DIAMETER PINCHING IN ALMOST POSITIVE RICCI CURVATURE

ERWANN AUBRY

Abstract. In this paper we prove a diameter sphere theorem and its corresponding \(\lambda_1 \) sphere theorem under \(L^p \) control of the curvature. They are generalizations of some results due to S. Ilias [8].

1. Introduction

Let \((M^n, g)\) be a complete manifold with Ricci curvature \(\text{Ric} \geq n-1 \). Then \((M^n, g)\) satisfies the following classical results (the proofs can be found in [13] for instance):

- \(\text{Diam}(M^n, g) \leq \pi \) (S. Myers) with equality iff \((M^n, g) = (S^n, \text{can})\) (S. Cheng),
- \(\lambda_1(M^n, g) \geq n \) (A. Lichnerowicz) with equality iff \((M^n, g) = (S^n, \text{can})\) (M. Obata),

where \(\text{Diam} \) is the diameter and \(\lambda_1 \) is the first positive eigenvalue.

Studying the properties of the sphere kept by manifold with \(\text{Ric} \geq n-1 \) and almost extremal diameter or \(\lambda_1 \), S. Ilias proved in [8] the following results:

Theorem 1.1 (S. Ilias). For any \(A > 0 \), there exists \(\epsilon(A, n) > 0 \) such that any \(n \)-manifolds with \(\text{Ric} \geq n-1 \), sectional curvature \(\sigma \leq A \) and \(\lambda_1 \leq n+\epsilon \) is homeomorphic to \(S^n \).

Theorem 1.2 (S. Ilias). For any \(A > 0 \), there exists \(\epsilon(A, n) > 0 \) such that any \(n \)-manifolds with \(\text{Ric} \geq n-1 \), \(\sigma \leq A \) and \(\text{Diam}(M) \geq \pi - \epsilon \) is homeomorphic to \(S^n \).

Remark 1.3. C. Croke proves in [7] that for \(n \)-manifolds with \(\text{Ric} \geq n-1 \), \(\lambda_1(M) \) close to \(n \) implies \(\text{Diam}(M) \) close to \(\pi \). The converse is proved in [8] (using a spectral inequality due to S. Cheng [6]).

Remark 1.4. For \(n \geq 4 \), M. Anderson [1] and Y. Otsu [10] construct sequences of complete metrics \(g_i \) with \(\text{Ric}(g_i) \geq n-1 \), \(\lambda_1(g_i) \to n \) and \(\text{Diam}(g_i) \to \pi \) on manifolds that are not homeomorphic to \(S^n \) (more precisely, Otsu shows that if \(n \geq 5 \), these manifolds can have infinitely many different fundamental groups).

Remark 1.5. The two results of S. Ilias have been improved by G. Perelman in [11], where the assumption \(\sigma \leq A \) is replaced by \(\sigma \geq -A \) (note that under the Ilias’s assumptions \(\sigma \leq A \) and \(\text{Ric} \geq n-1 \) we have \(|\sigma| \leq (n-2)A \)).

Subsequently, we denote \(\text{Ric}(x) \) the lowest eigenvalue of the Ricci tensor and \(\bar{\sigma}(x) \) the maximal sectional curvature at \(x \). In [4], we prove the following generalization of the Myers and Lichnerowicz theorems:

Theorem 1.6. For any \(p > n/2 \), there exists \(C(p, n) \) such that if \((M^n, g)\) is a complete manifold with \(\int_M (\text{Ric} - (n-1))^p \leq \frac{\text{Vol} M}{C(p, n)} \), then \(M \) is compact, has finite fundamental group and satisfies

\[
\text{Diam}(M) \leq \pi \left[1 + C(p, n) \left(\frac{\rho_p}{\text{Vol} M} \right)^{\frac{1}{p}} \right],
\]

\[
\lambda_1(M) \geq n \left[1 - C(p, n) \left(\frac{\rho_p}{\text{Vol} M} \right)^{\frac{1}{p}} \right],
\]

where \(\rho_p = \int_M (\text{Ric} - (n-1))^p \) and \(x_- = \max(0, -x) \).

