
—————IHM—JAVA—————

®

©

ª
Primitive Equations of the Ocean

AdrienMoreno - François Stoltz - MAM4

project directed by Pierre Dreyfuss

Wednesday, January 28th 2009

Acknowledgements

We would like to deeply thank the people who, during these three weeks, provided us
with useful information and help assistance.

Firstly, we would like to thank the teachers Pierre DREYFUSS and Jean-François
COLLET for their interest and their patience.

Secondly, we would like to thank all the people who discussed this project with us, and
provided very good advice.

Abstract

This work is dedicated to the Primitive Equations (PE) of the Ocean, both from the
theoretical and numerical viewpoints. The PE are fundamental equations of

geophysical fluid dynamics, based on the hydrostatic and Boussinesq approximations.

The interest of this subject consists in the derivation of efficient domain decomposition
methods for the viscous PE of the ocean. We consider the rotating 3d incompressible

hydrostatic Navier-Stokes equations with free surface. Performing an asymptotic
analysis of the system with respect to the Rossby number, we compute an

approximated Dirichlet to Neumann operator and build a monodomain solution thanks
to numerical schemes.

Key words : Primitive Equations, boundary conditions, numerical schemes.

CONTENTS

Contents

1 Introduction 1

2 Theory : the Physical Model 2
2.1 The Equations . 2
2.2 Hypothesis of the problem . 2
2.3 Boundary and initial conditions . 3
2.4 An exact solution . 4

3 The Set of Equations : the Mathematical Model 5
3.1 The space discretization of the domain 5
3.2 A Crank-Nicholson Scheme for the velocity 6
3.3 An Upwind Scheme for the height of the water 6

4 Programming 7
4.1 Platforms used . 7
4.2 Packages loaded . 8
4.3 Evolution of the Project . 9
4.4 Problems . 10
4.5 Mathematics and Programming . 10

4.5.1 Java language versus Matlab . 10
4.5.2 Graphic User Interface (GUI) . 12
4.5.3 Using of the GUI . 15

5 Future and Conclusion 16

6 References 17
6.1 Books and Articles . 17
6.2 Internet Websites . 17

7 Appendix 18

MAM 4 Polytech’Nice-Sophia Antipolis Moreno - Stoltz

1 Introduction 1

1 Introduction

Initially, our project consists in implemanting a graphic interface to show the evolu-
tion of several parameters which represents the Ocean -particularly velocity and height
of the water. An other aim more valuable, is to create an applet -a web application- to
make accessible the application, and so notice the phenomenon.

However, so as to obtain graphics which represent the ocean’s evolution, we must
implement algorithms to find solutions of the equations. Afterward, we might see that
the velocity matches a Crank-Nicholson Scheme, whereas the height matches an upwind
scheme.

In a first part, from the Physical Model and hypotesis, we will intent to establish
these schemes, which will correspond to the Mathematical Model. Thus, we will be able
to implement it in a second part, and after this we might do a comparison between our
results and the theoretical solution.

Figure 1: The studied domain

MAM 4 Polytech’Nice-Sophia Antipolis Moreno - Stoltz

2 Theory : the Physical Model 2

2 Theory : the Physical Model

2.1 The Equations

Before coding, it’s first of all necessary for us to have a model. This modeling always
comes from physical, phenomenological laws following a major observation of nature
and these behaviours. Here is a question of interpreting the primitive equations of the
ocean. Thus, we are going to consider the primitive equations of the ocean in the domain
(x, y, z, t) ∈ Rx ×Ry ×[-H(x,y), ξ(x, y, t)]z ×R+

t :

∂tUh + Uh · ∇hUh − ν∆Uh + 2
ρ0

−→
Ω∧Uh + 1

ρ0
∇hp = 0

∇h · Uh + ∂zw = 0
∂zp = −ρg
ρ = ρ(z, T, S)

∂tT + U0 · ∇T − νT∆T = QT

∂tS + U0 · ∇S − νS∆S = QS

• The parameters : g (the gravity), ν (the viscosity),
−→
Ω (the earth rotation vector),

νT and νS (the diffusion coefficients).

