Decay rates for the damped wave equation on the torus

Matthieu Léautaud

Université Denis Diderot Paris 7

Joint work with Nalini Anantharaman

June, 13. 2013
The damped wave equation

Resolvent estimates and a priori bounds

Smooth damping

Rough damping
- M a compact connected Riemannian manifold (or a bounded domain in \mathbb{R}^n), Δ the Laplace-Beltrami operator on M.

- Linear damped wave equation on M:

\[
\begin{aligned}
\left\{ \begin{array}{l}
\frac{\partial^2}{\partial t^2} u - \Delta u + b(x) \partial_t u = 0 \quad \text{in } \mathbb{R}^+ \times M, \\
(u, \partial_t u)|_{t=0} = (u_0, u_1) \quad \in H^1(M) \times L^2(M).
\end{array} \right.
\]

(DWE)

- Damping coefficient $b(x) \geq 0$:
 - either $b \in C^0(M)$, and $\omega := \{b > 0\}$,
 - or $b = 1_\omega$, ω open.

- Energy of a solution:

\[
E(u, t) = \frac{1}{2}(\|\partial_t u(t)\|_{L^2(M)}^2 + \|\nabla u(t)\|_{L^2(M)}^2).
\]

- Dissipation identity

\[
\frac{d}{dt} E(u, t) = -\int_M b|\partial_t u|^2 \, dx \leq 0
\]

- If $\omega \neq \emptyset$, then $E(u, t) \to 0$ as $t \to +\infty$.
• M a compact connected Riemannian manifold (or a bounded domain in \mathbb{R}^n), Δ the Laplace-Beltrami operator on M.

• Linear damped wave equation on M:

\[
\begin{cases}
\partial_t^2 u - \Delta u + b(x)\partial_t u = 0 & \text{in } \mathbb{R}^+ \times M, \\
(u, \partial_t u)|_{t=0} = (u_0, u_1) & \in H^1(M) \times L^2(M).
\end{cases}
\]

• Damping coefficient $b(x) \geq 0$:
 • either $b \in C^0(M)$, and $\omega := \{b > 0\}$,
 • or $b = 1_\omega$, ω open.

• Energy of a solution:

\[
E(u, t) = \frac{1}{2}(\|\partial_t u(t)\|_{L^2(M)}^2 + \|\nabla u(t)\|_{L^2(M)}^2).
\]

• Dissipation identity

\[
\frac{d}{dt} E(u, t) = -\int_M b|\partial_t u|^2 dx \leq 0
\]

• If $\omega \neq \emptyset$, then $E(u, t) \to 0$ as $t \to +\infty$.

At which rate?
A first question: uniform decay

Definition
Uniform decay for (DWE) if \(\exists F(t) \xrightarrow{t \to \infty} 0 \) such that \(\forall (u_0, u_1) \in H^1 \times L^2, \)
\[
E(u, t) \leq F(t)E(u, 0).
\]

Remark: Uniform decay for (DWE) implies \(F(t) \leq Ce^{-\gamma t} \) for some \(C, \gamma > 0. \)

Definition (Rauch-Taylor '74, Bardos-Lebeau-Rauch '92)
\(\omega \) satisfies GCC in \(M \iff \) every geodesic (ray of geometric optics) traveling at speed 1 in \(M \) meets \(\omega \) in finite time.

Theorem (Rauch Taylor '74, Bardos Lebeau Rauch '92, Burq Gérard '97)
\(\omega \) satisfies GCC \(\iff \) uniform decay for (DWE) (general case)
\(\iff \) \(\omega \) satisfies GCC \(\iff \) uniform decay for (DWE) (if \(b \in C^0(M) \))
A first question: uniform decay

Definition
Uniform decay for (DWE) if $\exists F(t) \underset{t \to \infty}{\longrightarrow} 0$ such that $\forall (u_0, u_1) \in H^1 \times L^2,$

$$E(u, t) \leq F(t)E(u, 0).$$

Remark: Uniform decay for (DWE) implies $F(t) \leq Ce^{-\gamma t}$ for some $C, \gamma > 0.$

Definition (Rauch-Taylor '74, Bardos-Lebeau-Rauch '92)
ω satisfies GCC in $M \iff$ every geodesic (ray of geometric optics) traveling at speed 1 in M meets ω in finite time.