Key words and phrases. Ricci curvature, comparison theorems, integral bounds on the curvature, sphere theorems.
Remark 1.7. It follows from [4] that the constant $C(p,n)$ is computable, if $\int_M (\text{Ric} - (n - 1))_p^\rho$ is finite (for $p > n/2$) then $\text{Vol} M$ is finite, and that we can not bound the diameter or the first non zero eigenvalue under the assumption $\rho_p \leq \frac{1}{c(p, n)}$ or \(\rho _{\pi} \) small (see [4]).

In this paper we prove the following extensions of the Ilias's stability results.

Theorem 1.8. Let $n \geq 2$ be an integer, $A > 0$ and $p > n$ be some reals. There exists a positive constant $C(p,n,A)$ such that any complete n-manifold which satisfies
\[
\int_M (\text{Ric} - (n - 1))_p^\rho < C(p, n, A) \text{Vol} M, \quad \int_M \sigma^p < A \text{Vol} M
\]
and
\[
\text{Diam}(M) \geq \pi (1 - C(p, n, A))
\]
is homeomorphic to S^n (where $x_+ = \max(0, x)$).

Theorem 1.9. Let $n \geq 2$ be an integer, $A > 0$ and $p > n$ be some reals. There exists a positive constant $C(p,n,A)$ such that any complete n-manifold which satisfies
\[
\int_M (\text{Ric} - (n - 1))_p^\rho < C(p, n, A) \text{Vol} M, \quad \int_M \sigma^p < A \text{Vol} M
\]
and
\[
\lambda_1(M) \leq n (1 + C(p, n, A))
\]
is homeomorphic to S^n.

Remark 1.10. By the Hölder inequality, the two curvature assumptions of Theorem 1.9 can be replaced by
\[
\int_M (\text{Ric} - (n - 1))_p^\rho < C(p, n, A) \text{Vol} M, \quad \int_M \sigma^p < A \text{Vol} M,
\]
where $\sigma(x)$ is an upper bound for the absolute value of the sectional curvatures at x.

2. Comparison results in almost positive Ricci curvature

Subsequently we denote $B(x, r)$ (resp. $S(x, r)$) the geodesic ball (resp. sphere) of center x and radius r and $L_k(r)$ (resp. $A_k(r)$) the volume of a geodesic sphere (resp. ball) of radius r in $(\mathbb{S}^n, \frac{1}{n} g)$. Besides the theorem 1.6, we will need the following comparison results for manifolds of almost positive Ricci curvature (see [4] for a proof).

Proposition 2.1. For any $n \geq 2$ and $p \geq n/2$ ($p \geq 1$ if $n = 2$) there exists a constant $C(p,n)$ such that for any complete Riemannian n-manifold (\mathbb{M}^n, g) with $\eta^{10} = \frac{\text{Vol} M}{\text{Vol} M} \leq c_{(p,n)}$, we have
\[
\left(\frac{\text{Vol}_{n-1} S(x, R)}{L_{1-\eta}(R)} \right)^{\eta^{10}} - \left(\frac{\text{Vol}_{n-1} S(x, r)}{L_{1-\eta}(r)} \right)^{\eta^{10}} \leq C(p, n, \eta) \eta^2 (R - r)^{\frac{p}{2p - 1}},
\]
\[
\frac{\text{Vol} B(x, r)}{\text{Vol} B(x, R)} \geq (1 - C(p, n, \eta)) \frac{A_1(r)}{A_1(R)},
\]
\[
\text{Vol}_{n-1} S(x, R) \leq (1 + \eta^2) L_{1-\eta}(R),
\]
\[
\text{Vol} B(x, R) \leq (1 + \eta) A_1(R).
\]
for all $x \in M$ and all radii $0 \leq r \leq R$.

For any $n \geq 2$ and $p > n/2$ there exists a constant $C(p,n)$ such that if (\mathbb{M}^n, g) is a complete n-manifold with $\rho_\eta \leq \frac{1}{c_{(p,n)}}$, then $\|u\|_{L^2} \leq \text{Diam}(M) C(p, n) \|u\|_2 + \|u\|_2$, for any $u \in H^{1,2}(M)$. In the case $n = 2$, we have $\|u\|_4 \leq \text{Diam}(M) C \|u\|_2 + \|u\|_2$ if $\|u\|_2 \leq \frac{1}{c_{(p,n)}}$.

