

slope, e are evaluated from v2=ðgkÞ ¼ 1 þ e2; khm ¼ e þ 1
2
e2 þ 1

2
e3; where v ¼ 2p=TTT and g denotes the acceleration of gravity. A

reference fluid velocity, e
ffiffiffiffi
g=k

p
is then defined. Deep water waves with a fluid velocity up to 75% of the estimated wave speed are measured.

The corresponding khm is 0.62. A strong collapse of the nondimensional experimental velocity profiles is found. This is also true with the

fully nonlinear computations of transient waves. There is excellent agreement between the present measurements and previously published

Laser Doppler Anemometry data. A surprising result, obtained by comparison, is that the nondimensional experimental velocities fit with the

exponential profile, i.e. eky; y the vertical coordinate, with y ¼ 0 in the mean water level.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Enhanced evidence and description of the kinematics

during steep wave events at sea are requested by the offshore

and ocean engineering industry. The velocities in

steep waves are required for subsequent analysis of loads

on, e.g. ships, offshore platforms, tension legs and risers.

Despite the numerous studies on the subject, proper

knowledge of kinematics of steep irregular ocean waves is

still lacking. This provides the motivation of the present

investigation. We compare experimental velocity fields due

to sets of random wave trains, steep wave events due to

focusing waves, steep wave events due to the unsteady

leading part of a periodic wave train, and the velocities in

computations of steep transient waves. We compare precise

Particle Image Velocimetry (PIV) measurements in labora-

tory and a fully nonlinear modeling. The velocity immedi-

ately below the wave crest is focused.

While irrotational flow theory may predict the wave

kinematics up to breaking, the theory has shortcomings

beyond this limit. This is where experiments become

particularly valuable since they are not limited by wave

breaking. For example, a series of breaking wave events

may take place during the long irregular wave tests

undertaken here, recording several strong wave events.

1.1. Previous experimental works

We begin with a short summary of previous experimental

work. Large scale observations of the kinematics of storm

waves are given by, e.g. Buckley and Stavovy [1] and

Forristall [2]. LDV (Laser Doppler Velocimetry) laboratory

experiments are carried out, most notably by Skjelbreia et al.

[3,4], Kim et al. [5], Longridge et al. [6] and Baldock et al.

[7]. These works include descriptions of theoretical models.

In the large scale FULWACK experiment [2], the main

purpose was to obtain velocity measurements at locations

relatively high-up in the waves. They used current meters

located at 26, 16, 6 ft (8.2, 5, 1.9 m) above mean sea level.

The largest observed speed at the top current meter was

20.62 ft/s (6.5 m/s).

Kim et al. [5] measured the kinematics due to focusing

waves in a laboratory wave tank with moderately deep water
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using LDA (Laser Doppler Anemometry). Recordings were

made at three levels between the mean water line and the

crest. Their most extreme wave had an estimated wave slope

of 0.28. Very large horizontal velocity was documented at

the crest of the wave, up to 64% of the measured phase

velocity. (The effect of a finite water depth is rather

pronounced in the experiments.) They also estimated the

acceleration field including the convective acceleration

using finite difference technique. Comparisons were made

with stretching methods, which they found to greatly

underestimate the fluid velocity at the crest of the transient

wave.

LDV measurements of steep wave events of an irregular

sea, at several vertical positions of the wave field, were

performed by Skjelbreia et al. [3,4]. The local wave slope

was up to about 0.25. Major emphasis was given to the

surface zone. They measured the fluid velocity at levels

close to the crest, half way and one-quarter way between the

mean water level and crest, concluding that the stretching

method of Wheeler [8] compared better with the measure-

ments of the horizontal velocity below wave crests than

Stokes’ fifth-order model. No accelerations were obtained.

Their experiments were related to small and moderate

waves—with relatively few measurements above mean

water level. (Our results do not support the Wheeler

stretching method.)

Laboratory measurements of wave kinematics of four

irregular wave trains using LDA were described by

Longridge et al. [6]. They compared the results with a

hybrid wave model. The irregular wave fields were

produced using the Pierson-Moskowitz (PM) and the

JONSWAP spectra. The local wave slope in the wave

events they considered was in the range 0.11–0.19. The

paper focused on the velocity and acceleration fields

induced by relatively steep wave events. The fluid velocity

was measured up to about half way between the mean water

level and the crest. The measurements were compared with

linear extrapolation, Wheeler stretching and a hybrid wave

model, finding that the linear extrapolation was the superior

one for the waves with strongest nonlinearity. Accelerations

were obtained below the mean water line.

Baldock et al. [7] performed rather detailed and precise

sets of wave tank measurements of focusing waves. Both the

surface elevation and the induced fluid velocities were

presented. The fluid velocities were obtained using LDA.

We estimate the wave slope of their largest wave to be

about 0.29 (using the procedure given in Section 2.4).

Baldock et al. noted that their measured velocities close to

the wave crest significantly exceeded the previous velocity

recordings by, e.g. Skjelbreia et al. [3,4]. They further noted

that their measurements could not be explained by

stretching models, for example. (We find here an excellent

agreement between the present PIV measurements of

several sets of steep wave events and the LDA measure-

ments documented by Baldock et al.)

1.2. Plunging breakers

Strong plungers were observed in the experimental

works by Kim et al. [5] (kh ¼ 2:0; khm ¼ 0:33; where k

denotes wavenumber, h the water depth and hm the maximal

elevation of the event) and Skyner [9] (kh ¼ 2:6;

khm ¼ 0:36). In the experiments by Skyner the recorded

fluid velocity was found to exceed the (nonlinear) wave

speed, although the latter is not well defined for strongly

nonlinear waves. We note that the velocity field beneath

unsteady two-dimensional water waves have been accu-

rately computed up to the commencement of overturning by

Dold and Peregrine [10] and Peregrine [11]. Recent

experiments on a spilling breaker show that some water

exceeds the wave speed, but that the mean velocity may well

be smaller [12].