Theorem (Rauch Taylor '74, Bardos Lebeau Rauch '92, Burq Gérard '97)

ω satisfies GCC \iff uniform decay for (DWE) (general case) (if $b \in C^0(M)$)

What happens if GCC is not satisfied?
A first question: uniform decay (on the torus)

GCC is satisfied (\Rightarrow uniform decay)
A first question: uniform decay (on the torus)

GCC is satisfied
\(\implies\) uniform decay

GCC is NOT satisfied
\(\implies\) NO uniform decay
A weaker notion: semi-uniform decay

Definition

(DWE) is (semi-uniformly) stable at rate $f(t)$, $f(t) \rightarrow_{t \rightarrow \infty} 0$ if $\exists C > 0$ such that $\forall (u_0, u_1) \in H^2 \times H^1$,

$$E(u, t) \leq C(f(t))^2 \left(\|u_0\|_{H^2(M)}^2 + \|u_1\|_{H^1(M)}^2 \right), \text{ for all } t > 0.$$

Theorem (Lebeau '96)

- If $\omega \neq \emptyset$, then $f(t) = \frac{1}{\log(2+t)}$.
- This is optimal in general. Ex: $M = S^2$ and $\omega \cap N = \emptyset$, where N is a neighborhood of an equator of S^2.

A weaker notion: semi-uniform decay

Definition

(DWE) is (semi-uniformly) stable at rate $f(t)$, $f(t) \to 0$ if $\exists C > 0$ such that $\forall (u_0, u_1) \in H^2 \times H^1$,

$$E(u, t) \leq C(f(t))^2 \left(\|u_0\|_{H^2(M)}^2 + \|u_1\|_{H^1(M)}^2 \right), \text{ for all } t > 0.$$

Theorem (Lebeau '96)

- If $\omega \neq \emptyset$, then $f(t) = \frac{1}{\log(2+t)}$.
- This is optimal in general. Ex: $M = S^2$ and $\omega \cap N = \emptyset$, where N is a neighborhood of an equator of S^2.

Intermediate situations

Two extreme situations:

• Uniform decay ⇔ \(\omega \) satisfies GCC
• Decay at rate \(f(t) = \frac{1}{\log(2+t)} \) ⇔ \(\omega \neq \emptyset \).

Some intermediate situations:

• Liu-Rao '05: \(M \) is a square and \(\omega \) contains a vertical strip. trapped trajectories = family of parallel geodesics constituted by vertical lines.
 Energy decay at rate \(\left(\frac{\log(t)}{t} \right)^{\frac{1}{2}} \).

• Burq and Hitrik '07: \(M \) is a partially rectangular domain and \(\omega \) contains a neighborhood of the non-rectangular part. Energy decay at rate \(\left(\frac{\log(t)}{t} \right)^{\frac{1}{2}} \).

• Burq and Hitrik '07: if moreover
 • \(b \in C^\infty \),
 • \(b = b(x_1) \) (invariance in one direction),
 • + Assumption on the vanishing rate of \(b \).
 Then, the energy decays at rate \(1/t^{1-\varepsilon} \).

