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Introduction

The finite element method (FEM) is a numerical technic for finding approximate
solutions of partial differential equations (PDE) as well as integral equations.

The principle of the isogeometric finite element method is to use functions
from CAD(Computer-aided design) like B-Splines to determine the field where
the PDE takes place and to numerically solve it.

The B-splines allows to make a unstructured grid which represents the field
of the solution of the PDE. We can use Bézier curves but the shape of a Bézier
curve changes globally when a control point is modified. To overcome this prob-
lem we need a curve whose shape only changes locally when a control point is
modified. One solution is to connect a number of Bézier curves together and
force them to act as a signe one. Hopefully, any change made to a control point
would only affect some neighboring curve segments. Since this composite curve
is denned on a domain. The domain is also divided into sub-intervals, each of
which becomes the domain of Bézier curve segment. The compistie curve is a
B-spline curve, and the division points in the domain are it knots. A different
subdivion yields a different B-spline curve.
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1 B-Spline

1.1 Generality

B-spline is a spline function that has minimal support with respect to a given
degree, smoothness, and domain partition. B-splines were investigated as early
as the nineteenth century by Nikolai Lobachevsky. A fundamental theorem
states that every spline function of a given degree, smoothness, and domain
partition, can be uniquely represented as a linear combination of B-splines of
that same degree and smoothness, and over that same partition.

1.2 B-spline functions

B-spline functions are piecewise polynomial functions with compact support.
They are defined in parametric space using a so-called vector of knots (ξ1, ..., ξk)
with ξ1 ≤ ξ2 ≤ ... ≤ ξk. The number of knots verifies k = n+ p+ 1, where n is
the number of control points and p is the degree of the spline functions. Each
knot represents a coordinate value in the parametric space. If the knot vector
is chosen equal to a set of following integers, we refer to natural B-spline. If the
knots are distributed uniformly, the vector of knot is said to be uniform. It is
said to be open if the first and last knots are repeated p+ 1 times.

The B-spline functions are defined recursively on the vector of knots using the
following procedure:

for p = 0 : N̂0
i (ξ) =

{
1, if ξi ≤ ξ ≤ ξi + 1,

0, otherwise.

for p ≥ 1 : N̂p
i (ξ) = ξ−ξi

ξi+p−ξi N̂
p−1
i (ξ) + ξi+p+1−ξ

ξi+p+1−ξi+pN̂
p−1
i+1 (ξ)

i = 1, ..., n+ p+ 1

We can note that each Ni,p(u) is computed from two B-spline basis functions
of degree p − 1, each of which is computed from two B-spline basis functions
of degree p−2. HenceNi,p(u) is recursively built from basis functions of degree 0.

According to the recursive algorithm, we calculate all of the B-spline functions
N̂p
i (ξ) as follows : 

N̂0
1 (ξ) N̂1

1 (ξ) . . . N̂p
1 (ξ)

N̂0
2 (ξ) N̂1

2 (ξ) . . . N̂p
2 (ξ)

. . . . . . . . . . . .

N̂0
n(ξ) N̂1

n(ξ) . . . N̂p
n(ξ)

. . . . . . . . . . . .

N̂0
n+p−1(ξ) N̂1

n+p−1(ξ) ... 0

N̂0
n+p(ξ) 0 . . . 0
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An example of quadradic B-spline function are shown on figure 1 with five
distinct knots.

Figure 1: One-dimensional quadratic B-spline functions

1.3 B-spline curve

The B-spline curve of degree p defined by n control points P1,P2, . . . , Pn is as
follows:

P (ξ) = (x(ξ), y(ξ), z(ξ)) =
∑n
i=1

N̂p
i (ξ)Pi

where Pi = (Xi, Yi, Zi) are the coordinates of ith control points. Pi can also be
interpreted as the weight of the ith B-spline function.
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Hence, P(ξ) is the weighted sum of the defining control points. If we change the
position of control point Pi, the change made to Pi alters the term Ni,p(ξ)Pi
only. Since Ni,p(ξ) is zero outside of [ξi, ξi+p+1), the effect of changing Ni,p(ξ)Pi
does not propagate outside of [ξi, ξi+p+1). Therefore, if Pi is modified, the curve
segment on [ξi, ξi+p+1) changes and the segment on [0, ξi) and [ξi+p+1, 1] do not.
This is exactly an important property of B-spline: the modification made to a
control point is localized.