Although plunging breakers are not so common in deep

water, these may occur. In the steepest wave event we have

observed in the present experiments, the value of kh is 5.

This wave is developing into a weak breaker. The estimated

local wavenumber times maximal elevation of the event is

khm ¼ 0:62 and the largest measured fluid velocity under

crest is 75% of the phase velocity. Data for steep wave

events are compared in Section 5.2.

1.3. Shortcomings of previous work and points requested

Theories of steady and random wave fields were

reviewed by Gudmestad [13] concluding that regular

waves are very accurately predicted by nonlinear theory.

He noted that the kinematics in random seas, or in sea states

where unsteady very steep waves occur, is less well

predicted, however. Shortcomings of previous work and

main points requested include: there is lack of resolution in

velocity field measurements above the mean water level,

particularly in the top and near the tip of the wave. Denser

velocity measurements are required to reduce the uncer-

tainty in the acceleration estimates. More laboratory

(and full scale) measurements are requested to complement

the relatively scarce selection of waves that are studied in

previous works.

An important point is that most of the experiments so far

have been carried out for relatively small or moderately

steep waves. Several of these measurements are found to

compare well with predictions using the second-order

model for irregular seas [14] or extensions of this model

[15–17]. A good agreement between model and experiment

is not seen for very steep waves, however.

The Wheeler stretching method, used e.g. in engineering

practice in the Gulf of Mexico, is concluded to give relevant

predictions of the horizontal velocity below a wave crest.

The practice is based on the experimental results by

Skjelbreia et al. [3,4]. In contrast to this, Gudmestad [13]

noted that velocities under steep random waves compare

less well with the stretching models. Measurements then

show larger velocities under the crest than predicted by
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models. According to Gudmestad, the kinematics of freak

waves and waves which are near breaking, is not well

predicted by any existing theory, and that further research is

needed with respect to the kinematics of these waves.

A model that takes into account the fully nonlinear

wave–wave interaction is requested.

1.4. Focus of the present work

Our focus is the kinematics of steep wave events which

may occur on the surface of the ocean. We compare

theoretical and numerical predictions using a recent fully

nonlinear wave model (which has no limitations with regard

to nonlinearity, dispersion or resolution) with high resolu-

tion PIV experiments in a laboratory wave tank. We

consider several different wave scenarios in a total of 62

different steep wave events in the wave tank. The total

number of PIV/wave experiments reported here is 122,

counting all repetitions which are carried out. Our main

objective is to identify the velocity profile under crest of a

steep wave event. The wave event is a result of a process on

the surface of the fluid where the wave field, from an initial

state, has developed due to nonlinearity and dispersion. We

assume that this process has gone on during sufficiently long

time such that the initial conditions are ‘forgotten’. We here

focus on the kinematics of several steep wave events

resulting from four different generation procedures. Three

of the procedures are pursued experimentally in the

laboratory. A fourth one results from numerical simulations.

Most of the experimental waves can be considered to be

deep water waves (kh larger than about 3). In a few of the

experiments the finite depth of the water introduces a small,

systematic change in the wave profiles compared to the deep

water results, however. This typically occurs for kh , 2 and

is discussed in Section 4.3.3.

We compare our measurements with those in Refs. [5,7,

9]. We further discuss the large-scale observations of the

FULWACK experiment in view of the present results, see

Section 5. The waves studied here are significantly larger

than the waves documented in Refs. [3,4,6], and compari-

sons with these works are not performed.

We aim at a general way to characterize the steep wave

events in the experiments. The purpose is to interpret and

communicate the results. More precisely, from the wave

record we identify a local wave period and a maximal

excursion of an individual steep wave event. From these two

parameters we provide an estimate of the local wave slope,

the wavenumber and a characteristic fluid velocity of the

event. The procedure is documented in full in Section 2.4.

2. Theoretical models

Third-order Stokes waves, fully nonlinear simulations of

Stokes waves and a general fully nonlinear, unsteady wave

model provide references for the experiments. The models

are first discussed.

2.1. Third-order Stokes waves

The theory of third-order Stokes waves is valid for

periodic progressive irrotational wave motion with a

moderate wave slope in deep water. Let {x; y; t} be the

horizontal, upward vertical and time variables, respectively,

and let the mean water level be at y ¼ 0 and the free surface

at y ¼ h: Let f denote the velocity potential such that

7f! 0 as y !21: Denoting {g; k;v} the acceleration due

to gravity, the wavenumber and the angular frequency, a

variant of Stokes’ third-order approximation reads

kfffiffiffiffi
g=k

p ¼ e eky sin uþ Oðe4Þ; ð1Þ

kh ¼ 1 þ
1

8
e2

� �
e cos uþ

1

2
e2 cos 2u

þ
3

8
e3 cos 3uþ Oðe4Þ; ð2Þ

v2

gk
¼ 1 þ e2 þ Oðe3Þ; ð3Þ

khm ¼ e þ
1

2
e2 þ

1

2
e2 þ Oðe4Þ; ð4Þ

where u ¼ kx 2 vt denotes the phase function and the latter

equation relates e to the maximum surface elevation times

the wavenumber. (In the expansion presented here the

amplitude of the fundamental frequency of the fluid velocity

is chosen as small parameter. The half of the wave height is

determined by ½e þ 1
2
e3 þ Oðe4Þ�=k:)

Eq. (1) shows that an exact Stokes wave velocity field is

well approximated by linear theory, even for relatively steep

waves. For this reason, linear wave theory is widely used to

estimate the wave induced velocity field above and below

the mean water level. Indeed, the approximated velocity

potential (1) suggests that the velocity field below the crest

is almost self-similar (within a reasonable accuracy). It is

tempting to evaluate a dimensionless horizontal velocity

below the wave crest of the form u=ðe
ffiffiffiffi
g=k

p
Þ; where u denotes

the horizontal velocity.