\(\leadsto \) geodesic flow enjoys linear unstability properties around the trapped set
\(\leadsto \) On the torus, we expect similar polynomial decay.
Decay rates and resolvent estimates

\[(\text{DWE}) \iff \partial_t \begin{pmatrix} u \\ \partial_t u \end{pmatrix} = \mathcal{A} \begin{pmatrix} u \\ \partial_t u \end{pmatrix}, \quad \mathcal{A} = \begin{pmatrix} 0 & 1 \\ \Delta & -b \end{pmatrix} \]
\[\iff \begin{pmatrix} u \\ \partial_t u \end{pmatrix} = e^{t\mathcal{A}} \begin{pmatrix} u_0 \\ u_1 \end{pmatrix}.\]

Lemma

The spectrum of \(\mathcal{A} \) contains only isolated eigenvalues and we have

\[\text{Sp}(\mathcal{A}) \setminus \{0\} \subset (-\|b\|_{L^\infty(M)}, 0) + i\mathbb{R}.\]

We set \(P(s) = -\Delta - s^2 + isb, \ s \in \mathbb{R}.\)

Theorem (Lebeau '96, Batty-Duyckaerts '08, Burq-Hitrik '07, Borichev-Tomilov '10)

For all \(\alpha > 0, \) following assertions are equivalent:

\[\text{System (DWE) is stable at rate } \frac{1}{t^\alpha},\]
\[\|(is - \mathcal{A})^{-1}\|_{\mathcal{L}(H^1 \times L^2)} \leq C|s|^{\frac{1}{\alpha}}, \quad \forall s \in \mathbb{R}, |s| \geq s_0,\]
\[\|P(s)^{-1}\|_{\mathcal{L}(L^2)} \leq Cs^{\frac{1}{\alpha} - 1}, \quad \forall s \geq s_0.\]
A priori upper bound

Proposition

Suppose that there exists $T > 0$, $C > 0$ **such that**

$$
\|u_0\|_{L^2(M)}^2 \leq C \int_0^T \|\sqrt{b} e^{it\Delta} u_0\|_{L^2(M)}^2 \, dt, \quad \forall u_0 \in L^2(M),
$$

*(Observability for Schrödinger). Then System (DWE) is stable at rate $\frac{1}{\sqrt{t}}$. *

For instance on the torus $\mathbb{T}^2 := (\mathbb{R}/2\pi \mathbb{Z})^2$: $\omega \neq \emptyset \implies$ Observability for Schrödinger (Jaffard '90) \implies always decay at rate $\frac{1}{\sqrt{t}}$ (at least).

Figure: Torus $\mathbb{T}^2 := (\mathbb{R}/2\pi \mathbb{Z})^2$ and damping region $\omega = \{b > 0\}$.
A priori upper bound

Proof.

Observability for Schrödinger in some time $T > 0$

\[
\exists C > 0 \text{ s.t.} \quad \|u\|_{L^2}^2 \leq C \left(\|(-\Delta - s^2)u\|_{L^2}^2 + \|\sqrt{bu}\|_{L^2}^2 \right), \quad \forall s \in \mathbb{R}, u \in H^2
\]

\[
\leq C \left(\|(-\Delta - s^2 + isb - isb)u\|_{L^2}^2 + \|\sqrt{bu}\|_{L^2}^2 \right)
\]

\[
\leq C \left(\|P(s)u\|_{L^2}^2 + s^2 \|\sqrt{bu}\|_{L^2}^2 \right) \quad \forall s \geq s_0, u \in H^2.
\]

Skew-adjoint part of $P(s)$: $\text{Im} \left((P(s)u, u)_{L^2} = s(bu, u)_{L^2} \right)$

\[
\implies s \|\sqrt{bu}\|_{L^2}^2 \leq \|P(s)u\|_{L^2}^2 \|u\|_{L^2}^2
\]

\[
\implies s^2 \|\sqrt{bu}\|_{L^2}^2 \leq \frac{C}{\varepsilon} s^2 \|P(s)u\|_{L^2}^2 + \varepsilon \|u\|_{L^2}^2.
\]

\[
\implies \|u\|_{L^2}^2 \leq Cs^2 \|P(s)u\|_{L^2}^2, \text{ i.e. polynomial stability at rate } \frac{1}{\sqrt{t}}. \quad \square
\]
A priori lower bound

Torus $\mathbb{T}^2 := (\mathbb{R}/2\pi\mathbb{Z})^2$, when GCC is “strongly violated”.

