Lecture 3: ARIMA(p,d,q) models

Florian Pelgrin

University of Lausanne, École des HEC Department of mathematics (IMEA-Nice)

Sept. 2011 - Jan. 2012

Motivation

- Characterize the main properties of ARIMA(p) models.
- Discuss asymptotic equivalence with ARMA(p,q) models

Road map

- Introduction
- ARIMA(p,d,q) model
 - Definition
 - Fundamental representations
 - Equivalence with ARMA(p,q) models
 - Autoregressive approximation
 - Moving average approximation
- 3 Application

1. Definition

- To some extent, ARIMA(p,d,q) models are a generalization of ARMA(p,q) models : the d-differenced process $\Delta^d X_t$ is (asymptotically) an ARMA(p,q) process :
- On the other hand, the statistical properties of the two models are different, especially in terms of forecasting.

Definition

A stochastic process $(X_t)_{t\geq -p-d}$ is said to be an ARIMA(p,d,q)—an integrated mixture autoregressive moving average model—if it satisfies the following equation :

$$\Phi(L)(1-L)^d X_t = \mu + \Theta(L)\epsilon_t \ \forall t \ge 0$$

where ϵ_t is a (weak) white noise process with variance σ_ϵ^2 , the lag polynomials are given by :

$$\Phi(L) = 1 - \phi_1 L - \dots - \phi_p L^p \text{ with } \phi_p \neq 0$$

$$\Theta(L) = 1 + \theta_1 L + \dots + \theta_q L^q \text{ with } \theta_q \neq 0,$$

and the initial conditions:

$$Z_{-1} = \{X_{-1}, \cdots, X_{-p-d}, \epsilon_{-1}, \cdots, \epsilon_{-q}\}$$

are such that :

Remarks:

1. The stochastic process X_t also writes :

$$\Phi(L)\Delta^d X_t = \mu + \Theta(L)\epsilon_t \text{ or } \Phi(L)Y_t = \mu + \Theta(L)\epsilon_t$$
 where $Y_t = \Delta^d X_t = (1-L)^d X_t$.

2. Initial conditions are fundamental.

Example: Consider the two stochastic processes:

$$X_t = \rho X_{t-1} + \epsilon_t$$

$$Y_t \equiv X_t - X_{t-1} = \eta_t$$

where $\rho = 0.9$, ϵ_t and η_t are (weak) white noises.

Note: The black, blue, and red solid lines correspond respectively to $X_0 = 0$, $X_0 = 2$, and $X_0 = -2$.

FIGURE: Initial conditions and stationarity

1.2. Fundamental representations

Definition (Fundamental representation)

Let $(X_t)_{t \geq -p-d}$ denote the following ARIMA(p,d,q) stochastic process :

$$\Phi(L)\Delta^d X_t = \mu + \Theta(L)\epsilon_t \ \forall t \ge 0$$

where $\Phi(L)=1-\phi_1L-\cdots-\phi_pL^p$ and $\Theta(L)=1+\theta_1L+\cdots+\theta_qL^q$, $\theta_q\neq 0, \phi_p\neq 0$, μ is a constant term, (ϵ_t) is a weak white noise, and the initial conditions are uncorrelated with ϵ_t $(t\geq 0)$. This representation is said to be causal or fundamental if and only if :

- (i) All of the roots of the (inverse) characteristic equation associated to Φ are of modulus less (larger) than one.
- (ii) All of the roots of the (inverse) characteristic equation associated to Θ are of modulus less (larger) than one.

Fundamental representations

Definition (Fundamental minimal representation)

Let $(X_t)_{t \geq -p-d}$ denote the following ARIMA(p,d,q) stochastic process :

$$\Phi(L)\Delta^d X_t = \mu + \Theta(L)\epsilon_t \ \forall t \ge 0$$

where $\Phi(L)=1-\phi_1L-\cdots-\phi_pL^p$ and $\Theta(L)=1+\theta_1L+\cdots+\theta_qL^q$, $\theta_q\neq 0, \phi_p\neq 0$, μ is a constant term, (ϵ_t) is a weak white noise, and the initial conditions are uncorrelated with ϵ_t $(t\geq 0)$. This representation is said to be causal or fundamental if and only if :

- (i) All of the roots of the (inverse) characteristic equation associated to
 Φ are of modulus less (larger) than one.
- (ii) All of the roots of the (inverse) characteristic equation associated to Θ are of modulus less (larger) than one.
- (iii) The (inverse) characteristic polynomials have no common roots.

