Nonlinear Radon and Fourier Transforms

François Rouvière
Université de Nice
Laboratoire Dieudonné, UMR 7351

May 16, 2015

Abstract

In this note we explain a generalization, due to Leon Ehrenpreis, of the classical Radon transform on hyperplanes. A function \(f \) on \(\mathbb{R}^n \) can be reconstructed from nonlinear Radon transforms, obtained by integrating \(f \) and a finite number of multiples \(\alpha^m f \) over a family of algebraic hypersurfaces of degree \(m \). This follows by solving a Cauchy problem for the nonlinear Fourier transform of \(f \). We also give an inversion formula for this Radon transform.

1 Introduction

This expository note is an attempt at explaining the pages from Ehrenpreis’ treatise [5] in which he develops the nonlinear Radon and Fourier transforms he had introduced in his previous papers [1][2][3][4]. The goal is to extend the classical hyperplane Radon transform \(R_0 f \) (integrals of a function \(f \) over all hyperplanes in \(\mathbb{R}^n \)) to a family of algebraic submanifolds defined by higher degree polynomial equations. Is the generalized transform \(R \) still injective? Can we give an inversion formula? Unfortunately it is readily seen that \(R \) is no more injective (in general): reconstructing \(f \) from Radon transforms needs more than \(Rf \) alone.

We shall explain here several results of the following type: there exists a finite number of low-degree polynomial functions \(a_k \) (with \(a_1 = 1 \)) such that \(f \) is determined by the Radon transforms \(R(a_k f) \). Besides, the restriction of the \(R(a_k f) \)'s to a certain subfamily of algebraic manifolds may even be sufficient, provided one increases the number of polynomials \(a_k \).

After a brief reminder of the classical hyperplane transform (this Section) we shall introduce Ehrenpreis’ nonlinear Radon transform and the related nonlinear Fourier transform, so as to get a projection slice theorem which plays a crucial role in this study (Section 2). The reconstruction problem boils down to a Cauchy problem for a system of partial differential equations, solved in a naive way in Section 3 then, in Section 4, by the more sophisticated tools of harmonic polynomials. In Section 5 we discuss an inversion formula for the nonlinear Radon transform.

In order to motivate the forthcoming construction, let us briefly recall a few facts about the classical Radon transform \(R_0 \). In the Euclidean space \(\mathbb{R}^n \) it is given by integration of a compactly supported smooth function \(f \in \mathcal{D}(\mathbb{R}^n) \) over the family of
all hyperplanes. A hyperplane being defined by the equation $\omega \cdot x = t$ where ω is a unit vector, t a real number and \cdot denotes the scalar product, we consider

$$R_0 f(t, \omega) := \int_{\omega \cdot x = t} f,$$

an integral with respect to the measure induced on the hyperplane by the Euclidean measure dx of \mathbb{R}^n. Note that (t, ω) and $(-t, -\omega)$ define the same hyperplane, thus $R_0 f(t, \omega) = R_0 f(-t, -\omega)$. For any $\tau \in \mathbb{R}$ we have

$$\int_{\mathbb{R}^n} e^{i\tau \omega \cdot x} f(x) dx = \int_{\mathbb{R}} dt \int_{\omega \cdot x = t} e^{i\tau \omega \cdot x} f(x) = \int_{\mathbb{R}} e^{i\tau t} R_0 f(t, \omega) dt.$$

This gives the projection slice theorem

$$\hat{f}(\tau \omega) = \overline{R_0 f(\tau)}$$

for $\tau \in \mathbb{R}$, $\omega \in \mathbb{R}^n$ and $||\omega|| = 1$.

Caution: on the left-hand side of (1) the hat denotes the n-dimensional Fourier transform on x but on the right-hand side it denotes the 1-dimensional Fourier transform on t. Both sides are smooth functions on $\mathbb{R} \times S^{n-1}$, rapidly decreasing with respect to τ.

Knowing the integrals of f over all hyperplanes, i.e. $R_0 f$, the Fourier transform \hat{f} is therefore known and R_0 is easily inverted as follows. Writing the Fourier inversion formula for f in spherical coordinates we have

$$f(x) = (2\pi)^{-n} \int_{||\omega|| = 1} d\omega \int_0^\infty e^{-i\tau \omega \cdot x} \overline{R_0 f(\tau, \omega)} \tau^{n-1} d\tau$$

where $d\omega$ is the Euclidean measure on the unit sphere of \mathbb{R}^n. In order to use Fourier analysis in one variable we can replace \int_0^∞ by $\int_{\mathbb{R}}$: indeed $\overline{R_0 f(\tau, \omega)} = \overline{R_0 f(-\tau, -\omega)}$ and, changing τ into $-\tau$ then ω into $-\omega$, we obtain

$$f(x) = C \int_{||\omega|| = 1} d\omega \int_{\mathbb{R}} e^{-i\tau \omega \cdot x} \overline{R_0 f(\tau, \omega)} |\tau|^{n-1} d\tau$$