Proposition

Suppose that there exists $(x_0, \xi_0) \in T^\mathbb{T}^2$, $\xi_0 \neq 0$, such that*

$$\bar{\omega} \cap \{x_0 + \tau\xi_0, \tau \in \mathbb{R}\} = \emptyset.$$

Then there exist $C > 0$ and $(s_n)_{n \in \mathbb{N}}, s_n \to +\infty$ such that

$$\|P(s_n)^{-1}\|_{\mathcal{L}(L^2)} \geq C.$$

NO GCC \Rightarrow decay at rate at most $1/t$.
A priori lower bound (simple quasimodes)

Proof (simple quasimodes).

We set \(\varphi_n(x_1, x_2) = \chi(x_1)e^{inx_2} \) and \(s_n = n \).

\[
P(s_n)\varphi_n = -\Delta(\chi(x_1)e^{inx_2}) - n^2\chi(x_1)e^{inx_2} + ib\chi(x_1)e^{inx_2} = \chi''(x_1)e^{inx_2}.
\]

Hence \(\|P(s_n)\varphi_n\|_{L^2} \sim cte \sim \|\varphi_n\|_{L^2} \) and \(\|P(s_n)^{-1}\|_{L(L^2)} \geq C \).
As soon as GCC is (strongly) not satisfied, we have

\[1 \lesssim \| P(s)^{-1} \|_{L^2} \lesssim s \]

Best decay rate \(\longrightarrow \) between \(1/\sqrt{t} \) and \(1/t \).
As soon as GCC is (strongly) not satisfied, we have

\[1 \lesssim \| P(s)^{-1} \|_{L^2(L^2)} \lesssim s \]

Best decay rate \(\longrightarrow \) between \(1/\sqrt{t} \) and \(1/t \).

Depending on what?
Smooth damping coefficients

Theorem
Suppose that $\omega \neq \emptyset$, that $b \in C^\infty (\mathbb{T}^2)$, and that there exist $\varepsilon \in (0, \varepsilon_0)$ and $C > 0$ such that
\[|\nabla b(x)| \leq C b^{1-\varepsilon}(x), \quad \text{for } x \in \mathbb{T}^2. \]
(1)
Then, there exist $C > 0$ and $s_0 \geq 0$ such that for all $s \geq s_0$,
\[\|P(s)^{-1}\|_{\mathcal{L}(L^2(\mathbb{T}^2))} \leq Cs^\delta, \quad \text{with } \delta = 4\varepsilon \]
Hence, in this situation, (DWE) is stable at rate $\frac{1}{t^{1+\delta}}$.

• generalizes Burq-Hitrik '07 in the case of non-invariant damping function b with several trapped directions.
• (1) = local assumption in a neighborhood of $\partial \omega$.
• Ex: $b \sim e^{-x^\gamma}$, then $b' \sim \log(\frac{1}{b})^{\gamma+1}$
\[\leq 1 b \varepsilon \forall \varepsilon > 0 \]
b on ω; (1) is satisfied for all $\varepsilon > 0$.
• The a priori lower bound $\frac{1}{t}$ is sharp whatever the shape of ω!
Smooth damping coefficients

Theorem
Suppose that $\omega \neq \emptyset$, that $b \in \mathcal{C}^\infty(\mathbb{T}^2)$, and that there exist $\varepsilon \in (0, \varepsilon_0)$ and $C > 0$ such that

$$|\nabla b(x)| \leq Cb^{1-\varepsilon}(x), \quad \text{for } x \in \mathbb{T}^2. \quad (1)$$

Then, there exist $C > 0$ and $s_0 \geq 0$ such that for all $s \geq s_0$,

$$\|P(s)^{-1}\|_{\mathcal{L}(L^2(\mathbb{T}^2))} \leq Cs^\delta, \quad \text{with } \delta = 4\varepsilon$$

Hence, in this situation, (DWE) is stable at rate $\frac{1}{t^{1+\delta}}$.

