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Abstract
The regularisation of nonlinear hyperbolic conservation laws has been a 
problem of great importance for achieving uniqueness of weak solutions and 
also for accurate numerical simulations. In a recent work, the first two authors 
proposed a so-called Hamiltonian regularisation for nonlinear shallow water 
and isentropic Euler equations. The characteristic property of this method is 
that the regularisation of solutions is achieved without adding any artificial 
dissipation or dispersion. The regularised system possesses a Hamiltonian 
structure and, thus, formally preserves the corresponding energy functional. 
In the present article we generalise this approach to shallow water waves over 
general, possibly time-dependent, bottoms. The proposed system is solved 
numerically with continuous Galerkin method and its solutions are compared 
with the analogous solutions of the classical shallow water and dispersive 
Serre–Green–Naghdi equations. The numerical results confirm the absence of 
dispersive and dissipative effects in presence of bathymetry variations.
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1. Introduction

Many phenomena in fluid mechanics are described mathematically by systems of hyperbolic 
equations [17]. We can mention the celebrated inviscid Burgers–Hopf equation [4] as a proto-
type of pressureless Euler equations, the isentropic Euler equations [19], the shallow water 
(Airy or Saint-Venant) equations [1], the compressible Euler equations [17] and even some 
two-phase flow models [8]. These equations have a common property: if we solve an initial 
value problem with infinitely smooth (or even analytic) data, the solutions will develop a finite 
time singularity (e.g. a gradient ‘catastrophe’). Thus, to speak mathematically about these 
solutions, one has to introduce the so-called weak solutions [9], or even weaker than weak 
solutions [14]. One strategy employed by mathematicians to study such systems consists in 
considering a perturbed version of equations with a perturbation being chosen so that the new 
(perturbed) system has more regular (i.e. smoother) solutions. The original system of govern-
ing equations can be formally recovered as a singular limit of the perturbed system. Then, 
some conclusions about weak solutions of the original system are obtained by employing 
the bootstrap argument [17]. The perturbation is usually chosen to be of dissipative, disper-
sive or of both types [15]. We can mention a few previous attempts to regularise the inviscid 
Burgers–Hopf equation with dissipative/dispersive terms [2, 3].

In a recent work, Clamond and Dutykh [6] propose a regularisation of the nonlinear shal-
low water (or Saint-Venant) equations (NSWE) with flat bottom, that describe long gravity 
waves propagating in both directions under the hydrostatic pressure assumption. In par-
ticular, these regularised Saint-Venant (rSV) equations are a conservative Hamiltonian sys-
tem that regularises the solutions of the NSWE without adding any artificial dissipation or 
dispersion. Some properties of these regularised shallow water equations are mathematical 
study in [18, 25].

The goal of the present article is to generalise the approach proposed by Clamond and 
Dutykh [6] to general uneven and time-dependent bottoms. The latter might be useful for tsu-
nami-generation problems [10]. The model we derive below conserves all the good properties 
of regularised Saint-Venant equations (such as the energy conservation) despite bathymetry 
variations in space and in time.

We note that the rSV equations are a two-component generalisation of the dispersionless 
Camassa and Holm [5] (CH) equation. Shallow water equations, such as KdV, KP and CH, 
are also known to play a fundamental role in theoretical Physics and in Geometry [13, 20, 21]. 
Therefore, the rSV equations may be of general physical and mathematical interest.

The present article is organised as follows. In section 2, we point out the shortcomings of 
the rSV equations (as proposed in [6]) for varying bottoms and we address these limitations 
in order to obtain a suitable regularisation of the NSWE for general bottoms. In particular, the 
Hamiltonian structure of the obtained system is also highlighted in this section. The obtained 
system is briefly studied numerically in section  3, providing numerical evidences that we 
indeed derived a dispersionless Hamiltonian regularisation of the Saint-Venant equations. The 
main conclusions and perspectives of this study are outlined in the section 4.
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2. Mathematical model

We consider a two-dimensional irrotational motion due to a gravity wave propagating at the 
free surface of an ideal, incompressible and homogeneous shallow fluid. Let x, y  and t be 
the horizontal, upward vertical and temporal coordinates, respectively. The equations y   =   0, 
y = ! (x, t) and y = ! d(x, t) denote, respectively, the equations  of the still water level, of 
the impermeable free surface and of the impermeable bottom; h

def= ! + d denoting the total 
eight of the water column. The parameters g and !  denote, respectively, the acceleration due 
to gravity directed downwards and the constant fluid density. A sketch of the fluid domain is 
shown in figure 1.

