
Optimization

Benoit KRIKKE
Victor PACOTTE
Riad SANCHEZ

University of NICE SOPHIA ANTIPOLIS
Departement of Applied Mathematics and Modeling

Implementation of optimization algorithms

Supervisor

P.DREYFUSS

June 15, 2012

1



CONTENTS 2

Contents

1 Unconstrained optimization 3
1.1 One dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Golden section search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Parabolic interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Gradient method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Definition of the functional Jn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Gradient method with fixed step size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Gradient method with optimal step length . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.4 Conjugate gradient method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.5 Preconditioned conjugate gradient method . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 Comparison between the Gradient methods . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1.a Gradient method with fixed step size . . . . . . . . . . . . . . . . . . . 11
1.3.1.b Gradient method with optimal step length . . . . . . . . . . . . . . . 11
1.3.1.c Conjugate gradient method . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1.d Preconditioned conjugate gradient method . . . . . . . . . . . . . . . 13

1.3.2 The Rosenbrock banana function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.2.a Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.2.b The critical points of f . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.2.c The Hessian matrix of f . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.2.d The Taylor expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.2.e Graphic representation of f . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.2.f Numerical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Constrained optimization 17
2.1 Obstacle problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.3 Numerical resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Distance from a point to a line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Uzawa Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2.a Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2.b Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Introduction

Optimization refers to a broad set of methods whose aim is to find the best solution to a problem called
optimal. In this case, we are interested in describing the algorithms of numerical methods for solving opti-
mization of real, continuous, differentiable and nonlinear functions.

Various approaches are possible and we’ll distinguished the methods leading to a local optimum local and
global methods to identify the global optimum. In this report, we look for minima, maximization problems
can always be reduced equivalently to an minimization problems.

The algorithms presented are locals tools research. First we study the unconstrained optimization algorithms
like the golden section, parabolic interpolation and gradient methods. Then we discuss algorithms for con-
strained optimization. It will be mainly the Uzawa method.
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1 Unconstrained optimization

1.1 One dimension

In this part we are presenting unconstrained optimization methods for a one dimension problem. The aim
will be finding the maximum of the function :

M(λ) =
2π.h.C2

0

n2λ5 . 1

exp{ hC0
nkTλ}−1

which represents the black body radiation.

Figure 1: M(λ) for different values of T .

1.1.1 Golden section search

The golden section search is a technics for finding the extremum (minimum or maximum) of a unimodal
function by successively narrowing the range of values inside which the extremum is known to exist. In the
beginning we have an interval [a, b]. The aim of this algorithm is to built a decreasing sequence of intervals
[ai, bi].
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Algorithm 1 Golden section search

Require: nmax ∈ N, [a,b], ε > 0

1: set τ = 1+
√
5

2 the golden ratio
2: n=0
3: while n < nmax and bi − ai > ε do
4: a’=ai + 1

τ2 (bi − ai)
5: b’=bi + 1

τ (bi − ai)
6: if M(a’) < M(b’) then
7: ai+1 = ai
8: bi+1 = b′

9: else if M(a’) > M(b’) then
10: ai+1 = a′

11: bi+1 = bi
12: else if M(a’) = M(b’) then
13: ai+1 = a′

14: bi+1 = b′

15: end if
16: n=n+1
17: end while
18: Extremum= bi+ai

2
19: return Extremum

We initialize the method with a0 = a and b0 = b.
With each iteration, the interval [ai, bi] become smaller until n = nmax or the diference between bi and ai
is lower than an ε > 0 the tolerance of the method. Then the extremum is between the last bi and ai. We
choose Extremum= bi+ai

2 .

This method gives us the maximum of M(λ) is for λ = 3.6222.10−6 in 72 iterations and the elapsed time is
0.004572 seconds.