4 D > 4 A > 4 B > 4 B > B 9 Q C

1.3. Equivalence with ARMA(p,q) models

Proposition

Let $(X_t)_{t>-p-d}$ denote a minimal and causal ARIMA(p,d,q) stochastic process:

$$\Phi(L)(1-L)^d X_t = \mu + \Theta(L)\epsilon_t.$$

The stochastic process defined by :

$$Y_t = \Delta^d X_t = (1 - L)^d X_t$$

is asymptotically equivalent to an ARMA(p, q) process.

1.4. Autoregressive approximation

Definition

The autoregressive approximation (and not the $AR(\infty)$ representation) of a causal and minimal ARIMA(p,d,q) stochastic process is given by :

$$A_t(L)X_t = \mu_0 + \epsilon_t + h(t)'Z_{-1}.$$

where $A_t(L)=\sum\limits_{j=0}^t a_j L^j$, $a_0=1$, and the a_j terms are the coefficients of the division (by increasing powers) of $\Phi(u)$ by $\Theta(u)$, μ_0 is a constant term, and $h(t)\in\mathbb{R}^{p+d+q}$ (with $\lim_{t\to+\infty}h(t)=0$).

Florian Pelgrin (HEC)

1.5. Moving average approximation

Definition

The moving average approximation (and not the $MA(\infty)$ representation) of a causal and minimal ARIMA(p,d,q) stochastic process is given by :

$$X_t = \mu_1 + B_t(L)\epsilon_t + \tilde{h}(t)'Z_{-1}.$$

where $B_t(L) = \sum_{i=1}^{L} b_j L^j$, $b_0 = 1$, and the b_j terms are the coefficients of the division (by increasing powers) of $\Theta(u)$ by $\Phi(u)$, μ_1 is a constant term, and $\tilde{h}(t) \in \mathbb{R}^{p+d+q}$ (with $\lim_{t \to +\infty} \tilde{h}(t) = 0$).

Example

• Starting from :

$$(1 - \phi L)(1 - L)X_t = \epsilon_t - \theta \epsilon_{t-1} \ \forall t \ge 0$$

with the initial conditions ϵ_{-1} , X_{-1} and X_{-2} ;

One gets :

$$\Delta X_t = \frac{1 - \theta L}{1 - \phi L} \tilde{\epsilon}_t - \phi^t \theta \epsilon_{-1} + \phi^{t+1} (X_{-1} - X_{-2})$$
$$= \frac{1 - \theta L}{1 - \phi L} \tilde{\epsilon}_t + h_t' Z_{-1}.$$

2. Application : modelling of the US stock market dividends

- Visual inspection of the autocorrelation function may indicate that the (log) US dividend is not stationary. The autocorrelogram of the first-differenced variable decreases quickly to zero—the first-difference variable may be stationary.
- Unit root tests tends to favor the assumption of non-stationarity (see later on).
- The chosen specification is then an ARIMA(p,1,q) model :

$$\Phi(L)(1-L)d_t = \Theta(L)\epsilon_t$$

where ϵ_t is a white noise process, and :

$$\Phi(L) = 1 - \phi_1 L - \dots - \phi_p L^p
\Theta(L) = 1 + \theta_1 L + \dots + \theta_q L^q.$$

