Lecture 5: Box-Jenkins methodology

Florian Pelgrin

University of Lausanne, Ecole des HEC
Department of mathematics (IMEA-Nice)

Sept. 2011 - Dec. 2011

Florian Pelgrin (HEC) Univariate time series Sept. 2011 - Dec. 2011 1/



Road map

Introduction
@ Overview

Identification

@ Overview

@ Identifying d

@ Seasonality

@ Identifying p and g

Estimation and information criteria
@ Estimation
@ Information criteria

Diagnostic checking
@ Overview
@ Residual diagnostics

Florian Pelgrin (HEC) Univariate time series

Sept. 2011 - Dec. 2011

2/32

/



Introduction Overview

1. Introduction

m Present the practical and pragmatic approach of Box and Jenkins in
order to build ARIMA models

o Step 1 : Identification
e Step 2 : Estimation (and selection)
e Step 3 : Diagnostic checking

e Step 4 : Model's use
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Introduction Overview

m Step 1 (identification) involves determining the order of the model
required (p, d, and q) in order to capture the salient dynamic features
of the data. This mainly leads to use graphical procedures (plotting
the series, the ACF and PACF, etc).

m Step 2 (estimation and selection) involves estimation of the
parameters of the different models (using step 1) and proceeds to a
first selection of models (using information criteria).

m Step 3 (checking) involves determining whether the model(s)

specified and estimated is adequate. Notably, one uses residual
diagnostics.
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Introduction Overview

Tentative Time Series Pl(l)t
Identification Range-Mean Plot
ACF and PACF
Estimation Least Squares or
Maximum Likelihood
Diagnostic Residual Analysis
Checking and Forecasts
No
Model
ok?
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Forecasting
Use the Model Explanation
Control

F1G.: Box-Jenkins methodology
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Identification Overview

2. |ldentification

2.1. Overview

Three objectives

1. Stationarity, non-stationarity ? What is the order of differentiation
(d)?

2. Seasonal component (ARIMA versus SARIMA model) ?

3. Identification of the ARMA order(p,q).
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Identification Identifying d

2.2. ldentifying d

Two different approaches

m Graphical procedure : this involves plotting the data over time and
the corresponding (partial) autocorrelation function.
o If the ACF does not decrease to zero or at a very slow decay : this
suggests non-stationarity (or long-memory effects).

e Box and Jenkins (1976) recommend using the following differencing
approach :

@ Plot the autocorrelation function of the first-difference series
@ lterate the previous step until the ACF looks like the one of a stationary

series
@ Check the inverse autocorrelation function to avoid over-differencing.

m Test procedure : unit root tests (see Chapter 6)
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Identification Identifying d
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Identification Seasonality

2.3. Seasonality

m A stochastic process is said to be a seasonal (or periodic) time series
with periodicity s if Z; and Z; 1 4s have the same distribution.

m Such seasonal series are common in business, economics and finance

o Business : The series of monthly sales of a department store, etc;

e Economics : Disaggregate price series, unemployment, components of
GDP, monetary aggregates, stocks, etc;

e Finance : Intraday data, month-effect, day-effect, etc.

m Seasonal variations can constitute a large part of total variation in
certain (macroeconomic) time series.
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Identification Seasonality

Retail and Food Service Sales: 1992.1-2008.8
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Identification Seasonality

Residential and Commercial Energy Consumption 1982-1993
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Identification Seasonality

m Seasonality can be assessed using graphical procedures :
o Plot the series:
o The ACF;
o The spectral density

m Which treatment(s) for seasonality ?

o Working with seasonally-adjusted series?

e Joint modeling of the seasonal and nonseasonal component ?
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Identification Seasonality

m Using seasonally-adjusted series does not mean that the seasonal
pattern is completely removed. This is particularly true if the entire
span of data is not used.

m Seasonally adjusting (or pre-filtering) a time series (e.g., the
well-known Census X-12 makes extensive use of such filters) can
distort sone of its important properties and may complicate further
analysis.

m For a joint modeling, two approaches :

e Models with seasonal dummy variables;
o SARIMA models (see Appendix).
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Identification Seasonality

Example: Seasonality
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Identification Identifying p and q

2.4. ldentifying p and g

m The model order (p, q) can be determined by using graphical plots of
the ACF and PACF.