Similar estimates are proved in [12] under the assumption $\text{Diam}^{2p} \frac{\rho_\eta}{\text{Vol} M} \leq \frac{1}{c_{(p,n)}}$.
The main tool to prove this proposition is the following lemma:

Lemma 3.2. Let \(n \geq 2 \) and \(p > n/2 \) \((p \geq 1 \text{ if } n = 2)\) and \(x_0 \in \mathbb{S}^n \). There exists a constant \(C(p,n) \) such that if \((M^n, g)\) is a complete \(n \)-manifold with \(\eta^{10} = \overline{p}_p \leq \frac{1}{C(p,n)} \) and \(\text{Diam}(M) \geq \pi - \frac{1}{C(p,n)} \) then there exists \(x_0 \in M \) such that for any \(C^1 \)-function \(u : [0, 2\pi] \to \mathbb{R} \) we have

\[
\left| \frac{1}{\text{Vol} M} \int_M u \circ d_M(x_0, \cdot) \, dv_g - \frac{1}{\text{Vol} \mathbb{S}^n} \int_{\mathbb{S}^n} u \circ d_{\mathbb{S}^n}(\bar{x}_0, \cdot) \, dv_{\mathbb{S}^n} \right| \leq \|u'\|_{\infty} C(p,n) \left[\eta + (\text{Diam}(M) - \pi) \right].
\]

Proof. Let \((x_0, y_0) \in M^2\) such that \(d = \text{Diam}(M) = d(x_0, y_0) \). The functions \(A, L, A_1 \) and \(L_1 \) are defined in Proposition 2.1 and prolonged by 0 to \(\mathbb{R} \) (note that the diameter of \(M \) can be greater than \(\pi \)). The function \(r \to u(r)A(r) \) is continuous and has right differential on \(\mathbb{R} \) equal to \(u'A + uL \). We infer the equalities

\[
\begin{align*}
 u(d) \text{Vol} M &= \int_0^d u(r)L(r) \, dr + \int_0^d u'(r)A(r) \, dr, \\
 u(\pi) \text{Vol} \mathbb{S}^n &= \int_0^\pi u(r)L_1(r) \, dr + \int_0^\pi u'(r)A_1(r) \, dr,
\end{align*}
\]

which imply

\[
\begin{align*}
 &\left| \frac{1}{\text{Vol} M} \int_M u \circ d_M(x_0, x) \, dv_g - \frac{1}{\text{Vol} \mathbb{S}^n} \int_{\mathbb{S}^n} u \circ d_{\mathbb{S}^n}(\bar{x}_0, x) \, dv_{\mathbb{S}^n} \right| \\
 &= \left| \int_0^d \frac{u(r)L(r) \, dr}{\text{Vol} M} - \int_0^\pi \frac{u(r)L_1(r) \, dr}{\text{Vol} \mathbb{S}^n} \right| = \left| u(d) - u(\pi) + \int_0^\pi \frac{u'(r)A_1 \, dr}{\text{Vol} \mathbb{S}^n} - \int_0^d \frac{u'A \, dr}{\text{Vol} M} \right| \\
 &= \left| \int_0^d u' \left(\frac{A_1}{\text{Vol} \mathbb{S}^n} - \frac{A}{\text{Vol} M} \right) \, dr + \int_0^\pi u' \left(\frac{A_1}{\text{Vol} \mathbb{S}^n} - 1 \right) \, dr \right| \\
 &\leq \|u'\|_{\infty} \left(\int_0^d \frac{A_1}{\text{Vol} \mathbb{S}^n} - \frac{A}{\text{Vol} M} \, dr + |\pi - d| \right).
\end{align*}
\]

By Proposition 2.1 we have, for all \(r \leq d \):

\[
(1 - C(p,n)\eta) \frac{A_1(r)}{\text{Vol} \mathbb{S}^n} - \frac{A(r)}{\text{Vol} M} \leq 1 - \frac{\text{Vol} B(y_0, d - r)}{\text{Vol} M} \leq 1 - (1 - C(p,n)\eta) \frac{A_1(d - r)}{\text{Vol} \mathbb{S}^n} \leq \frac{A_1(r + \pi - d)}{\text{Vol} \mathbb{S}^n} + C(p,n)\eta.
\]