2.2. Fully nonlinear Stokes waves

Exact (fully nonlinear) computations of (steady) Stokes

waves are included for illustrative purposes. The compu-

tations are facilitated by Fenton’s program [18] (providing

an accuracy of at least five digits for the results shown here).

The computations in Fig. 1a of the velocity profile below

crest are very close to the exponential profile when the wave

is moderately steep (e up to about 0.2). Such profiles have

also been experimentally obtained in PIV experiments for

wave slope up to 0.16 [19]. The theoretical results are far

from uniform when e is in the range 0.27–0.36 (Fig. 1a).
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We shall see below that the nondimensional experimental

velocities, with khm up to 0.62 (and e up to 0.46), agree

better with estimates from Stokes third-order solution than

with the fully nonlinear Stokes solution, for the steep waves.

The trick is to identify a local k and e of the unsteady wave

using the procedure of Section 2.4.

2.3. Fully nonlinear simulations of unsteady waves

In recent computations, employing a rapid fully non-

linear transient method, very steep wave events have been

obtained [20–22]. In brief, the theoretical/numerical

scheme integrates the prognostic equations. These result

from the kinematic and dynamic boundary conditions at the

free surface, i.e.

ht þ ~cx ¼ 0; ~ft þ ghþ
1

2

~f2
x 2 ~c2

x þ 2hx
~fx

~cx

1 þ h2
x

¼ 0;

where the ‘tildes’ denote the quantities evaluated at the free

surface y ¼ h; and c denotes the stream function. The

equation connecting the (scaled) normal velocity at the free

surface, ~cx; h and ~fx; is obtained by solving the Laplace

equation in the fluid domain. The resulting equation is on

the form

~cx ¼ H{ ~fx} þ ›x{h ~fx} þ ›x{H{hH{ ~fx}}}

þH
1

p

ð1

21

D2ðD 2 hxÞ ~f
0
x

1 þ D2

dx0

x0 2 x

(

2
1

p

ð1

21

DðD 2 hxÞ ~c
0
x

1 þ D2

dx0

x0 2 x;

)

where H denotes Hilbert transform, D ¼ ðh0 2 hÞ=ðx0 2 xÞ;
~f ¼ ~fðx; tÞ; ~f0 ¼ ~fðx0; tÞ; etc. The latter implicit equation

can be solved numerically very quickly via Fast Fourier

Transform and truncated integrations.

Numerical simulations of very steep (freak) waves are

obtained as in Refs. [21,22]: the initial state of the wave field

is specified into two steps. First an exact steady Stokes

wave, with wavenumber k0 and amplitude a0 (a0 half the

total wave height) was computed. Secondly, the surface

elevation and the tangential velocity at the surface were

multiplied by the ‘bell’ function such ½e0

ffiffi
2

p
a0k2

0ðx 2 x0Þ�;

where the parameter e0 determines the length of the packet.

The case e0 ¼ 1 corresponds to an exact soliton solution of

the nonlinear Schrödinger equation.

This initial condition, in the form of a localized wave

packet, is input to the fully nonlinear numerical scheme.

With a0k0 ¼ 0:091 and e0 ¼ 0:263 a very steep wave event

is produced after 155 wave periods. The maximal wave

elevation hm times k0 is then k0hm ¼ 0:29: Other relatively

steep wave events (with smaller k0hm) are produced using

the same procedure, with less strong initial conditions. The

computational domain involves 128 wavelengths and the

carrier wave is discretized over 32 nodes per wavelength.

This means that all harmonics up to the 15th are resolved,

and that 128 Fourier modes are included in the spectral band

½k0 2
1
2

k0; k0 þ
1
2

k0�:

The wave induced Stokes drift close to the free surface is

inherent in the fully nonlinear formulation. This is also true

with regard to a return flow beneath the wave group. The

latter contributes to an almost vanishing time-averaged

horizontal mass flux during the wave motion. This is

indicated in the fully nonlinear simulations by the integral of

the stream function along the free surface, i.e.
Ð1
21

~c 	

dx ¼
Ð1
21

Ðh
21 u dydx: This integral is an order of

magnitude smaller than the estimated Stokes drift indicating

that a return flow beneath the wave group balances the

Stokes drift, approximately. The return flow is caused by

the radiation stress [14] and is reproduced in second-order

theories [23–25].

Fig. 1. Normalized velocity profiles in fully nonlinear Stokes waves (computed as described in Section 2.2) (a) and freak waves obtained (computed as

described in Sections 2.3) (b). Values of e in plot (a) (from largest to smallest): 0.360, 0.357, 0.351, 0.333, 0.298, 0.258, 0.201. Values of e in plot (b): 0.290,

0.290, 0.285, 0.267, 0.236, 0.212, 0.182. Dotted line: eky:
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2.4. Velocity profile on nondimensional form

We are seeking a nondimensional representation of the

velocity profile under crest of a steep unsteady wave event.

It is tempting to test out the following procedure:

1. In a steep wave event we identify, from the time history

of the surface elevation at a fixed geometrical location,

the trough-to-trough period, TTT and the maximal

elevation, hm of the event. We then define the local

angular frequency by v ¼ 2p=TTT:

2. We next compute the wavenumber k and a measure of the

wave slope e solving numerically the system of

equations

v2
=ðgkÞ ¼ 1 þ e2

; khm ¼ e þ
1

2
e2 þ

1

2
e3
; ð5Þ

which result from a truncation of Eqs. (3) and (4). The

half of the wave height is estimated by ½e þ 1
2
e3�=k: Such

a procedure makes it possible to extract the local wave

length from the time record of the wave elevation in one

point. Using the fully numerical simulations we have

compared 2p=k; obtained by this method, with the

trough-to-trough wavelength, LTT obtained directly

from the nonlinear wave computations. Several steep

(freak) wave events have been tested. We found a

relative difference of about 3.5% for the larger waves,

with estimated khm ¼ 0:34: The agreement was better

for the smaller waves.