- generalizes Burq-Hitrik '07 in the case of non-invariant damping function b with several trapped directions.
- $(1) =$ local assumption in a neighborhood of $\partial \omega$.
- Ex: $b \sim e^{-\frac{1}{x^\gamma}}$, then $b' \sim \log\left(\frac{1}{b}\right)^{\frac{\gamma+1}{\gamma}} b$ on ω; (1) is satisfied for all $\varepsilon > 0$.
- The $a \text{ priori}$ lower bound $1/t$ is sharp whatever the shape of ω!
Smooth damping coefficients: idea of the proof

Prove $\|u\|_{L^2(T^2)} \leq Cs^\delta \|(-\Delta - s^2 + isb)u\|_{L^2(T^2)}$ for all $s \geq s_0$, $u \in H^2(T^2)$.

\[\uparrow \text{ with } h = 1/s \]

Prove $\|u\|_{L^2(T^2)} \leq \frac{C}{h^{2+\delta}} \|(-h^2\Delta - 1 + ihb)u\|_{L^2(T^2)}$ for all $h \leq h_0$, $u \in H^2(T^2)$.

= P_h

Strategy of Lebeau '96: contradiction argument.
We suppose that this is false. There exists $0 < h_n \to 0$ and $u_n \in H^2(T^2)$ such that

\[
\left\{ \begin{array}{l}
\|u_n\|_{L^2(T^2)} = 1, \\
\|P_{h_n}u_n\|_{L^2(T^2)} = o(h_n^{2+\delta}).
\end{array} \right.
\]

Aim: prove that $\|u_n\|_{L^2(T^2)} \to 0$.
Smooth damping coefficients: idea of the proof

- Skip the index \(n \)

\[
\begin{align*}
 h & \to 0^+, \\
 \|u_h\|_{L^2} & = 1, \\
 \|P_h u_h\|_{L^2} & = o(h^{2+\delta}), \\
 \|\sqrt{b}u_h\|_{L^2} & = o(h^{\frac{1+\delta}{2}}). \quad \text{(Bonus)}
\end{align*}
\]

\(\rightsquigarrow\) skew-adjoint part \(h\|\sqrt{b}u_h\|^2_{L^2} = \text{Im}(P_h u_h, u_h)_{L^2} = o(h^{2+\delta}). \)

- Semiclassical measure associated to \((h, u_h) \): Up to a subsequence, there exists \(\mu \in \mathcal{M}^+(T^*\mathbb{T}^2) \) such that

\[
(\text{Op}_h(a)u_h, u_h)_{L^2(\mathbb{T}^2)} \to \langle \mu, a \rangle \quad \text{for all } a = a(x, \xi) \in \mathcal{C}_c^\infty(T^*\mathbb{T}^2).
\]

- characterizes the defect of convergence to zero for \((u_h) \).
Smooth damping coefficients: idea of the proof

Properties of the sequence:

\[
\begin{align*}
 h &\to 0^+, \\
 \|u_h\|_{L^2} &= 1, \\
 \|P_h u_h\|_{L^2} &= o(h^{2+\delta}), \\
 \|\sqrt{b} u_h\|_{L^2} &= o(h^{1+\delta}). \quad \text{(Bonus: skew-adjoint part of } P_h) \\
\end{align*}
\]

First properties of the semiclassical measure:

Lemma

We have

1. \(\text{supp}(\mu) \subset \mathbb{T}^2 \times \{|\xi|^2 = 1\} = S^* \mathbb{T}^2, \)
2. \(\mu(T^* \mathbb{T}^2) = 1, \)
3. \("\mu(x + \tau \xi, \xi) = \mu(x, \xi)" \), for all \(\tau \in \mathbb{R}, \)
4. \(\langle \mu, b \rangle = 0. \)

Remark: Here, we only use \(\|P_h u_h\|_{L^2} = o(h^1)! \)
Smooth damping coefficients: idea of the proof