Hence

\[
\left| \frac{A(r)}{\text{Vol} M} - \frac{A_1(r)}{\text{Vol} \mathbb{S}^n} \right| \leq C(p,n)\eta + \frac{(A_1(r) - A_1(r + \pi - d))}{\text{Vol} \mathbb{S}^n}. \quad \text{An easy computation}
\]

gives \(\| \frac{1}{\text{Vol} M} \int_M u \circ d_M(x_0, x) \, dv_g - \frac{1}{\text{Vol} \mathbb{S}^n} \int_{\mathbb{S}^n} u \circ d_{\mathbb{S}^n}(\bar{x}_0, x) \, dv_{\mathbb{S}^n} \|_{\infty} \leq C(p,n)\eta + (d - \pi) \). We now finish the proof of Proposition 3.1.
Proof. Lemma 3.2 applied to \(u = \sin^2, u = \cos^2 \) and \(u = \cos \) gives:

\[
\left| \int_M \frac{\sin^2 d_M(x_0, \cdot)}{\text{Vol} M} - \int_{S^n} \frac{\sin^2 d_{E^n}(x_0, \cdot)}{\text{Vol} S^n} \right| \leq C(p, n)(\eta + (d - \pi)_-) \leq 1, \\
\left| \int_M \frac{\cos^2 d_M(x_0, \cdot)}{\text{Vol} M} - \int_{S^n} \frac{\cos^2 d_{E^n}(x_0, \cdot)}{\text{Vol} S^n} \right| \leq C(p, n)(\eta + (d - \pi)_-) \leq 1, \\
\left| \int_M \frac{\cos d_M(x_0, \cdot)}{\text{Vol} M} - \int_{S^n} \frac{\cos d_{E^n}(x_0, \cdot)}{\text{Vol} S^n} \right| \leq C(p, n)(\eta + (d - \pi)_-) \leq 1.
\]

Hence, if we set \(f = \cos d_M(x_0, \cdot) \), we get

\[
\left| \|\nabla f\|_2^2 - \frac{n}{n+1} \right| \leq C(p, n)(\eta + (d - \pi)_-) \leq 1, \\
\left| \|f\|_2^2 - \frac{1}{n+1} \right| \leq C(p, n)(\eta + (d - \pi)_-) \leq 1, \\
\left| \frac{1}{\text{Vol} M} \int_M f \right| \leq C(p, n)(\eta + (d - \pi)_-) \leq 1.
\]

Which readily implies that

\[
\lambda_1(M) \leq \frac{\|\nabla (f - \bar{f})\|_2^2}{\|f - \bar{f}\|_2^2} \leq n(1 + C(p, n)(\eta + (d - \pi)_-)),
\]

where we have set \(\bar{f} = \frac{1}{\text{Vol} M} \int_M f \). \(\square \)

Remark 3.3. The same technique as in [5] can be used to prove that manifolds with almost positive Ricci curvature and \(\lambda_1 \) is close to \(n \) have a diameter close to \(\pi \) (see [12]).

4. Proof of Theorem 1.9

4.1. Fiber Bundle \(E \). Let \(E \) be the fiber bundle \(TM \oplus \mathbb{R} e \to M \) endowed with the following scalar product and linear connection:

\[
<X + fe, Y + he>_{E} = g(X, Y) + fh \\
D_f^E(X + fe) = D^M_f X + fZ + (df(Z) - g(Z, X)).e
\]

Where \(D^M_f \) is the Levi-Civita connection of the metric \(g \) on \(M \). We set \(p \) the orthogonal projection of \(E \) on \(TM \), \(\text{Ric}'(S) = \text{Ric}_M(p(S)) - (n-1)p(S) \) and \(\text{\triangle sph} = \text{\triangle sph}_E + \text{Ric}' \).

The following Lemma is proved in [3]:

Lemma 4.1. If \(f : M \to \mathbb{R} \) satisfies \(\triangle f = \lambda f \) then \(S_f = \nabla f + f.e \) satisfies \(\text{\triangle sph}(S_f) = (\lambda - n)(\nabla f - fe) \) and \((D^E_f S_f, X) = Ddf(X, X) + fg(X, X) \).