We then consider the horizontal velocity profile below

the simulated steep waves. Nondimensional velocity

profiles are obtained dividing the fluid velocity by uref ¼

e
ffiffiffiffi
g=k

p
using the procedure outlined above. Results from

the computations with e in the range 0.18–0.29 are

presented in Fig. 1b. A collapse of the velocity profiles is

observed. Comparison is also made with the exponential

profile. The nondimensional velocities resulting from the

transient wave computations, in the region above mean

water line, are closer to the exponential profile than

observed in fully nonlinear computations of Stokes

waves, when e is large.

This procedure to obtain nondimensional velocity fields

appears relevant to steep, unsteady wave events. It is simple

and robust in use. The resulting nondimensional exper-

imental velocities are expected to be relatively close. We

have also tested out corresponding equations including

terms up to fifth order, finding only very minor corrections.

The main focus here is the velocities above the mean

water line, with main emphasis on the flow close to the wave

crest. In what follows we use as theoretical reference the

largest ‘freak’ wave computation with e ¼ 0:29 and khm ¼

0:34: In addition we compare with the exponential profile.

Different procedures to obtain a local wave period have

been tested: zero upcrossing, zero downcrossing, etc. It

appears, after some tests, that the trough-to-trough period

gives the more consistent results.

The characterization of individual waves of the wave field

by the local wavenumber and wave period can mathemat-

ically be justified when the wave spectrum is sufficiently

narrowbanded. Such a procedure represents a first step also

in the more general (and broadbanded) case. We have in our

laboratory measured the nonlinear dispersion relation in

focusing wave groups finding that the measurements of

wave period and wave length fit with nonlinear theory of

slowly varying wave trains [26,27].

3. Experimental environment and procedure

The experiments were carried out in a wave tank 24.6 m

long and 0.5 m wide in the Hydrodynamics Laboratory at

the University of Oslo. It was filled with water to a depth of

0.6 m in the experiments with the leading wave of a wave

group (Section 4.1), and to a depth of 0.72 m in the focusing

wave and random wave experiments (Sections 4.2 and 4.3).

In one end of the tank there is a hydraulic piston wave-

maker with movements controlled by a computer. The

update rate of the wave maker and the sampling rate of the

data acquisition is 1000 Hz. At the opposite end of the wave

tank there is an absorbing beach which reflects less than 3%

of the amplitude of the incoming waves.

The kinematics of the waves is obtained by employing an

extended PIV system [19]. The system, particularly

designed to measure accelerations, consists of two CCD

cameras, a scanning laser beam and a synchronizer

controlled and monitored by a computer. The laser source

is a CW argon ion laser, sufficiently powerful (10 W) to

provide light for sequences of recorded image pairs. The

two high-sensitive cooled PCO Sensicam cameras have a

resolution of 1280 £ 1024 pixels with 12-bit digital output.

A high-speed acousto-optic modulator is used to shut off the

CW laser after two scans of the flow have been captured by

the first camera. The modulator switches the beam back on

for the second velocity measurement after a programmed

delay. Synchronization of the cameras and beam modulator

with the scanning beam system is achieved with a purpose-

built multi-channel synchronizer device and operated from

an integrated modular tree based acquisition and processing

software system. We present here velocity measurements

from the first camera.

First, the wave elevation of the actual wave field was

recorded at specified locations using wave gauges. Individ-

ual steep wave events were then identified from the wave

records. Each experiment was repeated measuring the

velocity field under the large wave(s) using PIV. The

system was triggered at the time instant when the wave crest

was in the middle of the interrogation window. Several

repetitions with the same wave conditions were performed.

The water in the tank was seeded with polyamid particles

with diameter approximately 50 mm. The field of view was
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25 cm £ 20 cm in all the runs. In most experiments an

interrogation window of 64 £ 64 pixels with an overlap of

50% was used. In some experiments the interrogation

window was 32 £ 32 pixels. More details of the PIV system

and the data processing procedures may be found in

Ref. [19].

We obtain from the velocimetry the velocity field of the

waves in vicinity of the crest. The wave events are

characterized by the local period and the local maximal

elevation, both obtained from the wave record as described

in Section 2.4. The parameter e ; wavenumber and

characteristic velocity are obtained from Eq. (5). Non-

dimensional velocities are then evaluated. Physical

velocities are obtained from the presented results

multiplying by e
ffiffiffiffi
g=k

p
:

4. Experimental results

4.1. Leading wave of a wave train

A sinusoidal motion of the wave maker with frequency

v0 generates a wave train which has a transient leading part

followed by periodic waves. (The motion of the wave maker

has in these experiments a constant amplitude, apart from a

short initial period of 1 s when an amplitude function rises

from 0 to the value of 0.99. The amplitude function has the

form of a tanh-function.) We pay here attention to the

transient leading part of the wave fields. Relatively strong

unsteady wave events take place there. An example is

visualized in Fig. 2a. We investigate the kinematics of all of

the largest wave events that are recorded in these series of

Fig. 2. Wave fields. (a) Leading wave of a wave group. (b) Focusing wave. (c) Spectrum of random waves obtained from wave record vs. input spectrum

(smooth line). v2
pHs=2g ¼ 0:10; Tp ¼ 1:04 s, (T2 ¼ 0:777Tp).
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experiments, counting up to 13 in total. First the wave

elevation at a specified location was recorded using a wave

gauge. Next the run was repeated measuring the velocity

field under the wave using PIV.