m Main characteristics of ARMA(p,q) models :

\ AR(p) MA(q) ARMA(p.q)
ACF Tails off Cuts off after g Tails off
PACF | Cuts off after p Tails off Tails off
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Identification Identifying p and q

Different shapes of the autocorrelation function :

m Exponential decay to zero : Autoregressive model (use the partial
autocorrelation plot to identify the order p)

m Damped oscillations decaying (exponentially) to zero :
Autoregressive model

m One or more spikes, the rest is essentially zero : Moving average

model (order q identified by where autocorrelation plot becomes zero)

m Exponential decay starting after a few lags : Mixed autoregressive
and moving average model
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Identification Identifying p and q

Different shapes of the autocorrelation function (cont'd) :

= No significant autocorrelations (zero or close to zero) : White
noise

m High values at fixed intervals : Include seasonal autoregressive
terms

m No decay to zero or very slow decay : Non-stationarity or
long-memory effects...
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Identification Identifying p and q

m In practice, identifying p and g using the ACF and PACF involves a
trial and error approach...with more or less subjectivity in interpreting
these functions : "real data” rarely exhibit simple patterns!

m The practical rule is :
1. To choose an upper bound for p, say pmax, and g, say Gmax ;
2. Estimate all models with 0 < p < pmax and 0 < g < Gpmax ;

3. Use information criteria (or other procedures) to discriminate among
the competing models.

Sept. 2011 - Dec. 2011 19 / 32
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Estimation and information criteria Estimation

3. Estimation and information criteria

3.1. Estimation

This step involves the estimation of the parameters of the models
identified (specified) in Step 1 (with or without constraints). This can be

done using (see Chapter 3, part 5)
m (Nonlinear) Linear least squares method ;
m Maximum likelihood estimation

m (Generalized) Method of moments

m Etc
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Estimation and information criteria Information criteria

3.2. Information criteria

(a) Overview

m The goodness-of-fit of the model can be assessed with the residual
variance

1 T
(k) == &
t=1

where T is the number of observations used for the estimation, k is
the total number of parameters estimated (e.g., k = p+ g+ 2), & is
the adjusted residual at time t.

o The residual sum of squares is inversely proportional to the number of
degrees of freedom : "large” models with many parameters are often
chosen when the sample size is large;

o Choosing over-parameterized (profligate) models tends to fit to data
specific features, which would not be replicated out-of-sample = the
models may appear to fit the data very well (with a large R?) but

a olve 109 9 ore |
(HEC)

NO d
Florian Pelgrin Univariate time series Sept. 2011 - Dec. 2011 21 /32




Estimation and information criteria Information criteria

m Broadly speaking, an information criterion measures the goodness of
fit of the model by assigning an informational cost to the number of
parameters to estimate (making clear the idea that it is always
possible to more or less trade off p versus g in selecting the ARMA
orders)

m Information criteria embody two factors

@ A term which is a function of the residual sum of squares;
© A term which penalizes for the loss of degrees of freedom from adding
extra parameters.

m Using an additional lag leads to two opposite effects

@ | residual sum of squares;
@ 1 value of the penalty term

= IC | if and only if |ASSR| > |APT]|

m The object is thus to choose the number of parameters which
minimizes the value of the information criteria.
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Estimation and information criteria Information criteria

(b) Akaike information criterion

The Akaike information criterion (AIC) is defined to be

AIC(k) = log (6°(k)) + —(k)

where k is the total number of parameters estimated.

Remarks :
m AIC may give more than one minimum (p, q);
m AIC depends on the normality assumption;
m AIC is not consistent : it will deliver on average too large a model
(even with T — 00)—AIC tends to over-parameterize.

m AIC is generally efficient (small average variation in selected model
orders from different samples within a given population).
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Estimation and information criteria Information criteria

(c) Schwarz bayesian information criterion

The Schwarz bayesian information criterion (SBIC) is defined to be

SBIC(p, q) = log (6%(k)) + ;log(T)

where k is the total number of parameters estimated.