1.1.2 Parabolic interpolation

The principal idea of the parabolic interpolation is to replace the function we want to minimize with its 2
degree interpolation polynomial in three points xi, yi and zi in the interval [a,b]. The algorithm is

Algorithm 2 Parabolic interpolation

Require: nmax ∈ N, [a,b], ε > 0
1: choose x0, y0 and z0 such as M(x0) ≥M(y0) and M(z0) ≥M(y0) and x0 < y0 < z0
2: for n = 1, ..., nmax do

3: M [xi,yi]=
M(yi)−M(xi)

yi−xi
4: M [xi,yi,zi]=

M [zi,yi]−M [xi,yi]
zi−xi

5: yi+1=xi+yi
2 - M [xi,yi]

2M [xi,yi,zi]

6: if yi+1 ∈ [xi, yi] then
7: xi+1 = xi
8: zi+1 = yi
9: else if yi+1 ∈ [yi, zi] then

10: xi+1 = yi
11: zi+1 = zi
12: end if
13: end for

This method gives us the maximum of M(λ) is for λ = 3.6222.10−6 in 200 iterations and the elapsed time
is 0.083763 seconds.
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1.2 Gradient method

In this part, we are going to use four different gradient methods to find the minimum of Jn.

1.2.1 Definition of the functional Jn

We define the functional Jn by :
Jn(x) = 1

2 < Anx,x > − < bn,x >.

With :

An =



4 −2 0 . . . . . . . . . . . . 0

−2 4 −2
. . .

...

0 −2 4 −2
. . .

...
...

. . . −2 4 −2
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . . −2 4 −2 0

...
. . . −2 4 −2

0 . . . . . . . . . . . . 0 −2 4


and bn =

(
1 . . . 1

)

We take place in the case where n = 2, so we have :

J2(x) = 1
2 < A2x, x > + < b2, x >

with :

A2 =

(
4 −2
−2 4

)
et b2 =

(
1 1

)
With Matlab, we observe that the eigenvalues of An are always positive, so the Hessian matrix of Jn is a
positive-definite matrix, so the function Jn is convex.

According to the theorem of the existence of a minimum (Rn is a not empty closed set, Jn is continuous and
lim

||x||→+∞
Jn(x) = +∞), we can conclude that Jn owns a unique minimum.
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We can draw the graphic representation of J2:

Figure 2: The graphic representation of J2 on [-10,10]X[-10,10]

In addition, we draw the level set and the gradient of Jn:

Figure 3: Level set and the gradient
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1.2.2 Gradient method with fixed step size

This method allows to find a sequence x which converge to the minimum of Jn. This sequence is defined by:
xk+1 = xk − ρ∇.Jn(xk).

Where ρ is the fixed step size.

Thereafter, the algorithm which allows to calculate the gradient method with fixed step size. We take a
tolerance of the method that we name Kmax here.

Algorithm 3 Gradient method with fixed step size

Require: ρ > 0, Kmax ∈ N x0 ∈ Rn
1: k=0;
2: while |xk+1 − xk| > 10−4 and k < Kmax do
3: xk+1 ← xk − ρ∇Jn(xk);
4: k + 1← k;
5: end while
6: return xk

1.2.3 Gradient method with optimal step length

The gradient method with optimal step length looks like the previous method. The difference is the step
between two iterations is set with

ρn=min
α∈R

(xn + α∇Jn(xk))

Algorithm 4 Gradient method with optimimal step size

Require: Kmax ∈ N x0 ∈ Rn, [a,b]
1: i=0;
2: ρ0 = golden section(a, b)
3: while |xk+1 − xk| > 10−4 and k < Kmax do
4: ρk = golden section(a, b)
5: xk+1 ← xk − ρk∇Jn(xk);
6: k + 1← k;
7: end while
8: return xk

The function golden section(a, b) use the golden section search algorithms explained in the part 1.1.1 in
order to search the value α which, in this part, minimize Jn(Xk + α∇Jn(xk)).

1.2.4 Conjugate gradient method

Let us consider A, a positive definite matrix, and let J be a quadratic functional definite by

J : Rn → R
x→ J(x) = 1

2 < Ax.x > − < b.x >

The function J is strictly convex function, twice continuously differentiable. The calculation of the gradient
gives us : ∇J(x) = Ax− b. So, the minimum of J is carried out in x∗ such that : Ax∗ = b.

Definition Two vectors (or directions) d1 and d2 are conjugates for the matrix A if Ad2.d1 = 0.