Properties of the sequence:

\[
\begin{aligned}
 & h \to 0^+, \\
 & \| u_h \|_{L^2} = 1, \\
 & \| P_h u_h \|_{L^2} = o(h^{2+\delta}), \\
 & \| \sqrt{b} u_h \|_{L^2} = o(h^{\frac{1+\delta}{2}}). \quad \text{(Bonus: skew-adjoint part of } P_h)\\
\end{aligned}
\]

First properties of the semiclassical measure:

Lemma

We have

1. \(\text{supp}(\mu) \subset \mathbb{T}^2 \times \{|\xi|^2 = 1\} = S^*\mathbb{T}^2, \)
2. \(\mu(T^*\mathbb{T}^2) = 1, \)
3. \(\mu(x + \tau \xi, \xi) = \mu(x, \xi)”, \) for all \(\tau \in \mathbb{R}, \)
4. \(\langle \mu, b \rangle = 0. \)

Remark: Here, we only use \(\| P_h u_h \|_{L^2} = o(h^1)! \)

Goal: prove that \(\mu \equiv 0 \sim \) obtain a contradiction with \(\mu(T^*\mathbb{T}^2) = 1. \)
Smooth damping coefficients: idea of the proof

Lemma

\[\mu = \sum_{\Gamma \text{ rational direction}} \mu|_{T^2 \times \Gamma} \quad \text{where } \mu|_{T^2 \times \Gamma} \in \mathcal{M}^+(T^*\mathbb{T}^2) \text{ is invariant.} \]

- “\(\Gamma \) rational direction” if \(\Gamma = \mathbb{R}\xi_0 \) for \(\xi_0 \in \mathbb{R}^2 \setminus \{0\} \) such that \(k \cdot \xi_0 = 0 \) for some \(k \in \mathbb{Z}^2 \setminus \{0\} \).
 \[\implies \Gamma = \mathbb{R}\xi_0 \text{ is periodic in } T^2. \]
- If \(\Gamma \) is an irrational direction
 \[\implies \Gamma = \mathbb{R}\xi_0 \text{ is dense in } T^2. \]
 \[\mu|_{T^2 \times \Gamma} \text{ is invariant and vanishes on } \omega \implies \mu|_{T^2 \times \Gamma} \equiv 0. \]
The damped wave equation
Resolvent estimates and a priori bounds
Smooth damping
Rough damping

Smooth damping coefficients: idea of the proof

Lemma

\[\mu = \sum_{\Gamma \text{ rational direction}} \mu|_{T^2 \times \Gamma} \quad \text{where } \mu|_{T^2 \times \Gamma} \in \mathcal{M}^+ \left(T^*T^2 \right) \text{ is invariant.} \]

- “\(\Gamma \) rational direction” if \(\Gamma = \mathbb{R} \xi_0 \) for \(\xi_0 \in \mathbb{R}^2 \setminus \{0\} \) such that \(k \cdot \xi_0 = 0 \) for some \(k \in \mathbb{Z}^2 \setminus \{0\} \).
 \[\implies \Gamma = \mathbb{R} \xi_0 \text{ is periodic in } T^2. \]

- If \(\Gamma \) is an irrational direction
 \[\implies \Gamma = \mathbb{R} \xi_0 \text{ is dense in } T^2. \]
 \[\mu|_{T^2 \times \Gamma} \text{ is invariant and vanishes on } \omega \implies \mu|_{T^2 \times \Gamma} \equiv 0. \]
Smooth damping coefficients: idea of the proof

We fix Γ, and want to prove that $\mu_\Gamma := \mu|_{T^2 \times \Gamma}$ vanishes. Take for instance $\Gamma = \{\xi_1 = 0\} = \mathbb{R}\xi_2$, $\xi_2 = (0,1)$.