• The unknowns : (Uh,w) = (u, v, w) (the 3d-velocity), p (the pressure), ρ (the
density), T (the temperature) and S (the salinity).

2.2 Hypothesis of the problem

In order to simplify the equations, and so the calculations to do in the java code, we
can do some hypothesis. To begin, we can neglect the influence of the diffusion coefficients
(νT and νS) and suppose that the density is constant (ρ = ρ0 = 1). Moreover, we can
consider that the vertical velocity w is a function of the horizontal velocity Uh, and that
the pressure p is a function of the water height ξ. To finish, we can consider that the
problem is dimensionless, that is to say we can introduce the following dimensionless
quantities :

(x, y) = L(x̃, ỹ) t = (L
U)t̃

ξ = Hξ̃ z = Hz̃

Uh = UŨh U0 = UŨ0

MAM 4 Polytech’Nice-Sophia Antipolis Moreno - Stoltz

2.3 Boundary and initial conditions 3

2.3 Boundary and initial conditions

The solution of the problem must verify several conditions.

Initial conditions :

• Condition 1 : Uh(·, 0) =Uh,i in Ω,

• Condition 2 : ξ(·, 0) =ξ in w.

Boundary conditions :

• Condition 1 : ∂u
∂n = ∂v

∂n = 0 in Γ1,

• Condition 2 : ∂z Uh(x, y,−1, t) = ∂z Uh(x, y, 0, t) = 0 in Γ2.

Comment : the last condition represents the homogeneous Neumann boundary condi-
tions. Γ1 is the floor (z = −1) and the surface (z = 0) of the ocean, and Γ2 corresponds
to the sides of the studied domain.

Moreover, to simplify the problem, we can introduce some characteristic quantities,
to know :

↪→ ε = U
fL : the Rossby number,

↪→ Re = UL
ν : the horizontal Reynolds, number

↪→ Re′ = H2

L2Re : the vertical Reynolds number,

↪→ Fr = U√
gH

: the Froude number.

We chose to exhibit the Rossby number as a small parameter since we are inter-
ested in long-time oceanographic circulation for which the Rossby number is typically of
magnitude 10−2. The values of Reynolds and Froude numbers vary with respect to the
turbulent processes and to the height of the area that is considered respectively.

MAM 4 Polytech’Nice-Sophia Antipolis Moreno - Stoltz

2.4 An exact solution 4

2.4 An exact solution

For this problem, we don’t have a solution which checks the equations written in
the previous page. So, we are going to find a solution which checks the initial and the
boundary conditions. Finally we have the possible following solutions :

u(t,x,z) = t·sin(πx
3)·cos(πz)

v(t,x,z) = t·sin(2πx
3)·cos(πz)

h(t,x) = t· sin(πx
3)

Thus, injecting these functions in the primitives equations, we don’t obtain the ex-
pected 0-result, but appears a secund member. We will call f1, f2 and f3 the functions
which are respectively solutions of the u-primitive equation, the v-primitive equation and
the h-primitive equation :

f1(t, x, z) = t
(
(10π2

9)cos(πz)·sin(πx
3)+π

3cos(πz)·cos(πx
3)-cos(πz)

ee ·sin(2πx
3)

)
+cos(πz)·sin(πx

3)

f2(t, x, z) = t
(
(13π2

9)cos(πz)·sin(2πx
3)+2π

3 cos(πz)·cos(2πx
3)+cos(πz)

ee ·sin(πx
3)

)
+cos(πz)·sin(2πx

3)

f3(t, x) = πt
3 cos(πx

3).