with $C := \frac{1}{2} (2\pi)^{-n}$. Let $F(t, \omega)$ be a smooth function on $\mathbb{R} \times S^{n-1}$, rapidly decreasing with respect to t, and let the operator $|\partial_t|^{n-1}$ be defined by

$$(|\partial_t|^{n-1} F)(\tau, \omega) = \hat{F}(\tau, \omega) |\tau|^{n-1}.$$

Thus $|\partial_t|^{n-1} = (-1)^k \partial_t^k$ if $n = 2k + 1$ is odd; if n is even $|\partial_t|^{n-1}$ is the composition of ∂_t^{n-1} and a Hilbert integral operator (see Helgason [7] p. 22). We infer the following inversion formula

$$f = CR_0^* |\partial_t|^{n-1} R_0 f$$

(2)

where the dual transform R_0^* is defined by

$$R_0^* F(x) := \int_{||\omega|| = 1} F(\omega \cdot x, \omega) d\omega$$

(integration over the set of all hyperplanes containing x).
2 A Nonlinear Radon Transform

2.1 Integration on Hypersurfaces

Let \(\varphi : \Omega \to \mathbb{R} \) be a smooth function on an open subset \(\Omega \) of the Euclidean space \(\mathbb{R}^n \). A convenient way to introduce our Radon transform is to consider first, for \(f \in \mathcal{D}(\Omega) \) (a smooth function with compact support contained in \(\Omega \)) and \(t \in \mathbb{R} \),

\[
 f_\varphi(t) := \int_{\varphi(x) < t} f(x) \, dx
\]

where \(dx \) is the Lebesgue measure of \(\mathbb{R}^n \). Let \(m \) and \(M \) denote the lower and upper bounds of \(\varphi(x) \) for \(x \in \text{supp} \, f \); then \(f_\varphi(t) = 0 \) for \(t \leq m \) and \(f_\varphi(t) = \int_{\Omega} f(x) \, dx \) for \(t \geq M \).

The example \(\Omega = \mathbb{R} \) and \(\varphi(x) = x^3 \) gives \(f_\varphi(t) = F(t^{1/3}) \) with \(F(u) = \int_{-\infty}^{u} f(x) \, dx \); thus \(f_\varphi \) is not necessarily smooth. However the following result holds true.

Proposition 1 Assume the gradient \(\varphi' \) of \(\varphi \) never vanishes on \(\Omega \). For \(f \in \mathcal{D}(\Omega) \), \(f_\varphi \) is then a smooth function on \(\mathbb{R} \) and we may define

\[
 R_\varphi f(t) := (f_\varphi)'(t) = \partial_t \int_{\varphi(x) < t} f(x) \, dx.
\]

(i) \(R_\varphi f \) is a smooth function on \(\mathbb{R} \) and supp \(R_\varphi f \subset [m, M] \).

(ii) For any \(u \in C^\infty(\mathbb{R}) \)

\[
 \int_{\mathbb{R}^n} u(\varphi(x)) f(x) \, dx = \int_{\mathbb{R}} u(t) R_\varphi f(t) \, dt.
\]

(iii) Let \(dS_t \) be the Euclidean measure on the hypersurface \(S_t := \{ x \in \Omega | \varphi(x) = t \} \). Then

\[
 R_\varphi f(t) = \int_{S_t} f(x) \frac{1}{\|\varphi'(x)\|} \, dS_t(x).
\]

Formula (5) gives the geometrical meaning of \(R_\varphi f \) as an integral of \(f \) over the level hypersurface \(\varphi(x) = t \); we may write it for short as

\[
 R_\varphi f(t) = \int_{\varphi(x) = t} f.
\]

According to (4) it may also be viewed as \(R_\varphi f(t) = (\varphi^* \delta_t, f) \) where \(\varphi^* \delta_t \) is the pullback by \(\varphi \) of the Dirac measure \(\delta_t \) of \(\mathbb{R} \) at \(t \) (see Friedlander [6] Section 7.2 or Hörmander [8] Section 6.1).

Proof. (i) and (iii) Given \(a \in \Omega \) we have \(\varphi'(a) \neq 0 \) thus (for instance) \(\partial_n \varphi(a) \neq 0 \). By the inverse function theorem there exists an open neighborhood \(U \) of \(a \) such that the map \(x = (x', x_n) \mapsto y = (x', \varphi(x)) \) is a diffeomorphism of \(U \) onto \(V \times I \), where \(x' = (x_1, ..., x_{n-1}) \), \(V \) is an open neighborhood of \((a_1, ..., a_{n-1}) \) in \(\mathbb{R}^{n-1} \) and \(I \) is an open interval containing \(\varphi(a) \). Let \(y = (y', y_n) \mapsto x = (y', \psi(y', y_n)) \) denote the inverse map. Then \(dy = |\partial_n \varphi(x)| \, dx \) and, assuming \(\text{supp} \, f \subset U \), we have

\[
 f_\varphi(t) = \int_{\varphi(x) < t} f(x) \, dx = \int_{y_n < t} f \left(y', \psi(y', y_n) \right) dy' dy_n.
\]
The y_n integral actually runs over $[a, b] \cap \mathbb{R} + t$ where $[a, b]$ is compact and contained in I. Thus f_φ is a smooth function of $t \in \mathbb{R}$ and

$$R_\varphi f(t) = (f_\varphi)'(t) = \int_V \frac{f}{|\partial_n \varphi|}(y', \psi(y', t))dy' \text{ for } t \in I$$

$$= 0 \text{ for } t \notin I$$

is smooth on \mathbb{R}.