Remarks :

m SBIC embodies a much stiffer penalty term than AIC, i.e. SBIC
penalizes larger models more than AIC and thereby tends to select
lower-order models than the AIC.

m SBIC is strongly consistent in selecting p and q : if the data are truly
generated by an ARMA(p,q) process, the SBIC picks the true model
with probability 1 as the sample size approaches infinity.

m SBIC is less efficient than AIC.
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Estimation and information criteria Information criteria

(d) Hannan-Quinn information criterion

The Hannan-Quinn information criterion (HQIC) is defined to be

HQIC(p, q) = log (62(k)) I %log (log(T))

where k is the total number of parameters estimated.

Remarks :

m HQIC contains a penalty term which is somewhere between AIC and
SBIC.

m HQIC is strongly consistent in selecting p and q.
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Estimation and information criteria Information criteria

(e) Practical implementation

m General methodology

@ Set upper bounds, pmax and gmax, for the AR and MA order,
respectively ;

@ Fit all possible ARMA(p,q) models for p < pmax and g < gmax Using a
common sample size;

© The best models (possibly more than one!) satisfy :

min AIC(p,
P<Pmax,qd< Gmax (p q)

min SBIC(p,
P< Pmax;q< Gmax (p q)

min HQIC .
P<Pmax ;9= qmax (p, q)

Remark : Finite sample corrections are available!
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Estimation and information criteria Information criteria

m Final model selection should not be based exclusively on any of these
information criteria : goodness-of-fit is important but typically not the
only relevant information criterion for choosing a model (especially, if
the main goal is to generate forecasts...)

m Different information criteria may recommend different models.

m Even if one decides to only use one of these criteria, several models
that are close to the minimum information criterion value might be
considered (adjacent models)...

m In other words, all "reasonable” models should remain as candidates
for the final selection and may be assessed by further diagnostic
checks.
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Diagnostic checking Overview

4. Diagnostic checking

4.1. Overview

m The main objective is to check the adequacy of the model(s) selected
in the previous step.

m Notably all of the relevant information from the data should be
extracted by the model. For instance, the part of the data unexplained
by the model (residuals) should be small and no systematic or
predictable patterns should be left in the residuals (i.e., weak white
noise).

m Diagnostic testing in the Box-Jenkins methodology essentially
involves the statistical properties of the error terms (normality
assumption, weak white noise assumption).
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Diagnostic checking Residual diagnostics

4.2. Residual diagnostics

(a) Procedures

m (€;) is a (weak) white noise process, i.e. the residuals of an estimated
model should exhibit white noise-like behavior : departure from this
assumption means that some information can still be exploited in the
modeling...

m Two methods

e Graphical procedure
@ Plot of the residuals : do they exhibit systematic patterns?
@ Use the SACF and SPACF (as in the identification step) of the
residuals : Do they have significant elements?

o Testing procedure : autocorrelation tests.
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Diagnostic checking Residual diagnostics

(b) Autocorrelation tests

m One problem with checking the significance of individual (partial)
autocorrelation is that each element might be individually
insignificant, but all (or a subset) of the elements may be jointly
significant.

m The Box-Pierce Q-statistic (or portmanteau test) tests the joint
hypothesis that the first K autocorrelations of the adjusted error
terms are jointly zero :
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Diagnostic checking Residual diagnostics

m The test statistic is given by :

k=1

where p2(k) is the k-th order sample autocorrelation of the estimated
residuals, T is the sample size, and K is chosen sufficiently large.

m The Q-test has an asymptotic chi-square (x?) distribution with
K — p — q degrees of freedom. The null hypothesis of uncorrelated
(estimated) residuals is rejected if the Q exceeds the tabulated critical
value (for a chosen significance level).

m The Q-test is only asymptotically valid and may perform poorly for
small and medium size samples.

m Refinements have been introduced in the literature : Ljung-Box test,
MclLeod-Li test, Monti's test, etc.
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Diagnostic checking Residual diagnostics

(c) Discussion

m Diagnostic testing based on autocorrelation tests could only reveal a
model that is underparameterised (""too small”) and would not reveal
a model that is overparameterised (" too large”).

m Autocorrelation of residuals can give rise to common factors especially
in overfitted models. This makes estimation difficult and the
statistical tests ill-behaved. For example, if the true data generating
process is an ARMA(p,q) and one deliberately then fits an
ARMA(p+1,9+1) there will be a common factor (all of the
parameters in the latter model can be identified).

m Other residual procedures include the tests for the normality
assumption (especially for maximum likelihood estimation), etc.
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