Finally, we obtain a new system of equations, Ẽp, whom u, v, h are solutions :

{
∂t + U0 · ∇h − ∆h

Re − ∂2
z

Re′ +
C
ε

}
Uh + ∇hξ

Fr2 = (f1, f2)

∂zU(x, y,−1, t) = ∂zU(x, y, 0, t) = 0

{∂t + U0 · ∇h} ξ +∇h · Uh = f3

where C = Uh =

(
u

v

)
:= 1

H

∫ 0
−H Uh dz.

MAM 4 Polytech’Nice-Sophia Antipolis Moreno - Stoltz

3 The Set of Equations : the Mathematical Model 5

3 The Set of Equations : the Mathematical Model

3.1 The space discretization of the domain

We first describe the space discretization of the domain. We consider a regular carte-
sian grid of nx × nz points and we apply a finite volume method. We introduce the
horizontal space step ∆x and the vertical space step ∆z. Here we are going to deal with
the horizontal velocity and we are not going to compute a 3d pressure but a 2d water
height. Note the all velocities can be computed on the same cells since we consider a
2d (x, z) problem for the horizontal velocity (u, v) in the (x, y) plane. We thus have to
introduce two types of finite volume meshes (Figure 1).

The first one is a 2d finite volume mesh and is related to the computation of the
velocities. For i = 0 · · · nx − 1 and j = 0 · · · nz, we denote I = i + jnx. The cells of
this first mesh will be denoted CI = XI + (-∆x

2 ,∆x
2) × (-∆z

2 ,∆z
2), where the points XI

stand for XI = (0,−H) + (i∆x,j∆z) (they are represented by a black circle in Figure 1).

The second grid is a 1d finite volume mesh devoted to the computation of the water
height. The cells of this second mesh will be denoted ci+ 1

2
= xi+ 1

2
+ (-∆x

2 ,∆x
2), where the

points xi+ 1
2

stand for xi+ 1
2

= (i + 1
2)∆x (they are represented by a circle with a number

inside in Figure 1).

Figure 2: Space discretization of the domain

MAM 4 Polytech’Nice-Sophia Antipolis Moreno - Stoltz

3.2 A Crank-Nicholson Scheme for the velocity 6

3.2 A Crank-Nicholson Scheme for the velocity

Let us now consider the discretization of the equations. We integrate the (u, v)-
equation on the time-space cell [tk,tk+1] × CI . We compute the interface fluxes at time
tk+ 1

2
by using classical centered formulas. We recover the well-known Crank-Nicholson

scheme. It is known to be second order accurate and conditionnaly stable in the L norm
under a CFL type condition on the time step ∆tk = tk+1−tk. This strategy is applied for
all the velocity nodes such that the neighbouring nodes are included inside the considered
subdomain. The discrete relations are :

u : the abscissa of the velocity :

uI,k-
∆t
2

{
u0

uI+1,k−uI−1,k

∆x - 1
Re

uI+1,k−2uI,k+uI−1,k

2∆x - 1
Re′

uI+1,k−2uI,k+uI−1,k

2∆z -1
ε vI,k+

1
Fr2 Dx1 ξj,k

}

v : the ordinate of the velocity :

vI,k-
∆t
2

{
u0

vI+1,k−vI−1,k

∆x - 1
Re

vI+1,k−2vI,k+vI−1,k

2∆x - 1
Re′

vI+1,k−2vI,k+vI−1,k

2∆z +1
ε uI,k

}

3.3 An Upwind Scheme for the height of the water

Let us now consider the equation of the height of the ocean. We integrate it on time
space cells [tk,tk+1] × ci+ 1

2
, except for i = 0 where we need to use the transmission

conditions. We compute the interface fluxes by using classical explicit upwind formulas.
The resulting scheme is known to be first order and also conditionnaly stable under a
CFL type condition. The related formula is :

ξi+ 1
2 ,k+1 =

{
1 - ∆t

∆x u0

}
ξi+ 1

2 ,k + ∆t
∆x u0 ξi− 1

2 ,k - ∆t∆z
∆x

(
u+,n+1

i,k - u+,n+1
i−1,k

)

where u+,n+1
i,k =

uj,k

2 +

nz−1∑

j=1

uj(nx+1),k +
unz(nx+1),k

2 .