In this set of experiments, the parameter e in the different

events is in the range 0.21–0.35, the inverse of the wave

period in the range 0.94–1.49 s21, and the wavenumber

times the water depth, kh in the range 2–5 (h ¼ 0:6 m). The

nondimensional velocity profiles of the 13 different waves

are plotted together in Fig. 3a. A surprising collapse of the

data is observed. There is only very small scatter in the

results. The experimental profiles, put on nondimensional

form, are seen to follow the velocity profile of the

theoretical freak wave computed in Sections 2.3 and 2.4

(Fig. 1b and c). It is also good fit between the experiments

and the exponential profile.

4.2. Focusing waves

Several sets of focusing waves have been generated in

the wave tank. In these runs the water depth was 0.72 m.

The motion of the wave maker was given by jðtÞ ¼ aðtÞ

sin½vðtÞt�; where vðtÞ=2p was decreased linearly from 1.6

to 0.96 s21. The amplitude function had the form of aðtÞ ¼

â0 £ ð28=33Þ £ ½ðt=tsÞ
3 2 ðt=tsÞ

4�; with t=ts , 1; where ts was

in the range 16–26.5 s. (â0 denotes a constant amplitude

which could be varied from experiment to experiment.) The

large waves were recorded at a time instant the interval

17–21.3 s after the wave maker motion was started. An

example of a steep wave is visualized in Fig. 2b.

A total of 19 different focusing wave events were

investigated. The parameter e (see Eq. (5)) in the different

events is in the range 0.22–0.46, the inverse of the wave

period in the range 0.80–1.45 s21, and the wavenumber

times the water depth kh in the range 1.8–5 (h ¼ 0:72 m).

(The longest waves in these runs are not deep water

waves. The steepest waves, that are the most interesting

ones, are deep water waves, however.) The nondimen-

sional velocity profiles of the 19 different wave events are

plotted together in Fig. 3b. There is a strong collapse of

the data. The experimental profiles follow the velocity

profile of the theoretical freak wave computed in Sections

2.3 and 2.4 (Fig. 1b and c). Further, a good comparison

between the nondimensional velocities and eky is seen.

There is only very small scatter in the experimental

results. We continue in Section 5 below a discussion of

the very large velocities recorded in the focusing wave

events. We find that the fluid velocity is up to about 75%

of the estimated phase speed of the wave, with

corresponding khm ¼ 0:62 (and kh ¼ 5).

Some spurious velocity vectors appear in some of the

measurements close to the free surface. These measure-

ments indicate occurrence of breaking in the top of the

wave. The breaking processes observed in the experiments

will not be discussed further here. We note that the velocity

estimates in the thin breaking zones are uncertain.

4.3. Random waves

Steep wave events in random seas using the JONSWAP

spectrum are then measured. The spectrum is characterized

by the significant wave height, Hs; the peak period, Tp; and

the peak enhancement factor, g ¼ 3:3: A total of six

Fig. 3. Horizontal velocity profiles below wave crest. (a) Thirteen large

wave events in the leading unsteady part of a wave group, with 0:213 ,

e , 0:348: (b) Nineteen large wave events of focusing wave groups, with

0:217 , e , 0:463: (c) Largest focusing wave event in: present measure-

ments, e ¼ 0:46; khm ¼ 0:6 (S), LDA measurements by Baldock et al. [7]

(þ), second-order model predictions reproduced from Ref. [7] ðWÞ: Solid

line: Velocity profile in ‘freak’ wave computation with e ¼ 0:29: Dotted

line: eky: Dashed line: Wheeler method for wave with e ¼ 0:46; khm ¼ 0:6:
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different time series were produced, each with a length of

10 min. The input spectrum of the wave field compare

excellent with the spectrum produced from the recorded

elevation in the tank (Fig. 2c). An effect of a small reflection

from the beach is not visible in the figure.

The velocity fields in a total of five steep wave events in

each of the six series have been analysed using PIV. The

ranges of the parameter, e ; inverse period, f ; and

wavenumber of the individual waves times the water

depth, kh; are indicated in the table below (where vp ¼ 2

p=Tp; h ¼ 0:72 m).

Hs

(cm)

Tp (s) v2
pHs

=2g

e f (s21) kh

Series 1 6.55 0.939 0.15 0.19–0.34 1.21–1.30 3.9–4.6

Series 2 9.60 1.150 0.15 0.21–0.34 0.96–1.04 2.4–2.9

Series 3 8.00 1.150 0.12 0.14–0.34 0.82–1.19 1.6–3.7

Series 4 5.45 0.939 0.12 0.26–0.40 1.14–1.41 3.5–4.9

Series 5 6.55 1.040 0.12 0.18–0.31 1.01–1.29 2.9–4.4

Series 6 6.67 1.150 0.10 0.17–0.22 0.98–1.22 2.7–4.2

4.3.1. Velocity profiles

Each of the series in the random wave experiments had

three repetitions, all with the same triggering of the PIV

system. The experiments were very repeatable. The velocity

data from the repeated runs exhibit a spread of about

plus/minus one grid point (there are 40 grid points in each

direction), except in some of the breaking wave cases. The

results from series 1 show an all over collapse of the

velocity profiles when they are put on nondimensional form.

Moreover, the measurements are very close to the fully

nonlinear computations with e ¼ 0:29 and the exponential

profile, see Fig. 4. The correspondence is true for wave

events that both are early and late in the series and is

particularly good in the top of the wave. The events in series

1 are relatively steep, and the water is deep

(0:19 , e , 0:34; 3:9 , kh , 4:6).

