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Introduction

Motivation

Characterize the main properties of ARIMA(p) models.

Discuss asymptotic equivalence with ARMA(p,q) models
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ARIMA(p,d,q) model Definition

1. Definition

To some extent, ARIMA(p,d,q) models are a generalization of
ARMA(p,q) models : the d-differenced process ∆dXt is
(asymptotically) an ARMA(p,q) process :

On the other hand, the statistical properties of the two models are
different, especially in terms of forecasting.
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ARIMA(p,d,q) model Definition

Definition

A stochastic process (Xt)t≥−p−d is said to be an ARIMA(p, d , q)—an
integrated mixture autoregressive moving average model—if it satisfies the
following equation :

Φ(L)(1− L)dXt = µ+ Θ(L)εt ∀t ≥ 0

where εt is a (weak) white noise process with variance σ2
ε , the lag

polynomials are given by :

Φ(L) = 1− φ1L− · · · − φpLp with φp 6= 0

Θ(L) = 1 + θ1L + · · ·+ θqLq with θq 6= 0,

and the initial conditions :

Z−1 = {X−1, · · · ,X−p−d , ε−1, · · · , ε−q}

are such that :
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ARIMA(p,d,q) model Definition

Remarks :

1. The stochastic process Xt also writes :

Φ(L)∆dXt = µ+ Θ(L)εt or Φ(L)Yt = µ+ Θ(L)εt

where Yt = ∆dXt = (1− L)dXt .

2. Initial conditions are fundamental.
Example : Consider the two stochastic processes :

Xt = ρXt−1 + εt

Yt ≡ Xt − Xt−1 = ηt

where ρ = 0.9, εt and ηt are (weak) white noises.
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ARIMA(p,d,q) model Definition

                                     AR(1) model                                                                       Random walk (without drift) 
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Note: The black, blue, and red solid lines correspond respectively to X_0 = 0, X_0 = 2, and X_0 = -2. 

Figure: Initial conditions and stationarity
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ARIMA(p,d,q) model Fundamental representations

1.2. Fundamental representations

Definition (Fundamental representation)

Let (Xt)t≥−p−d denote the following ARIMA(p,d,q) stochastic process :

Φ(L)∆dXt = µ+ Θ(L)εt ∀t ≥ 0

where Φ(L) = 1− φ1L− · · · − φpLp and Θ(L) = 1 + θ1L + · · ·+ θqLq,
θq 6= 0,φp 6= 0, µ is a constant term, (εt) is a weak white noise, and the
initial conditions are uncorrelated with εt (t ≥ 0). This representation is
said to be causal or fundamental if and only if :

(i) All of the roots of the (inverse) characteristic equation associated to
Φ are of modulus less (larger) than one.

(ii) All of the roots of the (inverse) characteristic equation associated to
Θ are of modulus less (larger) than one.
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ARIMA(p,d,q) model Fundamental representations

Definition (Fundamental minimal representation)

Let (Xt)t≥−p−d denote the following ARIMA(p,d,q) stochastic process :

Φ(L)∆dXt = µ+ Θ(L)εt ∀t ≥ 0

where Φ(L) = 1− φ1L− · · · − φpLp and Θ(L) = 1 + θ1L + · · ·+ θqLq,
θq 6= 0,φp 6= 0, µ is a constant term, (εt) is a weak white noise, and the
initial conditions are uncorrelated with εt (t ≥ 0). This representation is
said to be causal or fundamental if and only if :

(i) All of the roots of the (inverse) characteristic equation associated to
Φ are of modulus less (larger) than one.

(ii) All of the roots of the (inverse) characteristic equation associated to
Θ are of modulus less (larger) than one.

(iii) The (inverse) characteristic polynomials have no common roots.
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ARIMA(p,d,q) model Equivalence with ARMA(p,q) models

1.3. Equivalence with ARMA(p,q) models

Proposition

Let (Xt)t≥−p−d denote a minimal and causal ARIMA(p, d , q) stochastic
process :

Φ(L)(1− L)dXt = µ+ Θ(L)εt .

The stochastic process defined by :

Yt = ∆dXt = (1− L)dXt

is asymptotically equivalent to an ARMA(p, q) process.
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ARIMA(p,d,q) model Autoregressive approximation

1.4. Autoregressive approximation

Definition

The autoregressive approximation (and not the AR(∞) representation) of
a causal and minimal ARIMA(p,d,q) stochastic process is given by :

At(L)Xt = µ0 + εt + h(t)′Z−1.

where At(L) =
t∑

j=0
ajL

j , a0 = 1, and the aj terms are the coefficients of the

division (by increasing powers) of Φ(u) by Θ(u), µ0 is a constant term,
and h(t) ∈ Rp+d+q (with lim

t→+∞
h(t) = 0).
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ARIMA(p,d,q) model Moving average approximation

1.5. Moving average approximation

Definition

The moving average approximation (and not the MA(∞) representation)
of a causal and minimal ARIMA(p,d,q) stochastic process is given by :

Xt = µ1 + Bt(L)εt + h̃(t)′Z−1.

where Bt(L) =
t∑

j=0
bjL

j , b0 = 1, and the bj terms are the coefficients of the

division (by increasing powers) of Θ(u) by Φ(u), µ1 is a constant term,
and h̃(t) ∈ Rp+d+q (with lim

t→+∞
h̃(t) = 0).
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ARIMA(p,d,q) model Moving average approximation

Example

Starting from :

(1− φL)(1− L)Xt = εt − θεt−1 ∀t ≥ 0

with the initial conditions ε−1, X−1 and X−2 ;
One gets :

∆Xt =
1− θL

1− φL
ε̃t − φtθε−1 + φt+1(X−1 − X−2)

=
1− θL

1− φL
ε̃t + h′tZ−1.
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Application

2. Application : modelling of the US stock market
dividends

Visual inspection of the autocorrelation function may indicate that
the (log) US dividend is not stationary. The autocorrelogram of the
first-differenced variable decreases quickly to zero—the first-difference
variable may be stationary.

Unit root tests tends to favor the assumption of non-stationarity (see
later on).

The chosen specification is then an ARIMA(p,1,q) model :

Φ(L)(1− L)dt = Θ(L)εt

where εt is a white noise process, and :

Φ(L) = 1− φ1L− · · · − φpLp

Θ(L) = 1 + θ1L + · · ·+ θqLq.
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Application

Figure 34:  (Partial) autocorrelogram of (log) US stock market dividents 
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Application

Estimation of an ARIMA(2,1,1) model

Parameter Estimate Std. Error t-stat. p-value

c 0.0007 0.0003 1.8777 0.0611
φ1 0.7342 0.1096 6.6982 0.0000
φ2 0.1206 0.0619 1.9477 0.0521
θ1 -0.6442 0.1038 -6.2008 0.0000
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Application

Figure 35:  Adjusted error terms 
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