THREE steps to prove that $\mu_\Gamma \equiv 0$.
Smooth damping coefficients: idea of the proof

STEP 1: Understand the possible concentration rate of the sequence u_h towards Γ:

Lemma

For all $0 < \alpha \leq \frac{1+\delta}{2}$, we have

$$\langle \mu_\Gamma, a \rangle = \lim_{h \to 0} \left(\text{Op}_h \left(a(x, \xi) \chi(\xi_1/h^\alpha) \right) u_h, u_h \right)_{L^2}$$

Idea of proof: consider 2-microlocal semiclassical measures (Miller '97, Fermanian-Kammerer '05) at scale α: ν_α:

$$\langle \nu_\alpha, a(x_1, \xi, \xi_1) \rangle = \lim_{h \to 0} \left(\text{Op}_h \left(a(x_1, \xi, \frac{\xi_1}{h^\alpha}) \left(1 - \chi(\xi_1/h^\alpha) \right) \right) u_h, u_h \right)_{L^2}$$

- $\langle \nu_\alpha, \langle b \rangle_\Gamma \rangle = 0$, ($\langle b \rangle_\Gamma$ average of b in the direction Γ).
- Transverse propagation law: $\partial_{x_1} \nu_\alpha = 0$ if $0 < \alpha \leq \frac{1+\delta}{2}$.
- Hence $\nu_\alpha = 0$ for $0 < \alpha \leq \frac{1+\delta}{2}$.
Smooth damping coefficients: idea of the proof

STEP 2: construction of a particular cutoff function:

Proposition

Set $w_h = \text{Op}_h (\chi(\xi_1/h^\alpha)) u_h$. For $\delta = 4\varepsilon$, $\varepsilon < \varepsilon_0$, there exists $\chi_h \in \mathcal{C}^\infty$ valued in $[0, 1]$, such that

1. $\chi_h = \chi_h(x_1)$ does not depend x_2,
2. $b \leq c_0 h$ on $\text{supp}(\chi_h)$,
3. $\| (1 - \chi_h) w_h \|_{L^2(\mathbb{T}^2)} = o(1)$.

• If b is invariant in one direction, $\chi_h = \chi(\frac{b}{c_0 h})$ (Burq-Hitrik '07).
• Assumptions on b used here, together with the $o(h^{2+\delta})$.
Smooth damping coefficients: idea of the proof

STEP 3: possible concentration rate for the sequence w_h towards Γ:

Lemma

we have $\langle \mu_\Gamma, a \rangle = \lim_{R \to +\infty} \lim_{h \to 0} \langle \text{Op}_h (a(x, \xi) \chi(\xi_1/Rh^1)) \rangle_{L^2} w_h, w_h$.

Idea of proof: consider 2-microlocal semiclassical measures $\tilde{\nu}_1$ (Fermanian-Kammerer '00, Anantharaman-Macia '11) at scale 1 associated to w_h:

- $\langle \tilde{\nu}_1, \langle b \rangle_\Gamma \rangle = 0$, ($\langle b \rangle_\Gamma$ average of b in the direction Γ).
- Transverse propagation law: $\partial_{x_1} \tilde{\nu}_1 = 0$ (uses χ_h in an essential way).
- Hence $\tilde{\nu}_1 = 0$.

Consequences (Anantharaman-Macia '11):

- $\mu_\Gamma = 0$,
- $\implies \mu = 0$, (this holds for any Γ),
- \implies contradiction with $\mu(T^*\mathbb{T}^2) = 1$.
Rough damping: a particular case

Figure: \(b(x_1, x_2) = \kappa \mathbb{1}_{(0, \sigma)}(x_1) \) characteristic function of a strip

The spectrum has a particular shape (see Asch-Lebeau '03)
Rough damping: localization of the spectrum

Proposition
For $\alpha > 0$, the following assertions are equivalent:

- System (DWE) is stable at rate $\frac{1}{t^\alpha}$,

- $\| (is - A)^{-1} \|_{L(H^1 \times L^2)} \leq C |s|^{1/\alpha}$ for all $s \in \mathbb{R}$, $|s| \geq s_0$ (Batty Duyckaerts '08, Borichev Tomilov '10),

- $\| (z - A)^{-1} \|_{L(H^1 \times L^2)} \leq C |\text{Im}(z)|^{1/\alpha}$ for all $z \in \mathbb{C}$, satisfying $|z| \geq s_0$ and $|\text{Re}(z)| \leq \frac{1}{C|\text{Im}(z)|^{1/\alpha}}$.