We aim to implement the B-spline in Matlab and we test if the B-spline curve
fit the curve provided well.

Programe 1-Bsp : Calculate all the B-spline fonctions

function [sp]=Bsp(ksiVector,n,p,ksi)

sp=zeros(n+p,p+1);

for j=1:p+1

j0=j-1;

for i=1:n+p-j0

ki=ksiVector(i);

ki1=ksiVector(i+1);

if(j0==0)

if ( (ksi>=ki) && (ksi<=ki1) )

sp(i,j)=1;

else

sp(i,j)=0;

end

else

kip=ksiVector(i+j0);

kip1=ksiVector(i+j0+1);

tg=(ksi-ki)/(kip-ki);

td=(kip1-ksi)/(kip1-ki1);

sp(i,j)=tg*sp(i,j0)+td*sp(i+1,j0);

end

end

end

end

Programe 2-iwBsp : Calculate all the points that go through the B-spline
curve

function [C]=iwBsp(ksiVector,points,p,ksi)

n=size(points,2);

xi=points(1,:);

yi=points(2,:);

N=Bsp(ksiVector,n,p,ksi);
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Nip=N(1:n,p);

x=xi*Nip;

y=yi*Nip;

C(1)=sum(x);

C(2)=sum(y);

end

Programe 3-Test B-Spline :

function SplineTest()

p=3;

n=9;

points=[-6 -3 -1.5 -1 0 1 2 4 6;0.02 0.1 0.2 0.5 0.999 0.5 0.15 0.07 0];

knotVector=linspace(-4,3,13);

pointsCubic=linspace(-3.2,1.5,900);

m=ip(knotVector,points,p,pointsCubic);

hold on

p=plot(m(:,1),m(:,2));

set(p,’Color’,’yellow’,’LineWidth’,1.5);

p1=plot(points(1,:),points(2,:),’o’);

p2=plot(points(1,:),points(2,:),’:’);

set(p1,’Color’,’red’,’LineWidth’,1);

set(p2,’Color’,’red’,’LineWidth’,2);

ezplot(’1/(1+x*x)’)

hold off

end

function [P]=ip(ksiVector,points,p,vect)

n=size(points); %nombre de points de controle

l=length(vect); %longueur du vecteur vect

for i=1:l

t=vect(i);

ki=iwBsp(ksiVector,points,p,t);

P(i,1)=ki(1);

P(i,2)=ki(2);

end

end
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2 Approximation by Splines

In this section we adress the matter of approximating a given function using
splines, which allow for a piecewise interpolation with a global smoothness.

The problem is to find a B-spline function of degree k of position and velocity
at the extremities given by N-1 points Qi. The problem can be split into two
phases : a linear and a nonlinear problem.
We fix a knot vector t and we seek for a control polygon P such as the corre-
sponding B-spline curve Xk passes through the Qi at the nodes. The interpo-
lation results in solving a linear system.
The nonlinear problem consists to optimize the choice of the vector of knot.
This question is more difficult than the first point. Besides this part is just an
optimization of the choice of vector of knot. So we decided to limite ourselves
to the interpolation.

In this report, we aim to approximate the Runge’s function using B-spline func-
tions. Runge’s function is given by the following equation :

f(x) = 1
1+x2 where x ε R

This function is plotted in figure 2. The Runge’s function is a famous example
in the field of numerical analysis. Runge’s phenomenon is a problem of oscilla-
tion at the edges of an interval that occurs when using polynomial interpolation
with polynomials of high degree. It was discovered by Carl Runge. The dis-
covery was important because it shows that going to higher degrees does not
always improve accuracy. It’s the reason why we have chosen Runge’s function
to interpolate.

Figure 2: The Runge’s function to interpolate
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2.1 The linear problem

This interpolation is based on the following theorem for B-splines of degree 3.