Besides, $\varphi(y', \psi(y', t)) = t$ for $y' \in V$ and $t \in I$ therefore

$$\partial_i \varphi(y', \psi(y', t)) + \partial_n \varphi(y', \psi(y', t))\partial_i \psi(y', t) = 0$$

for $i = 1, \ldots, n - 1$. It follows that $||\varphi'|| = |\partial_n \varphi| \left(1 + \sum_{i=1}^{n-1} (\partial_i \psi)^2\right)^{1/2}$ and, for $t \in I$,

$$R_\varphi f(t) = \int_V \frac{f}{||\varphi'||}(y', \psi(y', t)) \left(1 + \sum_{i=1}^{n-1} (\partial_i \psi(y', t))^2\right)^{1/2} dy'$$

$$= \int_{S_t} \frac{f}{||\varphi'||}(x)dS_t(x),$$

the hypersurface integral being computed by means of the parameters y'. The latter equality also holds for $t \notin I$ (both sides vanish) and this proves (i) and (iii) for $\text{supp } f \subset U$. The general case follows by partition of unity.

(ii) Since $\text{supp } R_\varphi f \subset [m, M]$ we have

$$\int_{\mathbb{R}} u(t)R_\varphi f(t)dt = \int_{m}^{M} u(t)(f_\varphi)'(t)dt = [u(t)f_\varphi(t)]_{m}^{M} - \int_{m}^{M} u'(t)f_\varphi(t)dt$$

$$= u(M) \int_{\Omega} f(x)dx - \int_{\varphi(x) < t < M} u'(t)f(x)dtdx.$$

The latter integral is

$$\int_{\Omega} f(x)dx \int_{\varphi(x)}^{M} u'(t)dt = \int_{\Omega} f(x)(u(M) - u(\varphi(x)))dx$$

and (4) follows. □

2.2 Nonlinear Radon and Fourier Transforms

We now wish to extend the classical Radon transform of Section 1, replacing the hyperplanes $\omega \cdot x = t$ by level hypersurfaces of homogeneous polynomials of given degree $m \geq 1$ in \mathbb{R}^n. We write such polynomials as

$$\lambda \cdot p(x) := \sum_{|\alpha|=m} \lambda_\alpha x^\alpha$$

where $x \in \mathbb{R}^n$ and, in multi-index notation, $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$, $|\alpha| = \sum_1^n \alpha_i$, $x^\alpha = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, and $\lambda_\alpha \in \mathbb{R}$.

4
It is easily checked that the number of terms in \(\sum_{|\alpha|=m} \) is the binomial coefficient \(N = N(m, n) = \frac{(m+n-1)!}{m!(n-1)!} \). Indeed let us consider

\[
\prod_{j=1}^{n} \frac{1}{1 - tx_j} = \prod_{j=1}^{n} (1 + tx_j + t^2x_j^2 + \cdots).
\]

Expanding the product we see that the coefficient of \(t^m \) is \(\sum_{|\alpha|=m} x_{\alpha} \), therefore equals \(N(m, n) \) when all \(x_i \)'s are 1. Thus \(N(m, n) \) is the coefficient of \(t^m \) in the expansion of \((1 - t)^{-n} \) and the result follows. Note that \(N > n \) for \(n \geq 2 \) and \(m \geq 2 \).

Let \(\lambda \in \mathbb{R}^n \), \(\lambda \neq 0 \), and \(\Omega := \{ x | \lambda \cdot p(x) \neq 0 \} \). By Euler’s identity for the homogeneous function \(\varphi(x) = \lambda \cdot p(x) \) on \(\mathbb{R}^n \) the gradient \(\varphi' \) does not vanish on \(\Omega \).

The level surface \(\lambda \cdot p(x) = t \) is thus a smooth hypersurface of \(\mathbb{R}^n \) for \(t \in \mathbb{R}, t \neq 0 \). The nonlinear Radon transform of a test function \(f \in \mathcal{D}(\Omega) \) is then defined, in the notation of (6), by

\[
Rf(t, \lambda) := R_{\varphi}f(t) = \int_{\lambda \cdot p(x) = t} f.
\]

For \(m = 1 \) we have \(N = n \) and \(R \) is the classical hyperplane Radon transform \(R_0 \).

Properties of \(R \).