MAM 4 Polytech’Nice-Sophia Antipolis Moreno - Stoltz

4 Programming 7

4 Programming

4.1 Platforms used

During the project, we could have to do numerous computations, in particular to
obtain the essential matrixes to visualize the solutions of the equations. That’s why, at
the beginning of the three weeks, we thought that we will use the MATLAB software.
Indeed, the code proposed was written with Matlab. Matlab is a numerical computing
environment and programming language. It allows an easy manipulation of matrix, plot-
ting of functions and data, implementation of algorithms, creation of user interfaces, and
interfacing with programs in other languages.

This last point is very important, because thanks to Matlab we can create a graphic
interface in Java : libraries written in Java can be directly called from Matlab and many
Matlab libraries are implemented as wrappers around Java libraries. However, calling
Matlab from Java is more complicated, but can be done with Matlab extension which is
sold separately by MathWorks (which is a privately held, mid-size, multi-national corpo-
ration which is specialized in technical computing software).

We did not use Matlab because of the price of the software and the additional price
for the extension. Hence, we have decided to use SCILAB , because it looks like Matlab,
especially regarding a lot of functions and the syntax which are similar. Scilab is a high
level programming language in that : most of its functionality is based around the ability
to specify many computations with few lines of code. Unlike Matlab, Scilab is available
for download at no cost. It is an open source.

Moreover, we can launch remote Matlab/Scilab scripts and visualize results textu-
ally with ProActive Interface. The main aim of the ProActive Interface is to equip
Scilab and Matlab with a generic interface to Grid computing. This extension allows the
deployment of Matlab/Scilab instances on several notes of the grid, to use these instances
like computing engines and submitting of Matlab/Scilab tasks over the grid.

To continue, in a Java code, it is possible to call Scilab functions, thanks to the
Javasci package proposed by Scilab. Nevertheless, to do an Applet with this package is
complicated for our team and for the users -to see the next subsection. As a matter of
fact, to configure the Applet on the Internet, a user must install .dll files for Windows or
.so files for Linux, some jar files and must update his JRE (Java Runtime environment).
This configuration is not easy, so we have decided with Mr. Dreyfuss to translate all the
Matlab code in Java.

MAM 4 Polytech’Nice-Sophia Antipolis Moreno - Stoltz

4.2 Packages loaded 8

After the previous decision, we decided to download the Java IDE NetBeans , the
6.5 version. The Netbeans GUI Builder greatly reduces the learning curve and devel-
opment time needed to produce professional quality Java GUIs, and in particular to
create Graphical User Interface with the GUI application named Matisse . Further-
more, NetBeans has the characteristic to be portable. That’s why we could use whatever
operating system, to know Windows XP for one of us -Adrien, and Linux for François.

4.2 Packages loaded

We used and have downloaded a lot of packages. In this section we present the pack-
ages and why we have or not used them.

Previously, we have specified the use of Javasci package . It is a Scilab tool to
interface Scilab functions to Java. The advantage of this package is the creation of ma-
trixes, and the possibility to do computations with Scilab on Java code. To use this
package correctly, it is necessary to import the package and a few files with an extension
.dll (dynamic-link library with Windows), .so (shared object with Unix), .c and .h.

To link dynamic libraries is usually handled by linking to an import library when
building or linking to create an executable file. Then, the created executable contains
an import address table by which all .dll function calls are referenced. At run-time, the
import address table is filled with appropriate addresses that point directly to a function
in the separately-loaded ’dll’. It is the same procedure over Unix with files .so.