Theorem. Let N+1 nodes Qj of Rn. Let va, vb two vectors of Rn. Let t a
vector of knot clamped at the extremities, such as
t0 = t1 = t2 = t3 = a < t4 < . . . < tN+2 < b = tN+3 = tN+4 = tN+5 = tN+6

There exists a unique control polygon P = (P0, . . . , PN+2) such as the B-spline
curve of degree 3 satisfies

∀j = 0, . . . , N, X3(tj+3) = Qj, X
′
3(a) = va, X ′3(b) = vb

So interpolatory cubic spline are particulary significant since : i. they are
the splines of minimum degree that yield C2 approximations; ii. they are suffi-
ciently smooth in the presence of small curvatures.

The estimate of the interpolation error is given by the following theorem.

Theorem. Let f : [a, b] → R a C2 function. Let X3 the B-spline function of
degree 3 witch satisfies the previous theorem. Then

||f −X3||∞ ≤ h3/2

2 ||f
′′||2 and ||f ′ −X ′3||∞ ≤ h1/2||f ′′||2

where h = max|ti+1 − ti|

Now the question is : being given the points Qi to interpolate, what is the
best choice of ti? To avoid the derivative of the interpolating curve is large, the
distant points Qi and Qi+1 must be interpolated with distant values ti and ti+1.
In other words we must correlate spaced ti+1 - ti with the distances ||Qi+1−Qi||.
The answer is not abvious. There are several ways to choose the ti. In deed we
can choose them uniformly on the interval. Or we can choose a clamped vector
that’s to say we multiply the points which are at the boundaries.

2.2 Numerical resolution

We have chosen to use a clamped vector to resolve the interpolation problem.
Let a knot vector
t0 = t1 = t2 = t3 = 0 < t4 < . . . < tN+2 < N = tN+3 = tN+4 = tN+5 = tN+6

in the interval [0, N ]. We seek for the control polygon (with N+3 knots) of the
B-spline which passes through the point Qi at ti+3 and which the derivatives
are v0 (resp. vN ) at the extremities.

We have to resolve the following system AP = Q with Q = (Q0, v0, Q1, . . . ,
QN−1, vN , QN ) and P ε RN+3 and
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A =



Np
1 (a) 0 . . . . . . . . . 0

N
′p
1 (a) N

′p
2 (a) 0 . . . . . . 0

0 Np
2 (a+ h) Np

3 (a+ h) 0 . . . 0

0 0
. . .

. . . . . . 0
...

...
...

...
...

...
...

...
...

...
... N

′p
N (b)

0 0 . . . . . . . . . Np
N (b)


where Np

i is the spline function of degree p and N
′p
i it’s derivative. The

derivate is given by the following expression

(Bpi )
′
(x) = p(

Bp−1
i (x)

xi+p−xi
− Bp−1

i+1 (x)

xi+p+1−xi+1
)

After calculating all the elements, we have the following matrix

A =


1 0 0 0 0 . . .
−3 3 0 0 0 . . .
0 1

4
7
12

1
6 0 . . .

0 0 1
6

2
3

1
6 . . .

...
...

...
...

...
. . .


The matrix A is not symmetric but it’s tridiagonal. Even if the resolution

of this problem is not difficult we choose to resolve the equivalent system

TAAP = TAQ

The matrix TAA is coersive, so the resoltion should be effective. We follow the
method given by Pierre Pansu.

2.3 Results

Let’s begin by showing the Runge’s phenomenon. Let the Runge’s function
below to interpolate with polynomials

f(x) = 1
1+25x2 , −1 ≤ x ≤ 1

Figure 3 plot Runge’s function (red) and the interpolated polynomiales with
equidistantly spaced data points (green) and with more points at the end (blue).
One can see that the polynomial with equidistantly points doesn’t approximate
the function in the neighborhood of the end points of the interpolation interval.
The other interpolated polynomial approximate the function at the end of the
interval but elsewere it’s a bad approximation.
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Figure 3: The Runge’s phenomenon

Now we plot the interpolation of Runge’s function using cubic splines. This
function is interpolated between -5 and 5.
In figure 4 we interpolate using 6 points and 15 points in figure 5. We use the
method developed in section 1.2.
The Runge’s function is drawn in blue and the approximate is drawn in green.

Figure 4: The Runge’s function interpolate with 6 points
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Figure 5: The Runge’s function interpolate with 15 points

Once can see in the second case, that’s to say interpolation with 15 points,
that the interpoltion is good. In fact we have no problem at the end of the in-
tepolation interval as was the case with polynomial interpolation. The Runge’s
phenomenon does not appear.
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3 Grid using B-Spline

In the CAD process, B-spline functions are used to make a representation of
the object, this is why we use B-spline functions to describe the computational
domain.
First, we need to describe the most difficult side of the boundaries. To do this,
we used the one dimension B-spline description.