Assume that we know k conjugate directions d(0),..., d(k−1). The descent method is, starting from x(0) ∈ Rn,
to compute x(k+1) such that
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J(x(k+1)) = J(x(k) + ρ(k)d(k)) = min
ρ∈R

J(x(k) + ρd(k))

Using the first-order condition for the minimum, we have :

∇J(x(k) + ρ(k)d(k)).d(k) = 0

In our case we obtain

ρ(k) = − (r(0),d(k))A
||d(k)||2A

where (.)A is the dot product associated to the matrix A and the residual vector r(0) is initialized with :
r(0) = Ar(0) - b.

Algorithm 4 implements the conjugate gradient method in the case of quadratic functionals. The usefulness
of this algorithm lies in the next corollaries.

Corollary The conjugate gradient algorithm converges in at most n iterations.

We compute the direction d(k) using Gram-Schmidt. So we have the following proposition

Proposition The descent directions d(k) are mutually conjugate.

Algorithm 5 Conjugate gradient algorithm for a quadratic functional

1: k = 0
2: choose x(0) ∈ Rn
3: choose ε > 0
4: choose ε1 > 0
5: set r(0) = Ar(0) - b
6: while (||x(k+1) - x(k)|| ≥ ε) and (k ≤ kmax) do
7: if ||r(k)|| < ε1 then
8: stop
9: else

10: if (k = 0) then

11: α(k) = − (r(k),d(k−1))A
||d(k−1)||2A

12: set d(k) = r(k) + α(k)d(k−1

13: end if
14: ρ(k) = − (r(k),d(k))A

||d(k)||2A
15: set x(k+1) = x(k) + ρd(k)

16: r(k+1) = Ax(k+1)−b
17: k = k + 1
18: end if
19: end while
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1.2.5 Preconditioned conjugate gradient method

We begin this section by reminding what is the condition number of a matrix. We aim to solve the linear
system AX = b, where for example

A =


10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10


If b =


32
33
33
31

, the solution of the system is X =


1
1
1
1


Now if b is modified slightly in the following manner : b =


32.1
32.9
33.1
30.9

.

In this case, the solution is X =


92
−12.6

4.5
−11

. We note that the solution is greatly modified.

Thus a small change in b produces a large change in X. The matrix A is ill-conditioned. let’s remind the
following definition

Definition Let A ∈Mn,n(R). We define κ(A), the condition number of a matrix by κ(A) = ||A||.||A−1||

The condition number of a matrix can be approximated by κ(A) =
∣∣∣λmax(A)
λmin(A)

∣∣∣ , where λmax(A) and λmin(A)

are maximal and minimal eigenvalues of A respectively.

We want to compare two numerical method of resolution of linear system in the case of sparse matrix : the
conjugate gradient and the preconditioned conjugate gradient method.

Let us consider the system AnX = b where X ∈Mn,1(R) and

An =



2 −1 0 . . . 0

−1 2 −1
...

...
. . .

. . .
. . . 0

... −1 2 −1
0 . . . 0 −1 2


and bn =



1
...
...
...
1


First we implement the conjugate gradient method. Let remind the algorithm

x0 is given, r0 = Ax0− b and d0 = −r0;

xn+1 =xn + ρndn, ρn = − (rn,dn)
(Adn,dn)

rn+1 = Axn+1−b;

dn+1 = − rn+1 + βndn, βn = ||rn+1||2
||rn||2

Now we implement the preconditioned conjugate gradient method. Instead of solve the system AnX = b, we
first preconditioned the matrix An with the incomplete Cholesky factorization. The Cholesky factorization
of a positive definite matrix A is A = LLt where L is a lower triangular matrix.



1 UNCONSTRAINED OPTIMIZATION 10

We want to find a matrix M such that the condition number of M−1An is better than the condition number
of An. Let’s denote by RI the incomplete Cholecky factorization, we set M = RIt.RI.