(i) By Proposition 1, for \(f \in \mathcal{D}(\Omega) \) and \(\lambda \neq 0 \), \(Rf(., \lambda) \) is a compactly supported smooth function of \(t \) on \(\mathbb{R} \). By (4)

\[
\int_{\mathbb{R}^n} F(\lambda \cdot p(x), \lambda) f(x)dx = \int_{\mathbb{R}} F(t, \lambda)Rf(t, \lambda)dt
\]

for \(\lambda \neq 0 \) and any \(F \) continuous on \(\mathbb{R} \times \mathbb{R}^N \). In particular, for \(\tau \in \mathbb{R}, \)

\[
\int_{\mathbb{R}^n} e^{i\tau \lambda \cdot p(x)} f(x)dx = \int_{\mathbb{R}} e^{i\tau t}Rf(t, \lambda)dt = \widehat{Rf}(\tau, \lambda) = \widehat{f}(1, \tau, \lambda)
\]

is the one-dimensional Fourier transform of \(Rf \) with respect to the variable \(t \). This extends the projection slice theorem (1).

(ii) The left-hand side of (8) is well-defined for all \(f \in \mathcal{D}(\mathbb{R}^n) \) (without assuming \(\text{supp} f \subset \Omega \)), and extends to an entire function of \((\tau, \lambda) \) on \(\mathbb{C} \times \mathbb{C}^N \). This suggests defining \(\widehat{Rf}(\tau, 0) = \int f \), that is \(Rf(t, 0) = (\int_{\mathbb{R}^n} f(x)dx) \delta(t) \) where \(\delta \) is the Dirac measure at the origin of \(\mathbb{R} \).

Actually, the restrictive assumptions \(\text{supp} f \subset \Omega, t \neq 0, \lambda \neq 0 \) may be left out in the sequel, as we shall work with \(\widehat{Rf} \) rather than \(Rf \).

(iii) From (8) it follows that

\[
\partial_{\lambda^\alpha} \widehat{Rf}(\tau, \lambda) = i\tau \int_{\mathbb{R}^n} e^{i\tau \lambda \cdot p(x)} x^\alpha f(x)dx = i\tau \overline{R(x^\alpha f)}(\tau, \lambda),
\]

therefore

\[
\partial_{\lambda^\alpha} Rf(t, \lambda) = - \partial t R(x^\alpha f) (t, \lambda)
\]

for \(f \in \mathcal{D}(\Omega), \lambda \neq 0 \) and \(\alpha \in \mathbb{N}^n, |\alpha| = m. \)
(iv) Note that, for m even, $Rf = 0$ whenever f is an odd function: R is not an injective map and, in this case, f cannot be reconstructed from Rf alone. We shall see in the next sections how to circumvent this difficulty.

Let us introduce the **nonlinear Fourier transform of** f defined, for all $f \in \mathcal{D}(\mathbb{R}^n)$, by

$$
\tilde{f}(\xi, \lambda) := \int_{\mathbb{R}^n} e^{i(\xi \cdot x + \lambda \cdot p(x))} f(x) dx , \xi \in \mathbb{R}^n , \lambda \in \mathbb{R}^N.
$$

(11)

It extends to an entire function of $(\xi, \lambda) \in \mathbb{C}^n \times \mathbb{C}^N$. As a function on $\mathbb{R}^n \times \mathbb{R}^N$ it is bounded by $\int_{\mathbb{R}^n} |f(x)| dx$ and, for fixed λ, it is rapidly decreasing with respect to ξ.

On the one hand $\tilde{f}(\xi, 0) = \hat{f}(\xi)$ is the classical n-dimensional Fourier transform of f; on the other hand $\tilde{f}(0, \tau \lambda) = \tilde{R}f(\tau, \lambda)$ is the 1-dimensional Fourier transform of Rf:

$$
\tilde{f}(\xi, 0) = \hat{f}(\xi) \quad \tilde{f}(0, \lambda) = \tilde{R}f(1, \lambda).
$$

Reconstructing $\tilde{f}(\xi, \lambda)$ from $\tilde{f}(0, \lambda)$ would therefore allow to reconstruct f from Rf. For this we shall consider partial differential equations satisfied by \tilde{f}.

2.3 Partial Differential Equations

Taking derivatives of (11) under the integral sign we get, for $j = 1, ..., n$ and $\alpha \in \mathbb{N}^n$, $|\alpha| = m$,

$$
\partial_{\xi_j} \tilde{f}(\xi, \lambda) = i \int_{\mathbb{R}^n} e^{i(\xi \cdot x + \lambda \cdot p(x))} x_j f(x) dx = i(x_j \hat{f})(\xi, \lambda)
$$

(12)

$$
\partial_{\lambda_\alpha} \tilde{f}(\xi, \lambda) = i \int_{\mathbb{R}^n} e^{i(\xi \cdot x + \lambda \cdot p(x))} x^\alpha f(x) dx = i(x^\alpha \hat{f})(\xi, \lambda).
$$

(13)