The wave data in series 4 are in many ways comparable

to those in series 1. The nondimensional water depth is in

the same range in the two series. The wave slope is

somewhat higher in the events in series 4 ð0:26 , e , 0:4Þ

than in series 1. There is again a collapse of the

nondimensional velocity data, see Fig. 5. The experimental

(nondimensional) velocities are seen to be about 10%

smaller than the fully nonlinear theoretical reference and the

exponential profile.

The random wave series number 2 has the same

nondimensional value of v2
pHs=2g as in series 1, and the

range of the wave slope of the selected wave events is in the

same range in the two series. The velocity profiles shown in

Fig. 6 are rather close to the observations in series 1 and 4,

apart from the velocity profiles in the late part of series 2, i.e.

at times 226.9 s (marked in the figure by A) and 304.6 s

(marked by S). The velocity has then got an additional tilt:

the nondimensional velocity near the crest has become

larger, and the velocity below the mean water level smaller,

than in the previous recordings. The waves are still rather

steep waves in deep water. The estimated wave slope in the

last recording of series 2 is e ¼ 0:24 and the wavenumber

times the water depth is kh ¼ 2:9; for example. The

relatively large value of kh indicates that the effect of a

finite water depth cannot fully explain the additional tilt.

We note that the waves in series 2 are 40% longer than

those in series 1 and 4. The wave velocity (group velocity) is

correspondingly 20% higher and the estimated Stokes drift

60% higher. Correspondingly, an estimated return velocity

beneath the wave is 120% higher in series 2 than in series 1

and 4. An addition to the return flow due to a finite length of

the tank is set up quicker and becomes stronger in series 2

Fig. 4. Horizontal velocity profiles below wave crest. Five wave events of

series 1 ðSÞ: Solid line: Velocity profile in ‘freak’ wave computation with

e ¼ 0:29: Dotted line: eky: Recording times: 124.45, 133.24, 165.27,

214.01, 283.43 s.

Fig. 5. Same as Fig. 4, but series 4. Recording times: 127.32, 169.76,

256.47, 297.54, 324.72 s.
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than in 1 and 4. With the PIV equipment we are able to

perform precise measurements of the instantaneous velocity

field. Recordings of long time series of the wave field using

PIV is prevented by limitations of the apparatus, however,

and we are unable to measure the induced drift velocities in

the wave tank using the equipment. We are thus left with

estimates of a time averaged (or slowly varying) velocity

field in the wave tank, as indicated above. We speculate that

a relatively pronounced time averaged (slowly varying)

return velocity is responsible for the additional tilt of the

velocity profiles observed in the late part of the experiments

in series 2.

The results from series 3 (Fig. 7) show the same tendency

as in series 2 apart from the first event in the series (marked

by the thin dots) where the local wave has rather small value

of e ¼ 0:14 and moderate wavenumber kh ¼ 1:9: The

measured nondimensional velocities early in the series are

close to the theoretical references (fully nonlinear compu-

tation and exponential profile). An additional tilt appears in

the velocity profiles late in the runs, however. Some scatter

in the data of the fourth wave event (at time t4 ¼ 226:9 s) is

seen.

In series 5 (results not shown) the waves are deep water

waves ðkh . 2:9Þ and the range of e is 0.18–0.3. The data

agree with the results from series 1 and 4, more or less.

While some scatter in the data is noted, the spread seems not

to be systematic. In series 6 (results not shown), the wave

slope is systematically smaller than in the other experimen-

tal series ð0:17 , e , 0:22Þ: The recordings early in the

series are close to the theories. Late in the series the velocity

profiles become somewhat tilted.

4.3.2. Very steep wave events

Results from all steep events in the random wave series,

with e . 0:3; are plotted together in Fig. 8. The figure

shows a relatively systematic appearance of the velocities in

steep wave events in random wave fields. The measured

profiles above the mean water line, put on nondimensional

form, almost solely depend on the local estimated

wavenumber and wave slope, when the latter is large. An

upper bound of the velocities is given by the fully nonlinear

computation and exponential profile, practically speaking.

This conclusion is true also for events in late parts of the

time series when there is evidence of an enhanced return

flow due to the finite length of the wave tank. This

conclusion also holds even if there is some (small) effect of

a finite water depth (kh ¼ 2:4 in one of the runs).

Fig. 6. Horizontal velocity profiles below wave crest. Five wave events of

series 2. (t1 ¼ 124:17 s, e ¼ 0:26; kh ¼ 2:6; X), (t2 ¼ 162:02 s, e ¼ 0:21;

kh ¼ 2:6; *), (t3 ¼ 184:45 s, e ¼ 0:29; kh ¼ 2:7; þ ), (t4 ¼ 226:95 s,

e ¼ 0:34; kh ¼ 2:4 A), (t5 ¼ 304:62 s, e ¼ 0:24; kh ¼ 2:9; S). Solid

line: Velocity profile in ‘freak’ wave computation with e ¼ 0:29: Dotted

line: eky:

Fig. 7. Same as Fig. 6, but series 3. (t1 ¼ 117:63 s, e ¼ 0:14; kh ¼ 1:9; X),

(t2 ¼ 166:35 s, e ¼ 0:24; kh ¼ 2:7; *), (t3 ¼ 213:14 s, e ¼ 0:26; kh ¼ 2:7;

þ ), (t4 ¼ 226:90 s, e ¼ 0:34; kh ¼ 3:7; A), (t5 ¼ 323:57 s, e ¼ 0:23; kh ¼

2:3; S).

Fig. 8. Horizontal velocity profiles below wave crest. All large wave events

in the random waves series 1–6, with e . 0:3: Solid line: Velocity profile

in ‘freak’ wave computation with e ¼ 0:29: Dotted line: eky: (Note the

differences in horizontal scale.)
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The exponential profile somewhat overestimates the

velocities below mean water line.