The system becomes : M−1AnX = M−1b. The algorithm changes a bit (see below).
x0 is given, r0 = M−1Ax0 −M−1 b and d0 = −r0;

xn+1 =xn + ρndn, ρn = − (rn,dn)
(Adn,dn)

rn+1 = M−1Axn+1 −M−1 b;

dn+1 = − rn+1 + βndn, βn = ||rn+1||2
||rn||2

In the next section, we compare the two methods (number of iterations, computing time).
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1.3 Comparison

In this part, we wanted to compare the gradient methods definied in the previous part. First, we are going
to define the Rosenbrock banana function.

1.3.1 Comparison between the Gradient methods

1.3.1.a Gradient method with fixed step size

We used this algorithm of the gradient method with fixed step to compute the minimum of Jn for different
values of n. We have taken ρ = 0.1 and x0 = 1. We wanted a tolerance of the method of 10−4. We put the
number of iteration and the time of execution in a table:

n Number if iterations Time of computation (second)
2 43 0.0054
3 67 0.01
5 197 0.03
10 722 0.079
20 2 950 0.21
30 6 820 0.55
50 19 789 2.44
100 84 705 25.05

Figure 4: Iterations as a function of dimen-
sion

Figure 5: Time of computation as a function of dimen-
sion

1.3.1.b Gradient method with optimal step length

We have taken x0 = 1. The stopping criteria was ||xn − xn−1|| < 10−4.

n Number if iterations Time of computation (second)
2 2 0.00154
3 11 0.0415
5 74 0.3257
10 248 1.372
20 926 8.744
30 2 102 26.949
50 5 962 124.602
100 22 338 902.007
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Figure 6: Iterations as a function of dimen-
sion

Figure 7: Time of computation as a function of dimen-
sion

We notice than this method takes more time than the Gradient method with fixed step size. This dif-
ference can be explained by the use of the golden section search algorithm. Each iteration takes 0.004572
seconds and we use it a lot of time. We can also notice than this method takes less iteration than the first
algorithm.

1.3.1.c Conjugate gradient method

We have taken x0 = 1. The stopping criteria were ||r|| < 10−20 and ||xn − xn−1|| < 10−30

n Numbers of iterations Computing time (second)
2 1 0.0027
3 3 0.0036
5 4 0.0040
10 7 0.0078
20 14 0.0078
30 19 0.0024
50 30 0.0061
100 54 0.0072

This method is faster in terms of numbers of iterations and computing time than the two previous methods
(fixed step size and optimal step length). This method is efficient in the case where the matrix A is symmet-
ric, positive definite, which is the case here.

Figure 8: Iterations as a function of dimen-
sion

Figure 9: Time of computation as a function of dimen-
sion
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1.3.1.d Preconditioned conjugate gradient method

Here we compare the conjugate gradient and the preconditioned gradient method with the linear system
defined in section 1.3.4.

We chose the quadratic functional f(x) = 1
2 < Ax, x > − < b, x >. We have taken x0 = 1.5.

n Cond(An) Cond(M−1An)
10 60 1
50 1.3 103 1
100 5.1 103 1
500 1.255 105 1
1000 5 105 1

This is an approximation calculated thanks to Matlab. Anyway the condition number of M−1An is better
than the condition number of An.

The preconditioned conjugate gradient method is faster than the gradient conjugate method (3 iterations
against 502 for the case n = 1000). Figure 11 shows the computing time for the two methods as a function
of dimension.

Figure 10: Computing time for the gradient conjugate (in red) and the preconditioned conjugate method (in
green)
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Figure 11: ln(||Xk −X∗||) with n = 10 Figure 12: ln(||Xk −X∗||) with n = 50

The previous figures show the logarithmic residue as function of number of iterations (in blue the conju-
gate gradient method and the preconditioned gradient method in red). So we can see the convergence of the
two methods.

1.3.2 The Rosenbrock banana function

1.3.2.a Definition

We define f ∈ Rn , the famous Rosenbrock banana function:

f(x, y) = (x− 1)2 + 10(x2 − y)2.

1.3.2.b The critical points of f

We are going to calculate the critical point(s) of f . In first, we have the gradient:

∇f(x, y) =

(
2(x− 1) + 20x(x2 − y)

20(y − x2)

)
.

We determined where ∇f(x, y) = 0) and we got only one critical point: (1,1).
According to the theorem of the existence of a minimum and the Euler equality (on the open set R2), we can
conclude that (1,1) is the unique point which minimizes f .