Thus \tilde{f} satisfies the system of N linear partial differential equations on $\mathbb{R}^n \times \mathbb{R}^N$

$$
im^{-1} \partial_{\lambda_\alpha} \tilde{f} = \partial^2_{\xi_\alpha} \tilde{f} \quad \text{for } \alpha \in \mathbb{N}^n, |\alpha| = m.
$$

(14)

For any $\alpha, \beta, \gamma, \delta \in \mathbb{N}^n$ of length m such that $x^\alpha x^\beta = x^\gamma x^\delta$ we infer that, as a function of λ, \tilde{f} satisfies the **Plücker equations**

$$
(\partial_{\lambda_\beta} \partial_{\lambda_\delta} - \partial_{\lambda_\delta} \partial_{\lambda_\beta}) \tilde{f} = 0.
$$

(15)

Given α, β, all such multi-indices γ, δ are obtained as $\gamma = \alpha - \varepsilon, \delta = \beta + \varepsilon$, where $\varepsilon = (\varepsilon_1, ..., \varepsilon_n) \in \mathbb{Z}^n$ satisfies $-\beta_j \leq \varepsilon_j \leq \alpha_j$ for $j = 1, ..., n$ and $\sum_n \varepsilon_j = 0$.

Example. For $m = n = 2$ we have $\lambda \cdot p(x) = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \lambda_3 x_1 x_2$ (here $N = 3$) and

$$
i \partial_{\lambda_1} \tilde{f} = \partial^2_{\xi_1} \tilde{f} , \quad i \partial_{\lambda_2} \tilde{f} = \partial^2_{\xi_2} \tilde{f} , \quad i \partial_{\lambda_3} \tilde{f} = \partial_{\xi_1} \partial_{\xi_2} \tilde{f}.
$$

The identity $(x_1 x_2)^2 = x_1^2 x_2^2$ leads to the hyperbolic equation $\partial^2_{\xi_3} \tilde{f} = \partial_{\xi_1} \partial_{\xi_2} \tilde{f}$.

6
3 A Cauchy Problem

Given \(f \in \mathcal{D}(\mathbb{R}^n) \) let us now try to reconstruct \(\tilde{f}(\xi, \lambda) \) from \(\tilde{f}(0, \lambda) = \tilde{R}f(1, \lambda) \) by solving a Cauchy problem for the system (14) with data on \(\xi = 0 \). In order to achieve this goal we shall of course need more than \(\tilde{R}f(1, \lambda) \); let us recall that \(\tilde{f}(0, \lambda) = 0 \) for \(m \) even and \(f \) odd, though \(\tilde{f} \) may be not identically zero. It should be noted that \(\tilde{f}(0, \lambda) \) satisfies the Plücker equations (15), but this fact will not be taken into account here (see Remark below however).

Since \(\tilde{f} \) is an entire function we have

\[
\tilde{f}(\xi, \lambda) = \sum_{\alpha \in \mathbb{N}^n} \partial_\xi^\alpha \tilde{f}(0, \lambda) \frac{\xi^\alpha}{\alpha!},
\]

an absolutely convergent series for all \(\xi \in \mathbb{C}^n \) and \(\lambda \in \mathbb{C}^N \).

To work it out we shall only need the derivatives \(\partial_\xi^\alpha \tilde{f}(0, \lambda) \) for \(|\alpha| < m \); the higher order derivatives will be given by (14). More precisely, \(\partial_\xi^\alpha \tilde{f} = i^{\alpha} (x^\gamma f) \) for all \(\alpha \) by (12), and equals \(i^{m-1} \partial_\lambda \tilde{f} \) by (14) if \(|\alpha| = m \). For any \(\alpha \in \mathbb{N}^n \) we may write \(|\alpha| = qm + r \) with \(q, r \in \mathbb{N}, 0 \leq r < m \), and factorize \(\partial_\xi^\alpha \) as

\[
\partial_\xi^\alpha = \partial_\xi^{\beta_1} \cdots \partial_\xi^{\beta_q} \partial_\lambda^{\beta_{q+1}} \cdots \partial_\lambda^{\beta_r}
\]

with \(\beta_1, \ldots, \beta_q \in \mathbb{N}^n, |\beta_1| = \cdots = |\beta_q| = m \) and \(|\gamma| = r \); this factorization is not unique. It follows that

\[
\partial_\xi^\alpha \tilde{f} = i^{\alpha} (x^\gamma f)
\]

and

\[
\tilde{f}(\xi, \lambda) = \sum_{\alpha \in \mathbb{N}^n} i^{\alpha} \partial_\lambda^{\beta_{q+1}} \cdots \partial_\lambda^{\beta_r} (x^\gamma f)(0, \lambda) \frac{\xi^\alpha}{\alpha!}
\]

(with \(q, \beta_1, \ldots, \beta_q, \gamma \) depending on \(\alpha \) in the sum).