However, in the Javasci package there are Java’s native methods. Simply put, a
native method is the Java interface to-non-Java code. It is the Java’s link to the ¿out-
sider world À. More specially, a native method is a Java method whose implementation
is provided by non-Java code, most likely C. Thus, we must import the files with the
extension .c, and .h too. We have tried to import this package, but it misses already a
file, and the package is not identified. Even if, it is possible to do an Applet (see the web
site www.raditha.com/Java/jni/), Mr. Dreyfuss pointed out the difficulties to launch
this kind of Applet with native methods.

MAM 4 Polytech’Nice-Sophia Antipolis Moreno - Stoltz

4.3 Evolution of the Project 9

Finally, as we decided to translate the Matlab code in Java, we have used others Java
packages. To create matrixes, we have used the UJMP package . The Universal Java
Matrix Package is an open source Java library that provides sparse and dense matrix
classes, as well as a large number of calculations for linear algebra like matrix multipli-
cations or the inverse of a matrix, and every matrix can be visualized in a JFrame by
invoking the showGUI() method. The advantages of this package are his resources, but
also the possibility to create sparse or/and dense matrix.

To create interactive graphics we have used the SGT package and the JFreeChart
package . The Scientific Graphics Toolkit facilitates an easy development of independent
platform Java applications to produce highly interactive, flexible, publication quality, ob-
ject oriented graphics of scientific data. Features include user settable or automatically
scaled axes, sophisticated, automatically self-scaling time axes, labels as movable, cus-
tomizable objects, automatic generation of legends to explain data being displayed... The
advantage of this package is the possibility to draw vector field. Secondly, JFreeChart is
a free Java chart library that makes it easy for developers to display professional quality
charts.

4.3 Evolution of the Project

First week: this week was devoted to the research. Indeed, during this period we
have done three kinds of researches. As we have never created neither a graphic user
interface or an Applet, we have discovered the ¿swing À and ¿awt À libraries proposed
by Java, thanks to the web site www.siteduzero.com.

Then, as in a first time we could want to use Scilab, we have searched informa-
tion to encapsulate the Scilab code in a Java code, and to do the link between the two
programming languages. We have also discovered the platform NetBeans.

MAM 4 Polytech’Nice-Sophia Antipolis Moreno - Stoltz

4.4 Problems 10

Second week: this week was devoted to the translation of the code Matlab in Java.
Namely, we have created different classes in Java, having the same characteristics and
giving the same results as the Matlab scripts. It was a difficult step because the execu-
tion of the Java code is less efficient than Matlab or Scilab execution, and a lot of Java
package were not complete. And, at the end of this week, the code was not correct.

Third week: this week was devoted to the creation of the ¿Graphic User
Interface À -GUI. But, before beginning the interface we were to finish the translation of
the Matlab code in Java. Moreover, we have written the report.

4.4 Problems

We have met lots of problems. Firstly, there was the problem of the software, because
we have not Matlab in our laptops. Then, we have discovered that with Scilab it is diffi-
cult to execute an Applet on the Internet, because the user must upload and download
different files.

During the translation of Matlab code in Java, we have encountered a lot of diffi-
culties. Indeed, with UJMP, it is hard to create matrixes, and there are some methods
of it which return the erroneous results. For example, our main difficulties concern the
inversion of a matrix or the solving of a linear system Ax = b with A a matrix and x and
b two vectors. To solve this problem we have try to create our own method. We have
coded several algorithms, therefore Gaussian elimination.

In linear algebra, Gaussian elimination is an efficient algorithm for solving systems of
linear equation, finding the rank of a matrix, and calculating the inverse of an invertible
square matrix.

4.5 Mathematics and Programming

4.5.1 Java language versus Matlab

All the code in our project is written in Java language, and is the mirror of the Matlab
code. Indeed, we have decided to keep the same names for the functions and for the pa-
rameters. It is possible to find differences between each kind the code but, the results are
the same. These differences appeared when in Matlab code there are functions of Matlab
which are called (like feval, speyes, sparse, etc), or in some calculations in particular,
with vectors are simplify thanks to the tools of Matlab.