Note also that we have

\[
R^E_{(Z, Y)}(X + fe) = R^M(Z, Y)X - (g(Y, X)Z - g(Z, X)Y).
\]

4.2. Bound on the Hessian of the first eigenfunction. To prove Theorem 1.9 we need a \(L^\infty \) bound on the Hessian of the first eigenfunction. In that purpose, we will modify the proof of Theorem 2.4 in [2] (whose proof would give us only a bound on \(\|DS_f\|_{n+\epsilon}/\|S_f\|_{\infty} \) for a given \(\epsilon = \epsilon(p, n) \)). In our case we really need to perform a Möser iteration.

Proposition 4.2. Let \(n \geq 2 \) and \(\infty \geq p > n/2 \). There exists a constant \(C(p, n) \) such that if \((M^n, g) \) is any manifold with \(\bar{p}_p \leq \frac{1}{c(p, n)} \) and \(\lambda_1 \leq n + \frac{c(p, n)}{1} \) then for \(f : M \to \mathbb{R} \) such that \(\triangle f = \lambda_1 f \) we have:

\[
\frac{\|D^E_f S_f\|_{\infty}}{\|S_f\|_{\infty}} \leq C(p, n)(\lambda_1 + \|R\|_{2p})^\gamma (|\lambda_1 - n| + \bar{p}_p)^{\frac{1}{2p-n}},
\]

where \(S_f = \nabla f + f.e \) and \(\gamma = \frac{pn}{2p-n} \).
To prove Proposition 4.2 we need a commutation Lemma (see [2]):

Lemma 4.3. For any section \(S \in \Gamma(E) \) we have

\[
\frac{1}{2} \Delta (|DS|^2) + |D^2S|^2 \leq \langle D^* R^E S, DS \rangle + \text{Ric}^- |DS|^2 + \langle D\nabla S, DS \rangle + \|R^E\| |DS|^2,
\]

where \(\|R^E\| \) is the norm of the linear map \(R^E : \bigwedge^2 \mathbb{T}_u M \to \bigwedge^2 E_u \) defined by \(R^E(u \wedge v)(T, S) = \langle R^E(u \wedge v) T, S \rangle \).

Remark 4.4. This Lemma is valid for any Riemannian fiber bundle \((E, D, \langle \cdot, \cdot \rangle) \).

We now give the proof of Proposition 4.2.

Proof. We set \(u = \sqrt{|DS|^2 + \epsilon^2} \), we have

\[
u \nabla u = \frac{1}{2} \nabla (u^2) + |du|^2 = \frac{1}{2} \nabla (u^2) + \frac{|D^2S, DS|^2}{|DS|^2 + \epsilon^2}
\]

Hence, by Lemma 4.3

\[
\int_M |d(u^k)|^2 \leq \frac{k^2}{2k - 1} \int_M \left(\frac{1}{2} \nabla |DS|^2 + |D^2S|^2 \right) u^{2(k - 1)}
\]

\[
\leq \frac{k^2}{2k - 1} \left(\int_M \text{Ric}^- u^{2k} + \int_M <D\nabla S, DS > u^{2(k - 1)} + \int_M <D^* R^E S, DS > u^{2(k - 1)} + \int_M \|R^E\| |u^{2k}| \right)
\]

We now apply the divergence theorem to the form \(u^{2(k - 1)}(\nabla S, D_S) \), and get for any \(k \geq 1 \):

\[
\int_M \langle D\nabla S, DS \rangle u^{2(k - 1)}
\]

\[
= \int_M \nabla S^2 u^{2(k - 1)} - 2(k - 1) \sum_i \int_M \langle D\nabla S(i), Du(i) \rangle u^{2k - 3}
\]

\[
\leq \int_M \nabla S^2 u^{2(k - 1)} + 2(k - 1) \int_M |\nabla S||du|^2 u^{2(k - 1)}
\]

\[
\leq \frac{k - 1}{2} \int_M |du|^2 u^{2(k - 1)} + (2k - 1) \int_M |\nabla S|^2 u^{2(k - 1)}
\]