Figure 34: (Partial) autocorrelogram of (log) US stock market dividents

Level				First-difference										
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	Ш	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1 1	0.993	0.993	440.93	0.000	Ш	- (10	- in	1	0.190	0.190	16.157	0.000
	1 1	2	0.986	-0.009	876.75	0.000	Ш		(iii	2	0.266		47.827	0.000
	il di	3	0.979	-0.011	1307.4		Ш	I	1 1	3	0.232	0.163	72.018	0.000
	il de	4		-0.014			Ш	(b)	100	4	0.134		80.084	0.000
	(b)	5		-0.009			Ш	(B)	(1)	5	0.140		88.909	
	(b)	6		-0.011			Ш	·	i in	6			104.22	
	10				2976.3		Ш	(F	(1)	7	0.094	0.003	108.18	
	1 (1)	8		-0.001			Ш	1 1	1 10	8			114.01	
	10	9		-0.027			Ш	P	100	9			122.63	
	1 (1)		0.927	-0.010	4168.9	0.000	Ш	1 19	1 9	10			124.72	
	1 (1)	11			4554.7		Ш	1 1	1 10	11			126.49	
	1 10	12		-0.031			Ш	1 18	1 11	12	0.097	0.035	130.83	
	1 9	13					Ш	1 19	1 1/2	13				
	1 4	14	0.893	-0.005	5675.2	0.000	Ш	1 12	1 2	14		-0.040 0.048		
	191				6036.2		Ш		1 7	15				0.000
	1 9	16			6390.9		Ш	1 11	1 21	16			138.64	
	1 9	17			6739.4 7081.7		Ш	1 2	22		-0.032	-0.003	139.37	
	1 9	18		-0.004 -0.005			Ш	1 20		18	0.032	0.010	139.84	0.000
	1 11	19					Ш	1 11	1 12	20		0.010	140.06	
	1 2	20		-0.017	7748.0 8072.3		Ш	1 12	1 16	21			143.16	
	1 3	22			8390.6		Ш	1 15	1 2	22			143.19	
	1 30	23			8703.2		Ш	1 X	1 31				143.19	
		24		-0.007			Ш	1 2	1 70				143.32	
	1 3	25		-0.001			П	1 3	1 35			-0.035	144.17	0.000
	1 36	26		-0.001		0.000	Ш	1 70	1 76				144.74	
	1 76	27		-0.004			Ш	1 36	l ili			0.003	144.32	
	1 36	28		-0.010		0.000	Ш	1 36	l ili		-0.007	0.010	144 34	
	1 36				10457.		Ш	1 36	l ili		-0.008	0.001	144.37	0.000
	1 36	30		-0.004	10730.	0.000	Ш	1 75	100	30	0.012	0.017	144.44	
	1 116	31		-0.003		0.000	П	1 (6)	1 (6)	31	-0.012	0.007		
	1 36	32			11258.		П	1 46	1 46		-0.044		145.43	0.000
	1 116	33	0.728		11513		П	1 (6)	1 (1)	33				0.000
	1 (6)	34			11763.		П	1 (6	l di	34	0.019	0.036	146.05	0.000
	1 di	35		-0.002		0.000	П	1 10	l of	35	-0.037		146.70	0.000
	1 (6)				12248	0.000	П	1 46	l di				147.41	0.000

Estimation of an ARIMA(2,1,1) model

Parameter	Estimate	Std. Error	t-stat.	p-value	
	0.0007	0.0003	1.8777	0.0611	
ϕ_1	0.7342	0.1096	6.6982	0.0000	
ϕ_2	0.1206	0.0619	1.9477	0.0521	
$ heta_1$	-0.6442	0.1038	-6.2008	0.0000	

Figure 35: Adjusted error terms

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
111	i i	1 0.001	0.001	0.0010	
10	1 1	2 0.014	0.014	0.0864	0.769
1	9	3 0.023	0.023	0.3279	0.849
q.	4	4 -0.075		2.8206	0.420
·Q·	40	5 -0.033		3.3126	0.507
9	UP	6 0.056	0.058	4.7386	0.449
'4'	91	7 -0.039		5.4104	0.492
10	10	8 0.008	0.002	5.4404	0.606
	9.	9 0.057	0.051	6.8873	0.549
'''	191		-0.013	7.0953	0.627
11	14.		-0.017	7.1738	0.709
- 1	1111	12 0.045	0.040	8.1109	0.703
'1'	127	13 0.022	0.035	8.3220	0.759
Ψ.	14.		-0.022	8.4876	0.810
19	199	15 0.079	0.068	11.316	0.661
99	1111		-0.009	11.486	0.717
11	11.	17 0.004	-0.008	11.492	0.778
1	9'				
	111			14.094	0.723
'Ľ	1 12	20 0.007	0.017	14.114	0.777
16	18		-0.000	18.559	0.552
111	121	23 -0.007		18.660	0.666
11	31			18.983	0.666
20	31	24 -0.026 25 -0.053		20.304	0.702
31	311	26 -0.053		20.358	0.728
111	1111	27 -0.011			0.728
111	11 (1)	28 0.001	0.001	20.377	0.773
:11:	1 :1:		-0.003	20.378	0.850
11.	1 (1)	30 0.004	0.019	20.387	0.850
18	1 11	31 -0.006	0.019	20.783	0.894
- 2	1 11		-0.048	21.616	0.894
31	1 34	33 0.063	0.048	23.533	0.861
18	1 38	34 0.063	0.072	25.109	0.836
- 15	1 28	35 -0.014		25.109	0.863
- qr	1 40	35 -0.014	-0.011	25.209	U.063