The definition of the still water level yields

! ! " = 0, (2.1)

where !á" denotes the horizontal Eulerian averaging. The mean water depth is

dø def= ! d ". (2.2)

A priori, dø can be a function of time for a moving bottom. However, via a change of vertical 
coordinate y! def= y + dø! d0 (d0 a constant) it is always possible to consider dø independent of 
t. In that case, g is a function of time t and the frame of reference is no longer Galilean in the 
vertical direction. Thus, from now on, we assume that g = g(t) and that d̄  is constant.

2.1. Lagrangian for the regularised Saint-Venant equations

Clamond and Dutykh [6] have shown that regularised Saint-Venant (rSV) equations for flat 
bottoms can be obtained from the Lagrangian density

L ϵ
def
= 1

2 h u 2 − 1
2 g h2 +

(
ht +[h u ]x

)
φ + 1

2 ϵ h2 ( h u 2
x − g h 2

x
)

, (2.3)

where u (x, t) is the depth-averaged horizontal velocity of fluid particles and ϵ ! 0 is a regu-
larisation parameter, which controls the ‘magnitude’ of regularisation. In other words, one 
can see ϵ as a measure of the ‘width’ of regularised shock-wave solutions [6]. The resulting 
Euler–Lagrange equations yield the classical Saint-Venant equations if ϵ = 0 and a regularisa-
tion of the latter if ϵ > 0 [6].

Figure 1. Definition sketch.
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The Lagrangian density (2.3) yields the correct Saint-Venant equations for constant depths, 
but fails to do so for varying bottoms. Indeed, the Euler–Lagrange equations for L 0 yield

ht +[h u ]x = 0, (2.4a)

ut + u ux + g hx = 0, (2.4b)

while the classical shallow water equations are [26]:

ht +[h u ]x = 0, (2.5a)

ut + u ux + g ηx = 0. (2.5b)

The mass conservation (2.4a) and (2.5a) are identical. However, the momentum conservations 
(2.4b) and (2.5b) are identical in constant depth only, but differ when dx ̸= 0. This discrepancy 
is due to the potential energy term in equation (2.3) that is evaluated from the seabed instead 
of the free surface (i.e. the potential energy density in L 0 is 1

2 gh2 instead of 1
2 gη2). This is of 

no consequence in constant depth but it is incorrect in presence of an uneven bottom. Thus, 
this issue is addressed with the Lagrangian density for the classical shallow water equations

L0
def
= 1

2 h u 2 − 1
2 g η2 +

(
ht +[h u ]x

)
φ, (2.6)

and a suitable regularisation of these equation has to be introduced.
In [6], the regularised Lagrangian density (2.3) is obtained re-injecting the momentum 

equation into the Lagrangian density as

L
′
ϵ

def
= L 0 + 1

6 ϵ h3 [ut + u ux + g hx ]x . (2.7)

The Lagrangian density (2.7) reduces to the simplified form (2.3) after integrating by parts 
the extra terms and omitting the resulting boundary terms (i.e. L

′
ϵ − L ϵ ≡ [· · · ]t + [· · · ]x, 

see [7, section 3.1] for details), so L
′
ϵ  and L ϵ yield the same equations because boundary 

terms do not contribute to the Euler–Lagrange equations, but L ϵ yields somewhat simpler 
derivations.