MAM 4 Polytech’Nice-Sophia Antipolis Moreno - Stoltz

4.5 Mathematics and Programming 11

The translation of the Matlab code is not easy, and the final Java code is not re-
ally efficient. For example, our Java machine calculate slowly matrix with an important
dimension (99x10) contrary to Matlab or Scilab. A solution proposed by Mr. Dreyfuss
was to create sparse matrix. This kind of matrix allows saving only the values different
of zero, and the corresponding index. In this case the Random Access Memory (RAM)
is less used. Moreover, the calculations between sparse matrixes are quicker. Unfortu-
nately, we have not enough time to implement and to develop this idea.

To understand our code, we represent the architecture of it, thanks to this classes
diagram. In this diagram we have written only the name of the classes.

There are 6 codes. The ¿ IHM.java À is our interface and we present the GUI result on
the next section. The file Script.java can be considered like the main code. In this code
we recover the two matrixes characterizing height and velocities during time. Script.java
calls three other objects : Donne init, EqPrimitives and Assemblage.

⇒ Donne init : initialization of the several parameters and matrixes,
⇒ EqPrimitives : calculations of the primitive equations to find U (matrix velocities)
and a (matrix heights),
⇒ Assemblage : calculations of different matrixes to obtain the two matrixes Ap and Am
created in blocks,
⇒ Functions : generation of different functions.

MAM 4 Polytech’Nice-Sophia Antipolis Moreno - Stoltz

4.5 Mathematics and Programming 12

4.5.2 Graphic User Interface (GUI)

Matrixes : our goal is to visualize in a ¿ GUI À the velocity and the height of the
ocean –see the appendix. Before presenting the interface, we are going to present the
structure of the velocity and of the height obtained with the codes. In reality the velocity
and the height are characterized by matrixes.

⇒ The velocity is represented by the matrix ’U’ below, whom size is 2N×nt :

U =

u0,0 u0,1 u0,2 . . . u0,nt

...
...

... . . .
...

...
...

... ui,j
...

...
...

... . . .
...

uN−1,0 uN−1,1 uN−1,2 . . . uN−1,nt

v0,0 v0,1 v0,2 . . . v0,nt

...
...

... . . .
...

...
...

... vi,j
...

...
...

... . . .
...

vN−1,0 vN−1,1 vN−1,2 . . . vN−1,nt

Comment : the velocity U is determined by a group of vectors for each time ; each
column represents one time. For one time, there is one vector on one knot of the grid ;
each vector is represented by its u-velocity, whom value is given by the term ui,j,t, and
its v-velocity, whom value is given by the term vi,j,t, with the trinomial (i, j, t) given.

⇒ The height is represented by the matrix ’a’ below, whom size is nx × nt + 1 :

a =

a0,0 a0,1 a0,2 . . . a0,nt

...
...

... . . .
...

...
... ai,j . . .

...
...

...
... . . .

...
anx−1,0 anx−1,1 anx−1,2 . . . anx−1,nt

Comment : to create an animation we draw all the points of columns functions of
time. In a first time we draw on a graphic the point of the first column. We obtain the
height of the ocean, namely a curve at time 0 (this value zero corresponds to the index
of the column). Each value of a column represents the height at time t, at the abscissa
determine by the second index of values. Then this first curve is drawn, and we can draw
the value of the second column, etc.

MAM 4 Polytech’Nice-Sophia Antipolis Moreno - Stoltz

4.5 Mathematics and Programming 13

Paramaters : in our GUI, a user must fill several parameters to initiate the anima-
tions. He must put only numbers. It is possible to write number with point like ’1.23’
for instance. If this condition is not respected an information message appeared, and
the field is automatically filled by default values. It is important to manage the data
given by a user. Indeed, if a user writes a letter instead of a number, an error will be
generated, and the applet will have certainly problems while the execution. To reassure
our applet we have decided to use regular expressions, named ¿regex À.