Remembering \((x^\gamma f)(0, \lambda) = \tilde{R}(x^\gamma f)(1, \lambda) \) for \(\lambda \neq 0 \), we see that \(\tilde{f} \) is determined by the nonlinear Radon transforms of all functions \(x^\gamma f \) for \(\gamma \in \mathbb{N}^n \) and \(|\gamma| < m \). Their number is \(\sum_{k=0}^{m-1} N(k, n) = N(m - 1, n + 1) = \frac{m}{n} N(m, n) \) (induction on \(m \)). In particular if \(\tilde{R}(x^\gamma f) = 0 \) for all \(\gamma \) with \(|\gamma| < m \), then \(f = 0 \).

Example. For \(m = n = 2 \) (Section 2.3), \(\partial_{\xi_1}^2 \partial_{\xi_2}^2 \) factorizes as powers of \(\partial_{\xi_1}^2 \) and \(\partial_{\xi_2}^2 \), possibly composed with \(\partial_{\xi_1} \) or \(\partial_{\xi_2} \) or \(\partial_{\xi_1} \partial_{\xi_2} \) according to the parity of \(\alpha_1 \) and \(\alpha_2 \).

Gathering together similar terms the above result reads

\[
\tilde{f}(\xi, \lambda) = C(D_1)C(D_2)\tilde{f} + S(D_1)S(D_2)D_3\tilde{f} +
\]

\[
+i\xi_1 S(D_1)C(D_2)(x_1 f) + i\xi_2 C(D_1)S(D_2)(x_2 f)
\]

(16)

where

\[
D_1 = i\xi_1^2 \partial_{\xi_1}, \quad D_2 = i\xi_2^2 \partial_{\xi_2}, \quad D_3 = i\xi_1 \xi_2 \partial_{\lambda_3}
\]

\[
C(z) = \sum_{k=0}^{\infty} \frac{z^k}{(2k)!}, \quad S(z) = \sum_{k=0}^{\infty} \frac{z^k}{(2k+1)!}
\]
and, in the right-hand side of (16), \(\tilde{f}, (\tilde{x}_1 f), (\tilde{x}_2 f) \) are evaluated at \((0, \lambda)\). Thus the knowledge of the three Radon transforms \(Rf, R(x_1 f) \) and \(R(x_2 f) \) determines \(\tilde{f} \).

Remark. The Plücker equations (15), here \(\partial_{\lambda_3}^2 \tilde{f} = \partial_{\lambda_1} \partial_{\lambda_2} \tilde{f} \), haven’t been taken into account. They imply \(\partial_{\lambda_3}^{2k} \tilde{f} = (\partial_{\lambda_1} \partial_{\lambda_2})^k \tilde{f}, \partial_{\lambda_3}^{2k+1} \tilde{f} = (\partial_{\lambda_1} \partial_{\lambda_2})^k \partial_{\lambda_3} \tilde{f} \) for \(k \in \mathbb{N} \), hence the Taylor expansion

\[
\tilde{f}(0, \lambda_1, \lambda_2, \lambda_3) = \sum_{k \in \mathbb{N}} \partial_{\lambda_3}^k \tilde{f}(0, \lambda_1, \lambda_2, 0) \frac{\lambda_3^k}{k!}
\]

where \(E = \lambda_3^2 \partial_{\lambda_1} \partial_{\lambda_2} \), and similarly

\[
\partial_{\lambda_3} \tilde{f}(0, \lambda_1, \lambda_2, \lambda_3) = \lambda_3 \partial_{\lambda_1} \partial_{\lambda_2} S (E) \tilde{f}(0, \lambda_1, \lambda_2, 0) + C (E) (\partial_{\lambda_3} \tilde{f})(0, \lambda_1, \lambda_2, 0).
\]

Combining (16) (17) and (18) it follows that \(\tilde{f} \) can be reconstructed from \(\tilde{f}, \partial_{\lambda_3} \tilde{f}, (\tilde{x}_1 f), \partial_{\lambda_3}(\tilde{x}_1 f), (\tilde{x}_2 f) \) and \(\partial_{\lambda_3}(\tilde{x}_2 f) \) at \((0, \lambda_1, \lambda_2, 0)\) only.

Remembering (13) \(\partial_{\lambda_3} \tilde{f} = i(\tilde{x}_1 \tilde{x}_2 f) \), these 6 functions can be replaced by \(\tilde{f}, (\tilde{x}_1 f), (\tilde{x}_2 f), (\tilde{x}_1 \tilde{x}_2 f), (x_1 \tilde{x}_2 f) \) and \((x_1 x_2^2 f)\), that is \(\tilde{Rf}, \tilde{(x_1 f)}, \tilde{(x_2 f)} \) evaluated at \((1; \lambda_1, \lambda_2, 0)\). In other words the integrals of \(f, x_1 f, ..., x_1 x_2^2 f \) over the conics \(\lambda_1 x_1^2 + \lambda_2 x_2^2 = t \) will determine \(f \). A stronger (and more general) result is given in the next section.

4 Harmonic Polynomials and the Cauchy Problem

Two chapters of [5] are devoted to a general theory of harmonic polynomials which, when applied to nonlinear Radon transforms, leads to a refined version of the results of Section 3. We shall only present here a simplified approach to the harmonic polynomials relevant to our problem.