According to the discussion above, for varying bottoms, a regularised Lagrangian density 
candidate is

L̃ ′
ϵ

def
= L0 + 1

6 ϵ h3 [ut + u ux + g ηx ]x , (2.8)

that can be easily reduced, after integrations by parts and omitting boundary terms, to the 
equivalent simplified form

L̃ϵ
def
= 1

2 h u 2 − 1
2 g η2 +

(
ht +[h u ]x

)
φ + 1

2 ϵ h2 ( h u 2
x − g hx ηx

)
,

 (2.9)
following the procedure described in [6, 7], slightly modified to accommodate the varying 
depth. However, the Lagrangian densities (2.8) and (2.9) yield unbalanced equations, i.e. the 
still water (u = η = 0) is not a solution of the equations if dx ̸= 0 (see appendix). Therefore, 
the Lagrangian density (2.9) is not suitable for general varying bottoms and an alternative 
Lagrangian must then be introduced. In order to derive such a suitable Lagrangian density, we 
note first that the densities of kinetic and potential energies of (2.9) are

K̃ϵ
def
= 1

2 h
(

u2 + ϵ h2 u 2
x
)

, (2.10a)

Ṽϵ
def
= 1

2 g
(
η2 + ϵ h2 hx ηx

)
. (2.10b)
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The regularising term in the kinetic energy can be interpreted physically as modelling a verti-
cal velocity, while mathematically it is a control of the first derivative of the horizontal veloc-
ity. The corresponding term in the potential energy is not a proper control of the free surface 
slope if the bottom varies; such a suitable control is obviously obtained substituting η 2

x  for 
hxηx. Thus, an obvious Lagrangian density for the regularised shallow water equations with 
varying bottom is

Lϵ
def
= 1

2 h u 2 − 1
2 g η2 +

(
ht +[h u ]x

)
φ + 1

2 ϵ h2 ( h u 2
x − g η 2

x
)

. (2.11)

Note that the derivation of regularised Saint-Venant equations with varying bottom is quite 
easy from the variational principle. It is almost intractable to derive such a model by tweaking 
directly the equations, while preserving good properties such as Galilean invariance, conser-
vation laws, well balancing, etc. We could have introduced the regularised equations at once 
and study their properties, showing afterwards that they have several desirable characteris-
tics. However, we find more enlightening to explain where and why there are issues with the 
original model and how we address them. Note also that the regularisation above is only one 
possibility among (possibly) many others, but it is not our purpose here to derive and compare 
several regularisations.

It should be noted that, in this paper, we always assume that d is a prescribed (i.e. known) 
function of x and t. We then use h or η indifferently in the equations, choosing the variable 
providing the clearest formulation.

2.2. Regularised Saint-Venant equations

The Euler–Lagrange equations for the Lagrangian density (2.11) are

δφ : 0 = ht +[h u ]x , (2.12)

δu : 0 = h u − hφx − ϵ
[

h3 ux
]

x , (2.13)

δη : 0 = 1
2 u 2 − g η − φt − u φx + 3

2 ϵ h2 u 2
x + ϵ g

[
h2 ηx

]
x − ϵ g h η 2

x ,
 (2.14)

thence

φx = u − ϵ h−1 [ h3 ux
]

x , (2.15)

φt = − 1
2 u 2 − g η + ϵ h−1 u

[
h3 u x

]
x + 3

2 ϵ h2 u 2
x + ϵ g h2 ηxx

+ ϵ g h ηx (hx + dx) .
 (2.16)

Eliminating the variable φ between these last two relations one obtains

∂t
{

u − ϵ h−1 [ h3 u x
]

x

}
+ ∂x

{ 1
2 u 2 + g η − ϵ h−1 u

[
h3 u x

]
x

− 3
2 ϵ h2 u 2

x − ϵ g h2 ηxx − ϵ g h ηx (hx + dx)
}
= 0.

 (2.17)
Equations (2.12) and (2.17) form a regularised Saint-Venant system for a varying bottom. 