4.3.3. Effects of a finite water depth

A finite depth effect makes an important change of the

velocity profile below the wave crest, compared to deep

water: near the crest of the wave the velocity becomes

increased, and below the mean water line the velocity

becomes reduced. Such tendencies are observed in our

random wave recordings with 2:3 , kh , 2:6 and e . 0:2:

4.4. Comments on experimental error sources

The strong collapse of the measurements presented in

Fig. 3 indicates the high accuracy of the experimental

procedure. The relatively narrowbanded wave fields in the

experiments with the leading wave of a wave group and the

focusing waves fit to a slowly varying modeling of the wave

field. An experimental error may be quantified by the

deviation from an average line through all experiments in

Fig. 3a–c.

The experiments are very repeatable, with the velocity

recordings showing a scatter being typically plus/minus one

grid point (corresponding to 0.7 cm; there are 40 grid points

in each direction). Further, the PIV technique has a

theoretical relative error that is about 2%. The wave

elevation is measured using wire gauges, with a relative

error less than 5%.

While a high accuracy of the PIV recordings generally

can be obtained close to a boundary, some scatter in the

velocity recordings is observed near the free surface, in

some of the runs. High quality velocimetry near the free

surface using small field of views will increase accuracy and

reduce eventual scatter in the data. We note, however, that

the maximal possible velocities induced by the waves are

captured by the present experimental campaign.

5. Discussion

5.1. Comparison with other work

Baldock et al. [7] measured the velocities in steep

focusing waves in deep water using LDA. The data from the

time record of the steepest wave (their figure 11, case D (c))

are: T ¼ 0:904 s and hm ¼ 7:49 cm, giving e ¼ 0:29;

khm ¼ 0:34; kh ¼ 3:2: The value of kh indicates that the

waves can be considered as deep water waves. Their

velocities [7, figure 13c] put in nondimensional form fit

excellent with the present theoretical and experimental

results for deep water, see Fig. 3c. In the figure is also

included the second-order model predictions from Ref. [7].

The second-order model shows a smaller velocity than the

measurements. In the case studied by Baldock et al. the

Wheeler stretching method [8] is quite close to the second-

order model (with e ¼ 0:29; khm ¼ 0:34; results not

shown). The Wheeler method significantly underpredicts

the kinematics of the larger wave, with e ¼ 0:46; khm ¼

0:62; as indicated in Fig. 3c.

The wave data for the largest (focusing) wave in Kim

et al. [5] are: T ¼ 1:36 s and hm ¼ 15 cm, giving e ¼ 0:28;

khm ¼ 0:34; kh ¼ 2:04: The value of kh indicates that the

effect of a finite water depth is important in their

measurements. The velocity data for their largest wave fit

well with our random wave measurements for 2:3 , kh ,

2:6 and 0:7 , u=e
ffiffiffiffi
g=k

p
, 1:6 (results not shown). The large

velocity at the crest observed by Kim et al., with

nondimensional value u=e
ffiffiffiffi
g=k

p
. 2:3; is not observed in

the present measurements.

The data of the plunging wave measured by Skyner [9]

are: T ¼ 1:03 s and hm ¼ 10:2 cm, giving e ¼ 0:3; khm ¼

0:36; kh ¼ 2:6: The measured horizontal velocity below

crest is 2 m s21 at maximum, i.e. u=e
ffiffiffiffi
g=k

p
. 4: Such a high

velocity is not observed in the present deep water wave

measurements.

In the large scale FULWACK experiment [2], the main

purpose was to obtain velocity measurements at locations

relatively high above the mean sea level using current

meters. These were located at 26, 16, 6 ft (8.2, 5, 1.9 m)

above mean sea level. The largest observed speed at the

top current meter was 20.62 ft/s (6.5 m/s). The platform

was in 270 ft (85 m) of water. For illustration, we assume

for the moment that a wavenumber of k ¼ 0:03 m21 is

representative for the large scale measurements (the time

record of the wave elevation was not given in the paper).

The corresponding wave length then becomes

2p=k ¼ 209 m, and kh ¼ 2:6: For the position of the

upper current meter this gives ky ¼ 0:03 £ 8:2 ¼ 0:246:

Employing an exponential velocity profile, i.e. u=e
ffiffiffiffi
g=k

p
¼

eky; we obtain e . 0:28: The resulting maximal elevation

of the wave becomes 11 m and the estimated maximal

fluid velocity at the crest becomes 7.04 m/s. Similar

estimates can be given with smaller or larger k:

5.2. Fluid velocity relative to the wave velocity

Kim et al. [5] measured a maximal fluid velocity being

64% of the estimated wave speed. This result may be

compared with u=c in the present measurements, where the

nonlinear wave celerity may be estimated by c ¼ v=k .ffiffiffiffiffiffiffiffi
1 þ e2

p ffiffiffiffi
g=k

p
: This means that u=c . ea=

ffiffiffiffiffiffiffiffi
1 þ e2

p
; where a

is the nondimensional fluid velocity plotted in the figures.

We obtain the following table of the maximal values of u=c:

e khm kh u=c

0.29 0.34 1 0.4 Model, Sections 2.3 and 2.4

0.29 0.34 3.2 0.4 Baldock et al. [7]

0.46 0.62 5.0 0.75 Present experiments

0.28 0.33 2.0 0.64 Kim et al. [5]

0.30 0.36 2.6 1.14 Skyner [9]
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For deep water waves, the present model predictions give

a value of u up to 40% of the wave speed. These

computations correspond directly to the measurements

obtained in Ref. [7]. The present deep water wave

experiments document a fluid velocity up to 75% of the

wave speed c (and khm ¼ 0:62). The increase in the

maximal value of u=c; from 0.4 in the model predictions,

to 0.75 in the experiments, is in fact formidable. The latter is

almost the double of the former. The plunging breaker

measured by Skyner [9] has a fluid velocity that may even

exceed the wave speed (u=c . 1:14; khm . 0:36; kh ¼ 2:6).