Notation. All polynomials considered here have complex coefficients. Let us order the \(N \) monomials \((x^n)_{|\alpha|=m} \) as \(x_1^m, ..., x_n^m \) first, then \((x^\beta)_{\beta \in B}\) where \(B \) is the set of the \(N - n \) remaining multi-indices of length \(m \). In accordance with this we replace our previous notation \(\lambda = (\lambda_\alpha)_{|\alpha|=m} \in \mathbb{R}^N \) by \((\lambda, \mu) \in \mathbb{R}^n \times \mathbb{R}^{N-n} \) with \(\lambda = (\lambda_1, ..., \lambda_n) \) and \(\mu = (\mu_\beta)_{\beta \in B} \); the former \(\sum_\alpha \lambda_\alpha x^\alpha \) is replaced by \(\sum_{j=1}^n \lambda_j x_j^m + \sum_{\beta \in B} \mu_\beta x^\beta \). Let \((x, p, q) \in \mathbb{R}^{n+N}\) denote dual variables to \((\xi, \lambda, \mu)\), with \(x = (x_1, ..., x_n) \in \mathbb{R}^n, \)

\(p = (p_1, ..., p_n) \in \mathbb{R}^n \) and \(q = (q_\beta)_{\beta \in B} \in \mathbb{R}^{N-n} \).

In this new notation the partial differential equations (14) become

\[
(-i\partial_{\xi_j})^m \tilde{f} = -i\partial_{\lambda_j} \tilde{f}, \quad (-i\partial_{\xi})^\beta \tilde{f} = -i\partial_{\mu} \tilde{f} \text{ for } j = 1, ..., n \text{ and } \mu \in B.
\]

They are dual to

\[
x_j^m F = p_j F, \quad (x^\beta - q_\beta) F = 0 \text{ for } j = 1, ..., n \text{ and } \mu \in B,
\]

where \(F \) is the tempered distribution on \(\mathbb{R}^{n+N} \) corresponding to \(\tilde{f} \) via the Fourier transform on \(\mathbb{R}^{n+N} \) (being smooth and bounded, \(\tilde{f} \) is tempered on \(\mathbb{R}^{n+N} \)).
Let us introduce the following N polynomials on \mathbb{R}^n:
\[u_j(x,q) := x_j^m, \quad u_\beta(x,q) := x^\beta - q_\beta \text{ for } j = 1, \ldots, n \text{ and } \beta \in B. \quad (21) \]

The system (20) implies that the support of F is contained in the closed set V of \mathbb{R}^{n+N} defined by the N equations
\[V = \{(x, p, q) \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^{N-n} | u_j(x, q) = p_j, \ u_\beta(x, q) = 0, 1 \leq j \leq n, \beta \in B \}. \]

Being the graph of a map $x \mapsto (p, q)$, V is a n-dimensional submanifold of \mathbb{R}^{n+N}.

Definition 2 A polynomial function $h(x, q)$ on $\mathbb{R}^n \times \mathbb{R}^{N-n}$ is called **harmonic** if
\[u_j(\partial_x, \partial_q)h = 0, \ u_\beta(\partial_x, \partial_q)h = 0 \text{ for } j = 1, \ldots, n \text{ and } \beta \in B. \]

It is called **homogeneous of degree** d if $h(tx, t^m q) = t^d h(x, q)$ for all $t \in \mathbb{R}$ (thus each x_j has degree 1 and each q_β has degree m).

Proposition 3 Let $D := \sum_{\beta \in B} q_\beta \partial_x^\beta$. Then $u_\beta(\partial_x, \partial_q) = - e^D \circ \partial_{q_\beta} \circ e^{-D}$.

The space of harmonic polynomials is m^n-dimensional. Its elements are given by
\[h = e^D f \]
where f is an arbitrary polynomial of the following form
\[f(x) = \sum_{\alpha \in \mathbb{N}^n} a_\alpha x^\alpha \text{ with } 0 \leq \alpha_j \leq m - 1 \text{ for } j = 1, \ldots, n \text{ and } a_\alpha \in \mathbb{C}. \]

Besides $h = e^D f$ is homogeneous of degree d (in the sense of Definition 4) if and only if f is homogeneous of degree d.

Proof. Since $u_\beta(\partial_x, \partial_q) = \partial_x^\beta - \partial_{q_\beta}$ we have $[D, u_\beta(\partial_x, \partial_q)] = \partial_x^\beta$ and $[D, \partial_x^\beta] = 0$, thus $(\text{ad} \ D)^2 u_\beta(\partial_x, \partial_q) = 0$ and
\[e^{-D} u_\beta(\partial_x, \partial_q) e^D = e^{-\text{ad} \ D} u_\beta(\partial_x, \partial_q) = (1 - \text{ad} \ D) u_\beta(\partial_x, \partial_q) \]
\[= u_\beta(\partial_x, \partial_q) - \partial_x^\beta = - \partial_{q_\beta}. \]

[This proof may also be written without any Lie formalism, by computing the derivative with respect to t of $e^{-tD} u_\beta(\partial_x, \partial_q) e^{tD}$.]