Equation (2.17) describes the conservation of the tangential momentum at the free surface [7, 
12]. Several equations for momentum and total energy fluxes can be subsequently derived as

ut + u ux + g ηx + ϵh−1 [h2 R
]

x = ϵ g hηx dxx, (2.18)
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[h u ]t +
[

h u 2 + 1
2 g h2 + ϵ h2 R

]
x = g h dx + ϵ g h2 ηx dxx, (2.19)

mt +
[

m u + 1
2 g h2 − ϵ h2 ( 2 h u 2

x + g h ηxx +
1
2 g η 2

x + g ηx dx
) ]

x

= g h dx + ϵ g h2 ηx dxx,
 

(2.20)
[ 1

2 h u2 + 1
2 ϵ h3 u 2

x + 1
2 g η2 + 1

2 ϵ g h2 η 2
x
]

t

+
[ 1

2 h u3 + 1
2 ϵ h3 u u 2

x + g h u η + ϵ g h3 ηx ux + ϵ h2 u R
]

x

= 1
2 ġ

(
η2 + ϵ h2 η 2

x
)
− g η dt − ϵ g h2 ηx dxt,

 

(2.21)

with m def
= hu− ϵ

[
h 3ux

]
x , ġ def

= dg/dt  and

R def
= h

(
u 2

x − uxt − u uxx
)
− g

(
h ηxx + 1

2 η
2
x + ηx dx

)

= 2 h u 2
x − 1

2 g
(

h 2
x − d 2

x
)
− h[ut + u ux + gηx ]x .

 (2.22)

Equation (2.20) for the momentum flux is particularly helpful in revealing the Hamiltonian 
structure of regularised Saint-Venant equations.

2.3. Hamiltonian formulation

Let be the Hamiltonian functional density

Hϵ
def
= 1

2 h u2 + 1
2 g (h − d)2 + 1

2 ϵ h3 u 2
x + 1

2 ϵ g h2 (hx − dx)
2 ,

 
(2.23)

and the momentum m def
= Eu{ H! } = hu! !

!
h3ux

"
x  where Eu is the Euler–Lagrange opera-

tor with respect of the variable u. The variables m and u are related via a linear non-auton-
omous self-adjoint positive-definite (because h and !  are positive) Sturm–Liouville operator 
L h

def= h ! !" x[h3" x], i.e. m = L h{ u}  that can be inverted as u = Gh{ m}  with Gh
def= L ! 1

h . 
Expressing the Hamiltonian functional density (2.23) as function of h and m, we have

Em{ H ! } = Gh { hGh{ m} } ! ! Gh " x
!

h3 " x Gh{ m}
"
= Gh L h Gh{ m} = u,

 (2.24)

Eh{ H ! } = g! ! " g h! x (hx + dx) ! " g h2 ! xx ! 1
2 u2 ! 3

2 " h2 u2
x .

 (2.25)
The derivation of equation (2.24) is straightforward because Gh is self-adjoint, but the deriva-
tion of equation (2.25) is more involved. The latter is obtained exploiting the relations

L h+ ! h = h + ! h ! " #x (h + ! h)3 #x = L h + ! h ! 3" #x h2 ! h#x + O
!
(! h)2"

= L h
#

1 + Gh ! h ! 3" Gh #x h2 ! h#x
$

+ O
!
(! h)2"

.
 (2.26)

Thence, inverting this relation,

Gh+ ! h =
!

1 + Gh ! h ! 3" Gh #x h2 ! h#x
"! 1

Gh + O
#
(! h)2$

= Gh ! G h ! hGh + 3" Gh #x h2 ! h#x Gh + O
#
(! h)2$

.
 

(2.27)

Thus, for the kinetic energy functional K(h,m) =
!

K dx with density9 K def= 1
2 mGh{ m} , 

we obtain

9 Integrating by parts, we have hu2 + !h3u2
x = uL h{ u} +

!
!h3uux

"
x = mGh{ m} + Ôboundary termsÕ, so the kinetic 

energy part of the Hamiltonian density (2.23) can be replaced by 12mGh{ m} .