Figure 6: Computational domain around the object

Figure 7: Computational domain around the object

Then we add the other boundaries with the same method.



3 GRID USING B-SPLINE 13

Once this step is completed, we can insert new control points inside the
computational domain without changing the boundaries. For instance, we insert
eight points in the domain to obtain an 8x3 matrix which contain the control
points (three lines of eight points). The figure 8 represents the three iso-ξ lines.

Figure 8: iso-ξ lines

Figure 9: computational domain(iso-ξ and iso-η lines)

The boundaries in y=0 are quite simple therefore we decided to use one
degree spline functions for the iso-η. The problem with the figure 9 is the iso-η
lines don’t start and finish on the computational domain boundaries. So we



3 GRID USING B-SPLINE 14

decided to use Lagrange piecewise interpolation:

L(η) =
(η − 2)(η − 3)

(1− 2)(3− 2)
X1 +

(η − 3)(η − 1)

(2− 3)(2− 1)
X2 +

(η − 1)(η − 2)

(3− 1)(3− 2)
X3

Where the yj are the points of the iso-ξ lines where we wanted the iso-η go
throught, η is the control points vector of the iso-η line.

Figure 10: iso-η lines with interpolation)
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4 Finite element methode applied to an one-
dimensional problem

The finite element method is used to solve differential or partial diferential equa-
tions. We adress in this section the resolution of a 2-order differential equation
with this method which consists to approach the exact solution of the problem
on a mesh of the integration domain with Lagrange finite elements using cubic
B-spline functions.

4.1 Problem description

We consider the following differential equation

−α∂
2u(x)
∂2x + βu(x) = f(x), x ∈ Ω = ]0, 1[

(1)
where α, β are given reals, f a real-value continous function. Conditions are
imposed at the boundaries, with

u(0) = u(1) = 0. (2)

4.2 Variational formulation

Let v ∈ V = { w ∈ H1]0, 1[ | v(0) = v(1) = 0 }. We multiply (1) by an arbitrary
function v

−α∂
2u(x)
∂2x v(x) + βu(x)v(x) = f(x)v(x)

Then we integrate by parts, to obtain

[−αu′(x)v(x)]10 -
∫ 1

0
−αu′(x)v′(x)dx +

∫ 1

0
βu(x)v(x)dx =

∫ 1

0
f(x)v(x)dx

which is equivalent to∫ 1

0
−αu′(x)v′(x)dx +

∫ 1

0
βu(x)v(x)dx =

∫ 1

0
f(x)v(x)dx

(3)
Equation (3) is called variational formulation of the one-dimensional basic prob-
lem.

4.3 Uniqueness of the solution and Lax-Milgram’s theo-
rem

Let’s remind the variational formulation∫ 1

0
−αu′(x)v′(x)dx +

∫ 1

0
βu(x)v(x)dx =

∫ 1

0
f(x)v(x)dx

(4)
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We seek for u ∈ V such as (3) is satisfied for all v ∈ V . Define

a(u, v) =

∫ 1

0

αu′(x)v′(x)dx+

∫ 1

0

βu(x)v(x)dx (5)

and

φ =

∫ 1

0

f(x)v(x)dx (6)

Problem (4) is then remplaced by

a(u, v) = φ(v),∀v ∈ V (7)

Subject to right conditions, equation (4) has an unique solution.

Theorem. Let V be a Hilbert space and assume a a continous bilinear form on
V. Let φ a continous linear form on V. Then there is a unique function u ∈ V
such as a(u, v) = φ(v),∀v ∈ V
Moreover, the linear application is continuous. For example, choose α = −1
and β = 0 guaranteed the hypothesis of Lax-Milgram’s theorem and therefore a
unique solution of the equation (7).