We do the same with the form \(u^{2(k - 1)}(\text{tr}_{1, 3}(\langle R^E, S \rangle, D_S)) \) and get

\[
\int_M \langle D^* R^E S, DS \rangle u^{2(k - 1)}
\]

\[
= \int_M \frac{1}{2} |R^E|^2 u^{2(k - 1)} + 2(k - 1) \sum_{i,j} \langle R^E(i, j)S, D_S \rangle du(i)u^{2k - 3}
\]

\[
\leq \frac{k - 1}{2} \int_M |du|^2 u^{2(k - 1)} + (2k - 1) \int_M |R^E|^2 u^{2(k - 1)}
\]

Where we have used \(\sum_{i,j} \langle R^E(i, j), D^2S(i, j) \rangle = \frac{1}{2} |R^E|^2 \).

Since \(\int_M |du|^2 u^{2(k - 1)} = \frac{1}{k} \int_M |d(u^k)|^2 \), the three last inequalities give, for any \(k \geq 1 \):

\[
\|d(u^k)\|_2^2
\]

\[
\leq k(\int_M \text{Ric}^- u^{2k} + \int_M |R^E| |u^{2k}|) + k(2k - 1)(\int_M |R^E|^2 u^{2k - 2} + \int_M |\nabla S|^2 u^{2k - 2})
\]
\[\leq 4k^2 \left(B_1 \|u\|_{\frac{2k}{p-1}}^{\frac{2k}{p}} + B_2 \|S\|_{\infty}^2 \|u\|_{\frac{2(k-1)}{p-1}}^{\frac{2(k-1)}{p}} \right), \]

where we have set

\[B_1 = \|\text{Ric}^-\|_p + \|R^E\|_p \leq C(n)(\|R^M\|_2^2 + \lambda_1^2) = B^2, \]

\[B_2 = \|\Delta_S\|_2^2 + \|R^E S\|_p^2 \leq \|\Delta S_{\text{ph}}\|_2^2 + \|\text{Ric}'\|_2^2 + \|R^E\|_p^2 \leq C(n)(\lambda_1^2 + \|R^M\|_p^2) = B^2. \]

By the Sobolev inequality given by Proposition 2.1, we get

\[\|D S\|_{\frac{2n}{n+1}} \leq \|D S\|_{2k} + C(p, n) B k \sqrt{\|D S\|_{\frac{2k}{p}} + \|S\|_{\infty}^2 \|D S\|^{\frac{2(k-1)}{p-1}}}, \]

and by \(\|D S\|_{2k} \leq \|D S\|_{\frac{2n}{n+1}} \leq \|D S\|_{\frac{1}{2}} \|D S\|_{\frac{1}{2}} (\|D S\|_{\frac{2}{p}} \leq \|D S\|_{\frac{1}{2}} \|D S\|_{\frac{1}{2}}), \) we have

\[\left(\|D S\|_{\frac{2n}{n+1}} \right) \left(\|D S\|_{n+1} \right) \leq \left[1 + B k C(p, n) \left(1 + \|S\|_{\infty}^2 \right) \frac{2n}{n+1} \right] \left(\|D S\|_{\frac{2n}{n+1}} \right) \left(\|D S\|_{n+1} \right), \]

where \(\nu = \frac{\frac{(p-1)}{2p} + 1}{(n-2)p} \) and \(a_0 = \frac{2p}{p-1} + 1 \), \(a_1 = \nu a_0 + \frac{2n}{n-2} \). Then we get

\[\left(\|D S\|_{n+1} \right) \left(\|D S\|_{n+1} \right) \left[1 + a_0 C(p, n) B (1 + \|S\|_{\infty}^2 \|D S\|_{\infty}^2) \right] \left(\|D S\|_{\frac{2n}{n+1}} \right) \left(\|D S\|_{n+1} \right), \]

Hence

\[1 = \lim_{n \to +\infty} \left(\|D S\|_{\frac{2n}{n+1}} \right) \left(\|D S\|_{n+1} \right) \leq \prod_{i=1}^{\infty} \left(1 + C(p, n) a_i B (1 + \|S\|_{\frac{2}{\infty}}^2 \|D S\|_{\frac{2}{\infty}}^2) \right) \left(\|D S\|_{\frac{2n}{n+1}} \right) \left(\|D S\|_{n+1} \right), \]