J. Phys. A: Math. Theor. 52 (2019) 42LT01
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K(h + ! h,m) ! K(h,m) = !
1
2

!
mGh{ ! h u} dx +

3"
2

!
mGh #x { h2 ! h ux } dx

= !
1
2

!
u! h udx !

3"
2

!
ux h2 ! h ux dx,

 
(2.28)

where we have exploited the self- and skew-adjointness of, respectively, Gh and Gh ! x. It fol-
lows immediately that Eh{ K } = ! 1

2u2 ! 3
2!h2u2

x  and the equation  (2.25) is subsequently 
obtained at once.

Finally, the (non-canonical) Hamiltonian structure takes the form

! t

!
h
m

"
= ! J ¥

!
Eh{ H ! }
Em{ H ! }

"
= !

#
0 ! x h

h! x m! x + ! x m

$
¥

!
Eh{ H ! }
Em{ H ! }

"

=
!

! [ h u]x
ghdx + "gh2#xdxx !

%
um+ 1

2gh2 ! "h2
&
2hu2

x + gh#xx + 1
2g#2

x + g#xdx
' (

x

"
,

 (2.29)
yielding the equations (2.12) and (2.20). It should be noted that J being skew-symmetric and 
satisfying the Jacobi identity [24], it is a proper Hamiltonian (Lie–Poisson) operator.

3. Numerical results

In this section, we compare the rSV, NSWE and Serre–Green–Naghdi (SGN) systems for the 
formation and propagation of shock waves and their interaction with a variable bathymetry 
using high order numerical methods. We include into our comparisons the SGN equations in 
order to illustrate the typical behaviour of a fully nonlinear but (weakly) dispersive system in 
the same conditions.

We consider a periodic initial value problem (IVP) on the computational domain x ! [" ! ; ! ] 
although, due to the symmetry, we shall plot only the sub-domain x ! [0; ! ]. The SGN system 
is solved numerically using the standard Galerkin/finite-element method with smooth cubic 
splines on an uniform grid together with a fourth-order Runge–Kutta method for the temporal 
discretisation, as described and analysed in [22] for a flat bottom and in [23] for varying bot-
toms. This method can perform really well for smooth solutions due to its conservative proper-
ties. When it comes to describe nearly discontinuous solutions, then spurious oscillations may 
appear due to the Gibbs phenomenon. In order to avoid this phenomenon, one can use artificial 
diffusion, a method that is commonly used for the numerical solution of hyperbolic conserva-
tion laws. Specifically, by adding a diffusion term ! uxx we were able to control the generation 
of spurious oscillations at the level where the solution remained practically unaltered. In the 
following experiment, we took the value of !  to be 0.05. This specific value appeared to be 
the optimal one for this experiment, independent of the choice of the mesh parameter ! x. The 
rSV equations are solved by the same numerical method which was appropriately adapted to 
the analogous terms. Note that our goal here is simply to illustrate the behaviour of the rSV 
equations with a classical numerical scheme. A non-dissipative numerical scheme exploiting 
the properties of the rSV equations is left for a future work.

In all simulations the grid length for the spatial discretisation is ! x = 0.1 and the time step 
! t = 0.01. The NSWE equations are solved using a finite volume (FV) method (described in 
[11]) in the same interval and with the discretisation parameters used for the numerical solu-
tion of the regularised and dispersive systems. Namely, for the FV method we used the HLL 
numerical flux function and the second order UNO2 reconstruction with the !"#!$%  limiter 
[11].

J. Phys. A: Math. Theor. 52 (2019) 42LT01
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The test case used in the present study is schematically shown in figure 2, and the values 
of various physical parameters are reported in table  1. Namely, we consider the standard 
benchmark of the dam break problem with a variable bathymetry. The bottom (a simple steady 
smooth step) and the initial condition for the free surface are given, respectively, by

d(x, t) = dL ! 1
2 (dL ! dR) [ 1 ! tanh( ! (x ! xb)) ] , (3.1)

! (x, 0) = ! L ! 1
2 (! L ! ! R) [ 1 ! tanh(" (x ! x0)) ] . (3.2)