5.3. Exponential profile

In all figures we have included the nondimensional

profile, eky where the wavenumber is determined according

to the procedure in Section 2.4. The exponential profile is

observed to be rather close to all the experimental

observations in the top of the wave when they are put on

nondimensional form. This is true provided that kh is large

and the fluid velocity due to a return flow beneath the waves

is small. The exponential profile gives relevant estimates for

all observations in deep water and u=c up to 0.75, and khm

up to 0.62. This is significantly beyond the level where the

fully nonlinear model gives useful predictions.

6. Conclusion

The kinematics of steep water wave events has been

studied comparing PIV measurements in a wave tank and

theoretical/numerical predictions using a fully nonlinear

wave model. A total of 62 different steep wave events have

been measured in the laboratory. Several generation

mechanisms have been pursued. We have studied the

leading unsteady part of a wave train, waves resulting from

a focusing technique and events taking place in random

wave series. In the random wave experiments each of a total

of six series had three repetitions showing almost no scatter

of the results. The Stokes drift and a corresponding return

flow beneath the wave groups is inherent in all the

experiments and in the fully nonlinear computations

(where the latter is effective up to breaking).

We have aimed at a general way to characterize the wave

events. From the wave record (at a fixed point) we identify

the trough-to-trough period, TTT and the maximal elevation,

hm of an individual steep wave event. The local wavenum-

ber, k and an estimate of the local wave slope, e are obtained

from the equations v2=ðgkÞ ¼ 1 þ e2; khm ¼ e þ 1
2
e2 þ

1
2
e3; where v ¼ 2p=TTT and g denotes the acceleration of

gravity. The velocity fields are put on nondimensional form

dividing by e
ffiffiffiffi
g=k

p
: The procedure is documented in full in

Section 2.4.

Almost all of the experimental waves can be character-

ized as deep water waves. A strong collapse of the

nondimensional velocity profiles is observed for the 13

different large leading waves events of a wave train and the

19 focusing wave events. The LDA velocity measurements

by Baldock et al. [7] put on nondimensional form fit

excellent with our velocity profiles, both those obtained by

PIV and those obtained by the fully nonlinear theory

(Section 2.3).

The kinematics in the random wave experiments with a

small return fluid velocity beneath the waves conforms with

the kinematics in focusing waves and the leading wave of a

wave group. In some of the experiments there is a weak

effect of the finite depth of the fluid, with kh typically in the

range 2.3–2.6. A larger velocity close to the wave crest and

a smaller velocity below the mean water line than in deep

water is then seen.

The experiments with the random wave fields are run so

long that an additional return flow in the wave tank is

induced. A return flow below the wave group generally

reduces the velocity below mean water level and is

responsible for an additional tilt of the velocity profile,

depending on the magnitude of the return fluid velocity.

This may be determined by the integrated return flow

divided by the water depth below the wave, see Section

4.3.1. While the PIV technique records the instantaneous

velocity field, we are unable to identify the return fluid

velocity in the present experiments.

Some scatter is observed in some of the random wave

experiments with a moderate wave slope. This may be due

to waves of different wavenumbers that are locally

interacting. The milder wave events seem to be less

‘clean’ than the larger waves where there is relatively little

scatter in the results. Predictions using second-order model

or extensions seem relevant if the sea state is moderate

[15–17].

The fully nonlinear theoretical model is useful for the

rather steep waves, inducing a fluid velocity u of up to 40%

of the wave speed. This is precisely the same level as in the

experiments by Baldock et al. [7]. Both in the simulations

and in the experiments by Baldock et al. the maximal wave

slope was e ¼ 0:29: In the present experiments we have

been able to push the upper value of u=c (in deep water) up to

0.75, i.e. a fluid velocity up to 75% of the estimated phase

speed of the wave. The estimated value of khm is 0.62. The

focusing wave measurements [5] and [9] exhibit maximal

u=c ¼ 0:64 and 1.14, respectively. The corresponding

estimates of khm are 0.33 and 0.36, respectively.

A surprising result is that the exponential profile eky

compares rather well with all measurements of the waves

(put on nondimensional form) which are in deep water and

when the return velocity beneath the wave group is small.

The good comparison suggests that the exponential profile is

quite useful for obtaining estimates of the kinematics of

steep waves. It compares well with all measurements

presented here, where the main focus is the velocity profile

above mean water level, even for waves where the fluid

velocity is up to 75% of the estimated wave speed. We note

that the exponential profile should be used in connection
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with the procedure determining the local wave slope and

wavenumber outlined here.

The Wheeler stretching method, widely used in engin-

eering practice, replaces the vertical coordinate y by

y0 ¼ hðy 2 hÞ=ðh þ hÞ: For large water depth this means

y0 ¼ y 2 h: It is easily seen that our results do not support

the Wheeler stretching method. In fact, for the steepest

waves investigated here, the Wheeler method predicts a

particle velocity under crest being about one-half of the true

velocity, see Fig. 3c. On this point our results are closer to a

velocity profile that is linearly extrapolated above the mean

water line. Longridge et al. [6] compared velocities from

LDA measurements of random wave series with theoretical

models including linear extrapolation, Wheeler stretching

and a hybrid wave model. They found that the former was

the superior one for the range of wave slope under

investigation ðe ¼ 0:11–0:19Þ: For this range, the expan-

sion eky ¼ 1 þ ky is valid, indicating mathematically the

usefulness of a linear extrapolation of the velocity field

above mean water line. This conclusion has been supported

by second-order computations [24] comparing with

irregular wave experiments [4]. A linear extrapolation

underestimates the kinematics of steep wave events,

however.

The present experiments focusing on the velocity below

crest, confirm the value of irrotational flow computations of

the entire velocity field below steep waves (which are now

rather quick).
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