1.3.2.c The Hessian matrix of f

We computed the gradient of the gradient and we obtained the Hessian matrix of f :

∇2f(x, y) =

(
2(60x2 − 20y + 1) −40x

−40x 20

)
.

Then, in (1,1), the Hessian matrix of f is:

H =

(
82 −40
−40 20

)
.

The eigenvalues of H are 101,6 and 0,39, so H is a positive-definite matrix. According to the function cond
in Matlab, the condition number of H is 258. We remark we find the famous approximation of the condition
number : λmax

λmin
.

This number is high, it seems that the minimum of f takes place in a kind of ”valley”, it discomforts the
convergence of gradient methods.
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1.3.2.d The Taylor expansion

The Taylor expansion of f is :

f(x, y) = f(1, 1) + 1
2
∂2f(x,y)
∂x2 (x− 1)2 + 1

2
∂f(x,y)
∂x∂y (x− 1)(y − 1) + 1

2
∂2f(x,y)
∂y2 (y − 1)2 + o(x2, y2).

f(x, y) = f(1, 1) + 41(x− 1)2 − 40(x− 1)(y − 1) + 10(y − 1)2 + o(x2, y2).

To finish:
f(x, y) = 41(x− 1)2 − 40(x− 1)(y − 1) + 10(y − 1)2 + o(x2, y2).

1.3.2.e Graphic representation of f

Figure 4 shows the graphic representation of f .

Figure 13: Rosenbrock banana.

1.3.2.f Numerical study

In this part, we are doing a comparison of two gradient methods, the gradient method with fixed step size
and the Gradient method with optimal step size.

We choose a step size β = 0.01.
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We plot on the same figure the points we obtained in each iteration and hundred level set of the Rosenbrock
Banana with this two methods.

Figure 14: level set on [-10,10]. Figure 15: level set on [0,1.2].

Then we plot the curve which represent ln(‖Xk −X‖).

Figure 16: ln(‖Xk −X‖).

We can see that the gradient method with optimal step size takes less iterations than the other one.
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2 Constrained optimization

2.1 Obstacle problem

2.1.1 Problem

Let g be a continuous function in [0,1]. The obstacle problem will be:

find u : [0,1] → R such as


−u′′(x) ≥ 1 x ∈ [0, 1]

u(x) ≥ g(x) x ∈ [0, 1]

(−u′′(x)− 1)(u(x)− g(x)) = 0 x ∈ [0, 1]

u(0) = u(1) = 0

Figure 17: Equation of a rope clamped at the extremities

This figure represents a rope subject to its weight (equal to 1 here) and clamped at the extremities x = 0 and
x = 1. We add an obstacle in the problem and the rope has to be above this.

Figure 18: Representation of the obstacle

In this case g(x) = max(0, 1− 100(x− 0, 7)2).
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2.1.2 Discretization

We discretize this problem by introducing an uniform mesh: xj = jh where h is the step of the mesh and j
∈ {0, ..., n+ 1} where n is a integer. We set h = 1

n+1 and gj=g(xj).

The problem becomes:

find uj = u(xj) such as


−uj−1−2uj+uj+1

h2 ≥ 1 j ∈ {0, .., n+ 1}
u(x) ≥ g(x) j ∈ {0, .., n+ 1}
(−uj−1−2uj+uj+1

h2 − 1)(u(x)− g(x)) = 0 j ∈ {0, .., n+ 1}
u0 = un+1 = 0

We introduce the matrix A and the vectors b and g:

A= 1
h2



2 −1 0 . . . . . . . . . 0

−1 2 −1
. . .

...

0 −1 2
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . . 2 −1 0

...
. . . −1 2 −1

0 . . . . . . . . . 0 −1 2


, b=

1
...
1

 et g=

g1...
gn



with u=

u1...
un

 we have

u is a solution of the problem ⇔

{
min
v∈K

1
2 < Av, v > − < b, v >

K = {v ∈ Rn : v ≥ g}

Let J be the functional in Rn such as J(v) = 1
2 < Av, v > − < b, v >
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2.1.3 Numerical resolution

To solve this problem, we use the projected gradient method. This algorithm is very close to a gradient
method with fixed step size. In each iteration the gradient method can gives us a Xk outside K. So we have
to project the result with ΠK(v). In this problem we used ΠK(v) = max(vi, gi).