The velocity field is taken to be initially zero, i.e. u(x, 0) = 0.
The simulation results are shown in figure 3, where we present the free surface elevation 

initially, in the middle of simulation and at the final time t  =   T (four snapshots in total). A 
zoom of the free surface elevation at the final time is shown in figure 4. One can see an excel-
lent agreement between NSWE and rSV systems. In particular, the shock positions coincide 
perfectly. This very visible on the zoomed figure 4, where we have also reported three differ-
ent values of ! . In all cases, the position of the regularised shock (inflexion point of the free 
surface) is exactly the same as with the NSWE, as it is the case in constant depth [6, 25]. The 
absence of oscillations in the rSV solution confirms the absence of any dispersion, as it was 

Figure 2. Sketch of the numerical test case considered in section 3.

Table 1. Various physical parameters used in numerical simulations. See also figure 2 
for an illustration.

Parameter Value

Gravity acceleration g 1
Computational domain half-length ! 200
Still water depth on the left dL 2
Free surface elevation on the left ! L 0.5
Still water depth on the right dR 1
Free surface elevation on the right ! R 0
Initial shock wave position x0 0
Bottom step location xb 40
Final simulation time T 50
Regularisation parameter ! 0.001
Transition length parameter ! 0.5

J. Phys. A: Math. Theor. 52 (2019) 42LT01
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Figure 3. Evolution of a step initial condition under the dynamics of the regularised 
Saint-Venant (rSV), NSWE and the Serre equations. The vertical (gray) dashed line 
indicates the position of the bottom step.
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Figure 4. Zoom on a portion of the computational domain at the final simulation 
time. For the sake of clarity, we report the regularised (rSV) (for three values of ! ) and 
classical (NSWE) shallow water equations only. Note the exact coincidence of the main 
shock position around x ! 70.
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designed for. In contrast, the weakly dispersive SGN system develops oscillations in the same 
experimental conditions.

4. Conclusion and perspectives

In this article, we proposed a new regularisation for the nonlinear shallow water equa-
tions (NSWE) over general uneven bathymetries. The derivation follows a variational proce-
dure described in previous works [6, 7]. This method has the advantage of being automatically 
conservative and the resulting equations are also well-balanced, non-dispersive and non-dissi-
pative. The regularised Saint-Venant (rSV) equations thus obtained possess several conserva-
tion laws. Moreover, the regularised system possesses also a Hamiltonian formulation, as the 
original equations do [16]. Finally, the rSV system was studied numerically with the finite ele-
ment method (FEM). The solutions of the rSV system were compared to the classical NSWE 
(solved with FV) and the Serre–Green–Naghdi equations  (solved with FEM as well). The 
numerical results confirmed the absence of dispersive effects in fully nonlinear simulations. 
An excellent agreement with NSWE could be noticed as well.

Concerning the perspectives, the generalisation of these results to 3D flows (i.e. two hori-
zontal dimensions) is the next natural step in this research direction.
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Appendix. Unbalanced equations

The Euler–Lagrange equations for the functional density (2.9) yield, after some algebra, the 
mass conservation ht + [ hu]x = 0 and the conservation of momentum

! t
!

u ! " h! 1 "
h3 ux

#
x

$
+ ! x

!
1
2 u2 + g# ! " h! 1 u

"
h3 ux

#
x

! " h2 %
3
2 u2

x + g hxx ! 1
2 g dxx

&
! " g h h2

x

$
= 0.

 
(A.1)

For still water—i.e. when u = ! = 0 and h = d(x)—the mass conservation is satisfied identi-
cally and the momentum conservation (A.1) becomes, after simplifications,

! 1
6 ! g

!
d3 "

xxx = 0. (A.2)

Thus, the stil water is solution if ! = 0 (classical shallow water equations) and, when ! > 0, 
if d3 is a second-order polynomial in x. For general bottoms, the equations derived from (2.9) 
are not well-balanced and, therefore, the Lagrangian density (2.9) does not provide a suitable 
regularisation of the classical shallow water equations for uneven bottoms.
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