Consequence: Decay at rate $\frac{1}{t^\alpha} \implies$ No spectrum in

$$C(\alpha, K) := \left\{ z \in \mathbb{C}, 0 \geq \text{Re}(z) \geq \frac{1}{K|\text{Im}(z)|^{1/\alpha}} \right\},$$

for some $K > 0$.
Rough damping: the shape of the spectrum

Figure: Full spectrum of the operator A_h

Discretization $N = 50$, damping $b(x_1, x_2) = 21_{(0,1/2)}(x_1)$.
Rough damping: the shape of the spectrum

Figure: Full spectrum of the operator A_h

Discretization $N = 40$, damping $b(x_1, x_2) = 21_{(0,0.3)}(x_1)$.
Rough damping: localization of the spectrum

Theorem (Nonnenmacher ’13)

There exists a sequence \((z_n)_{n \in \mathbb{N}} \in \text{Sp}(A)^{\mathbb{N}}\) such that \(|z_n| \to \infty\) and

\[|\text{Re}(z_n)| \leq \frac{1}{C|\text{Im}(z_n)|^{\frac{3}{2}}}.\]

Decay at rate \(\frac{1}{t^\alpha} \implies\) No spectrum in

\[C(\alpha, K) := \left\{ z \in \mathbb{C}, 0 \geq \text{Re}(z) \geq \frac{1}{K|\text{Im}(z)|^{\frac{1}{\alpha}}} \right\},\]

for some \(K > 0\).

Corollary

Best decay rate possible: \(\frac{1}{t^{\frac{2}{3}}}\)
Theorem (Nonnenmacher ’13)

There exists a sequence \((z_n)_{n \in \mathbb{N}} \in \text{Sp}(A)^\mathbb{N}\) such that \(|z_n| \to \infty\) and

\[
|\text{Re}(z_n)| \leq \frac{1}{C|\text{Im}(z_n)|^{\frac{3}{2}}}.
\]

Decay at rate \(\frac{1}{t^\alpha}\) \(\implies\) No spectrum in

\[
C(\alpha, K) := \left\{ z \in \mathbb{C}, 0 \geq \text{Re}(z) \geq \frac{1}{K|\text{Im}(z)|^{\frac{1}{\alpha}}} \right\},
\]

for some \(K > 0\).

Corollary

Best decay rate possible: \(\frac{1}{t^{\frac{1}{3}}}\) *and* \(\frac{2}{3} < 1\).

Consequence: our smoothness assumptions on \(b\) to obtain decay at rate \(\frac{1}{t^{1-\varepsilon}}\) cannot completely be disposed of.
Conclusion and open problems

Conclusion:

• Decay rates on the torus seem to depend only on the vanishing rate of \(b \), and not on the number of trapped directions!
• The \textit{a priori} lower bound \(\frac{1}{t} \) is sharp in any geometrical situation (almost reached for smooth \(b \))!
• The \textit{a priori} lower bound \(\frac{1}{t} \) is not reached for \(b = \kappa \mathbb{1}_{(0,\sigma)}(x_1) \)!

Some open problems:

• Is the \textit{a priori} bound \(\frac{1}{\sqrt{t}} \) is sharp on the torus for some rough damping coefficients?
• (Even if \(b \) is invariant in one direction) what is the precise link between the vanishing rate of \(b \) and the decay rate for (DWE)?
• What happens in \(\mathbb{T}^d \), \(d \geq 3 \)?