Algorithm 6 Projected gradient method

Require: Kmax ∈ N, X0 ∈ Rn, [a,b], λ1 and λn the eigenvalues
1: n=size(X0)
2: i=0;
3: while xk+1 − xk > 10−4 and k < Kmax do
4: for j=1:n do
5: Xj = max(Xj , gj)
6: end for
7: xk+1=xk − 2

λ1+λn
∇Jn(xk);

8: end while
9: return xk

λ1 and λn are the first and last eigenvalues of the matrix A.

We compute this algorithm for n = 5 to n = 100 and we display the number of iteration and the computing
time regarding to n.

a - Number of iteration b - Computing time

Figure 19: Comparison between the gradient method with fixed step and the projected gradient method

The number of iteration is exactly the same between the gradient method with fixed step and the projected
gradient method.
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Here is representations of the result of the projected gradient method in our problem with n = 20 and
n = 200.

n=20 n=200

Figure 20: Solution to the obstacle problem

We can see that, with n = 20, the number of nodes in the mesh is not enought to have a great represen-
tation.
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2.2 Distance from a point to a line

2.2.1 Theory

We want to numerically determine the lowest distance from a point, x0 in dimension n to a hyperplane, (H )
defined by the equationAx = b, whereA ∈Mm,n(R) withm < n.

The constraint minimization is written :
min
F (x)=0

J(x).

With: F (x) = Ax + b and J(x) = 1
2 .
t(x− x0).(x− x0)

The Lagrangian of this problem is :
L(x) = J(x) + λ.F (x)

At the optimum, the derivative of L is zero, so :

∇J(x) + λ∗∇F (x) = 0

x− x0 + λ∗At = 0

Ax−x0 + λ∗AAt = 0

b− x0 + λ∗AAt = 0

λ∗AAt = b− x0

λ∗ = (AAt)−1b− x0

We replace λ∗ by the expression obtained in the previous compute and we get:

∇J(x∗) + λ∗∇F (x) = 0

x∗ = x0 +At(AAt)−1(b− x0).

To compute the distance from a point to a line, we calculate x∗−x0 and we take A like a row vector.

Then AAt = ||A||22 and (AAt)−1 = 1
||A||22

. By the same way, we have At = ||A||2.

So At(AAt)−1 corresponds to 1
||A||2 .

Finally, we have:

d(x0,H ) = ||b−Ax0||
||A||



2 CONSTRAINED OPTIMIZATION 22

2.2.2 Uzawa Algorithm

2.2.2.a Algorithm

The Uzawa algorithm is a kind of gradient method applied to the Lagrangian. Thereafter, a description of
the algorithm where f et g are the constraints.

Algorithm 7 Uzawa algorithm

Require: ρ > 0, Kmax ∈ N x0 ∈ Rn
1: k=0;
2: while |xk+1 − xk| > 10−4 and k < Kmax do
3: Compute xk solution of min L(x, µk, λk)
4: Compute µk+1, λk+1 with:
5: µi,k+1 ← µi,k − ρfi(xk); for i = 1..p
6: λi,k+1 = max(0, λi,k + ρgi(xk); for j = 1..m
7: k + 1← k;
8: end while
9: return xk

2.2.2.b Example

To test the Uzawa Algorithm we took A =
(
1 1

)
, b = 2 et x0 =

(
0
0

)
.

In this case, the hyperplane H is a line defined by the equation y = 2− x.

We obtain the point x0 =

(
1
1

)
, which is well the orthographic projection of x0 =

(
0
0

)
of the line of equation

y = 2− x.

Conclusion

In definitive, this project allows us to see in practice any algorithms that we studied in theory. We can
see some gradient method are useless in some cases, like the gradient method with optimal step size in first
problem solved. Indeed the number of iterations is lower than the gradient method with fixed step size but
the method takes more time to compute.