4.4 Approached resolution and spacial discretization

We are going to replace the space V which has in general a infinite dimension by
one of its subspaces and the approached problem are going to be solved : Find
uh ∈ Vh a(uh, vh) = φ(vh) with dim(Vh) < ∞, Vh being a Hilbert space. The
space V is built in practice from a mesh of the domain Ω, the index h designating
the typical size of the grid cells. In the case of the differential equation (1), we
have:

−αu′′(x) = f(x), u ∈]0, 1[ where u(0) = u(1)
V = { ω ∈ H1(]0, 1[) / v(0) = v(1) = 0 }

Vh is a set of continuous functions of ω and polynomial on every mesh . Let
(φ1, . . . , φn) be a basis of Vh. The decomposition of the approached solution
uh have the form:

uh =
∑Nh

i=1 uiφi

The problem amounts to find reals, u1, u2, . . . , unh
such as∑Nh

i=1 uia(φi, vh) = l(vh) ∀vh ∈ V

By linearity of applications a and φ∑Nh

i=1 uia(φi, φj) = l(φj) ∀j ∈ 1, .., Nh

Because any function vh can be decomposed in the basis of Vh. Finally, the
problem is equivalent to solve the linear system:

AU = L
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Where A (stiffness matrix) is a square matrix of size nh with coefficients
Aji = a(φi, φj), U and L (load vector) are column vectors with respective
coefficients u1, u2,. . . , unh and l(φ1), . . . , l(φnh).

A is a full matrix , a judicious choice of functions φ called global basis functions
provide a sparse matrix. The functions have compact support very small and
the term a(φi, φj) will be often null when the functions φi and φj will have
disjoint support.

4.5 Choice of global basis functions, mesh and finite-element

B-spline functions of degree p will be used as global basis functions. So: ∀φi ∈
[1, Nh], φi = Np

i .

There are the functions defined in the first part of this document. The mesh of
the domain Ω consists to partition it in small intervals which are chosen with
the same length for simplicity.

In fact, the meshes of the domain are not only intervals, but Lagrange finite
elements which are chosen affine equivalent to a same finite element called ref-
erence element.
We note that all calculations or operations on the global basis functions can be
reduced to calculations on local basis functions and then to calculations.

4.6 Resolution of the problem

The finite-element method helps to solve many problems with very complex ge-
ometries and constraints. The differential equation (1) to solve is very simple.
The mesh and the finite-elements chosen are also simple. We fix α = 1 and
β = 0.

The basis functions are B-splines functions of degree p, cubic (p = 3) unless
orther to compare the exact and approached solutions.

A uniform mesh of nbef finite-elements, so (nbef+1) knots of mesh. The
dimension of the subspace Vh is (nbef+1) for a consistency method.

Finally, in this very particular case, we have to determine the matrix A with
the coefficients

Aji = a(φi, φj) =

∫ 1

0

N
′p
i (x)N

′p
j (x)dx

and the l vector with

lj = l(φi) =

∫ 1

0

f(x)Np
j (x)dx
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The boundary conditions being imposed null, the matrix A and L must be
modified (their first and last lines). The system and all the calculations required
will be computed for numeric results.

4.7 Results

In this section we plot the solution of the differential equation (1). We consider
foremost the case with α = −1, β = 0, nbef = 12, p = 3. The exact solution is
u(x) = − 1

12αx
4+ 1

12αx. In figure 11 we drawn this function and the approximate
solution calculated by the finite element method.

Figure 11: The exact solution (left) and the approximate solution (right)

Once can see also the error between the exact and the approached solution
(figure 12).
And we check that the first derivative of the approached is a continuous function.

Figure 12: Error
Figure 13: The first derivative
of the solution



4 FINITE ELEMENTMETHODE APPLIED TOANONE-DIMENSIONAL PROBLEM19

Let’s go on with the second case : α = −1, β = 4, nbef = 15, p = 3. We
follow the same step that the first case.

Figure 14: The exact solution (left) and the approximate solution (right)

Now we plot the error (figure 15). We can say that increase the number of finite
element reduces the error.

Figure 15: Error be-
tween the exact and ap-
proached solution

Figure 16: The first derivative
of the solution
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We finish with the case below α = −1, β = 4, p = 1.

Figure 17: First
derivate of the solution

Figure 18: Error between the
exact and approached solution

In this case the solution of the problem isn’t right and the derivative isn’t
continuous.

Conclusion

In definitive this project which focused on the B-spline functions as the finite
element method and their use in practice like CAD in particular was very in-
teresting.
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