Regular expressions are a way to describe a set of strings based on common char-
acteristics shared by each string in the set. They can be used to edit or manipulate text
and data. We have learnt a specific syntax to create our expression. The regex syntax is
supported by the java.util.regex API and the code has the following form :

jTextField1.getText().matches(”\\d∗\\.?\\d∗”)

The matches method checks if the text in the jTextField has the good form, given by
the regex between the bracket of the matches method :

↪→ \\d∗ means that we can write zero or several numbers
↪→ \\.? means that we can put zero or one point

Straight away, we present the parameters. In our GUI, a user must fill five files
corresponding to five parameters :

• nx : this parameter represents the number of points along the X-axis,

• nz : this parameter represents the number of points along the Z-axis,

• nt : this parameter represents the number of step-time,

• ee : this parameter is the Rossby number,

• u0 : this parameter is the initial velocity.

MAM 4 Polytech’Nice-Sophia Antipolis Moreno - Stoltz

4.5 Mathematics and Programming 14

Moreover, if you enter bad parameters or forget to fill a field, then a message appeared.
These are the different dialog boxes that you can encounter on the next page :

↪→ If you have have forgotten to fill a field

↪→ If you have given bad parameters. Then the differents fields are filled with default
values.

↪→ A user must click on the next button until the simulation is finished namely the value
of the parameter nt is reach.

MAM 4 Polytech’Nice-Sophia Antipolis Moreno - Stoltz

4.5 Mathematics and Programming 15

4.5.3 Using of the GUI

The walk that a user must follow to use our interface is explained thanks to an
activities diagram.

Figure 3: The activities diagram

MAM 4 Polytech’Nice-Sophia Antipolis Moreno - Stoltz

5 Future and Conclusion 16

5 Future and Conclusion

The monodomain model, that we have attempted to imitate, doesn’t allow to have
right previsions, because of a bad knowledge of boundary conditions. In a large domain,
like the Ocean, the researchers hope for improving these results. To do that, the best
manner is to divide the domain in several subdomain, and then find the solution in each
subdomain. Thus, they call on efficient domain decomposition methods : the Schwarz
waveform relaxation type algorithms.

The heart of the classical Schwarz method is to solve the problem on the whole domain
thanks to an iterative procedure where a problem is solved on each subdomain by the
use of boundary conditions that contain the information coming from the neighbouring
subdomains. The correlation between all the solutions optimize the general and final
solution.

MAM 4 Polytech’Nice-Sophia Antipolis Moreno - Stoltz

6 References 17

6 References

6.1 Books and Articles

E. Audusse, P. Dreyfuss, B. Merlet. Optimized Schwarz waveform relaxation for Primi-
tive Equations of the Ocean. January 16, 2009.

Antoine Rousseau. Études Théoriques et Numériques des Équations Primitives de l’Océan
sans Viscosité. June 15, 2005.

6.2 Internet Websites

• Matlab : Help online (www.mathworks.com)

• Scilab : Help online (www.scilab.org)

• Java : Editor, API and Virtual Machine (java.sun.com)

• Javasci : The Javasci package (cermics.enpc.fr/cours/AP/scilab/doc/javasci/package-
summary.html)

• NetBeans : Using of NetBeans 6.5 (www.netbeans.org)

• SGT : Help for the Scientific Graphics Toolkit (www.epic.noaa.gov/java/sgt/)

• UJMP : Help for the Universal Java Matrix Package (www.ujmp.org)

MAM 4 Polytech’Nice-Sophia Antipolis Moreno - Stoltz

7 Appendix 18

7 Appendix

Presentation of our applet which let the users visualize the velocities and the height
of the ocean, with the monodomain technic, on a website.

Figure 4: Our applet

MAM 4 Polytech’Nice-Sophia Antipolis Moreno - Stoltz