The Hölder inequality \(\|D S\|_{a_0} \leq \|D S\|_{1}^{\frac{1}{2}} \|D S\|_{\frac{1}{2}} \), gives

\[\|D S\|_{\frac{1}{2}} \leq \prod_{i=1}^{\infty} \left(1 + C(p, n) a_i B (1 + \|S\|_{\frac{2}{\infty}}^2 \|D S\|_{\frac{2}{\infty}}^2) \right) \|D S\|_{\frac{1}{2}}, \]

If \(\|D S\|_{\infty} \geq \|S\|_{\infty} \), then inequality \((\ast) \) gives

\[\|D S\|_{\infty} \leq \prod_{i=1}^{\infty} \left(1 + C(p, n) a_i B (1 + \|S\|_{\frac{2}{\infty}}^2 \|D S\|_{\frac{2}{\infty}}^2) \right) \|D S\|_{\frac{1}{2}}, \]

If \(\|D S\|_{\infty} \leq \|S\|_{\infty} \), then inequality \((\ast) \) gives

\[\|D S\|_{\frac{1}{2}} \leq \left(\frac{\|S\|_{\infty}}{\|D S\|_{\infty}} \right)^{\frac{n}{(n-2)p}} \prod_{i=1}^{\infty} \left(1 + C(p, n) a_i B \right)^{\frac{n}{(n-2)p}}, \]

hence

\[\|D S\|_{\infty} \leq C(p, n) \left(\lambda_1 + \|R\|_{2p} \right)^{\frac{n}{(n-2)p}} \left(\|S\|_{\frac{2}{\infty}}^2 \right)^{\frac{2p-n}{2p-n+2p}}. \]

At this stage note that, by Lemma 4.1 we have

\[\|D S\|_{2}^2 = \|\Delta S_{\text{ph}}\|_{2} < \|S\|_{L^2} \leq \|\text{Ric}'\|_{2} < \|S\|_{L^2} \]

\[\leq \|S\|_{\infty}^2 + \int_M \left(\frac{\text{Ric} - (n-1)}{\text{Vol } M} \right)^+ |S| \leq (\|S\|_{\infty}^2 + \|\text{Ric}'\|_{2}) |S|_{\infty}^2. \]

Since we have \(\frac{2p-n}{2p-n+2p} \leq 1 \), we get the result. \(\square \)
4.3. Critical points of the first eigenfunction. By Proposition 4.2 the section $S_f = \nabla f + fe$ of E satisfies $\|D^ES_f\|_{\infty} \leq C(p,n,A)(|\lambda_1 - n| + \overline{p}_p)^{\frac{1}{\gamma}} \|S_f\|_{\infty}$. Since we can suppose the pinching on $|\lambda_1 - n|$ and \overline{p}_p small enough to have $C(p,n,A)(|\lambda_1 - n| + \overline{p}_p)^{\frac{1}{\gamma}} \leq 1/4$, the previous inequality and Theorem 1.6 give

$$\inf |S_f| \geq \left[1 - C(p,n,A)(|\lambda_1 - n| + \overline{p}_p)^{\frac{1}{\gamma}} \right]\|S_f\|_{\infty} > C(p,n,A)(|\lambda_1 - n| + \overline{p}_p)^{\frac{1}{\gamma}} \|S_f\|_{\infty} \geq \|D^ES_f\|_{\infty}$$

We infer that if x_0 is a critical point of f then by Lemma 4.1 we have

$$|Df_{x_0}(X,X) + f(x_0)| = |(D^ES_f, X)_E| \leq \|D^ES_f\|_{\infty} < |S_f(x_0)| = |f(x_0)|,$$

for any unit vector X of $T_{x_0}M$. Hence we have $-|f(x_0)| - f(x_0) < Df_{x_0}(X,X) < |f(x_0)| - f(x_0)$ for any critical point x_0 of f. So the only critical points of f are non degenerate global extrema, which implies that M is homeomorphic to S^n by the Reeb’s theorem.

References

Laboratoire Dieudonné, Univ. Nice Sophia-Antipolis, Parc Valrose, 06108 Nice, FRANCE
E-mail address: eaubry@math.unice.fr