Since e^D is a linear isomorphism of the space of polynomials onto itself, a polynomial $h(x, q)$ is harmonic if and only if
\[\partial_x^m h = 0, \ \partial_{q_\beta} (e^{-D} h) = 0 \text{ for } j = 1, \ldots, n \text{ and } \beta \in B. \]

The latter equations imply $h = e^D f$ for some polynomial f in the x variables. Since $[D, \partial_x^m] = 0$ the former equations imply $\partial_x^m f = 0$ for $j = 1, \ldots, n$ whence our claim about f.

The operator D preserves homogeneity in (x, q) and the last statement follows. ■
Examples. Let us write down, as an example, a basis of homogeneous harmonic polynomials for $n = 2$ and $m = 4$. Here $N = 5$, $\beta = (\beta_1, \beta_2)$ with $0 \leq \beta_j \leq 3$, $\beta_1 + \beta_2 = 4$, $q = (q_{13}, q_{22}, q_{31})$ and $D = \sum q_{3j} \partial_x^j \partial_y^j$. The 16 monomials $f(x) = x^n_1 x^n_2$, $0 \leq a \leq 3$, $0 \leq b \leq 3$, make up a basis of the relevant polynomials f. Since the degree of f is 6 at most we have $D^2 f = 0$ and the 16 corresponding harmonic polynomials are $h = f + Df$, that is

\begin{align*}
1, x_1, x_2, x_1 x_2, x_2^2, x_1^2 x_2, x_1 x_2^2, x_2^3, \\
x_1^3 x_2 + 6 q_{31}, x_1^2 x_2^2 + 4 q_{22}, x_1 x_2^3 + 6 q_{31}, \\
x_1^3 x_2^2 + 12 q_{22} x_1 + 12 q_{31} x_2, x_1^2 x_2^3 + 12 q_{13} x_1 + 12 q_{22} x_2, \\
x_1^3 x_2^3 + 18 q_{13} x_1^2 + 36 q_{22} x_1 x_2 + 18 q_{31} x_2^2.
\end{align*}

For $m = n = 2$ (already considered) we have $N = 3$, $q \in \mathbb{R}$, and the corresponding basis of harmonic polynomials is

$$1, x_1, x_2, x_1 x_2 + q.$$

More generally, let A denote the set of all $\alpha \in \mathbb{N}^n$ such that $0 \leq \alpha_j \leq m - 1$ for $j = 1, \ldots, n$. By Proposition 5 the $h_{\alpha} := e^P x^\alpha$, $\alpha \in A$, make up a basis of the space of harmonic polynomials.

Proposition 4 For any polynomial $P(x, q)$ on $\mathbb{R}^n \times \mathbb{R}^{N-n}$ there exists a family of m^n polynomials Q_α, $\alpha \in A$, on \mathbb{R}^N such that

$$P(x, q) = \sum_{\alpha \in A} Q_\alpha(u_1(x, q), \ldots, u_N(x, q)) h_\alpha(x, q),$$

where u_1, \ldots, u_N denote the polynomials defined by (21).

Proof. Let $(a, b) = a(\partial) \overline{b}(0)$ be the Fischer inner product on the space of polynomials on $\mathbb{R}^n \times \mathbb{R}^{N-n}$. Then h is harmonic if and only if $u_k(\partial_x, \partial_q) h = 0$ for $k = 1, \ldots, N$, i.e. $\langle au_k, h \rangle = 0$ for all polynomials a. The space of harmonic polynomials is thus the orthogonal complement of the ideal $\{ \sum_{k=1}^N a_k(x, q)u_k(x, q) \}$ generated by the u_k’s (where the a_k’s are arbitrary polynomials).

A given $P(x, q)$ now has a unique decomposition as

$$P = h + \sum_{k=1}^N a_k u_k$$

with h harmonic. Separating homogeneous components we may assume P is homogeneous of degree d (in the sense of Definition 2). Since u_k is homogeneous, each homogeneous component of a harmonic polynomial is harmonic. We may therefore assume h and all $a_k u_k$ homogeneous of degree d, therefore a_k is homogeneous of degree $d - m$. Writing similar decompositions for each a_k the result easily follows.

1 Cf. [5] p. 312, where the coefficients 16 should be replaced, I think, by 18.
Example. For \(m = n = 2 \) the generators and harmonic polynomials are respectively
\[
\begin{align*}
 u_1 &= x_1^2, \quad u_2 = x_2^2, \quad u_3 = x_1x_2 - q \\
 h_0 &= 1, \quad h_1 = x_1, \quad h_2 = x_2, \quad h_3 = x_1x_2 + q
\end{align*}
\]
and the first non-trivial examples of decomposition in Proposition 4 are:
\[
\begin{align*}
 2x_1x_2 &= u_3h_0 + h_3, \quad 2q = -u_3h_0 + h_3 \\
 x_1q &= -u_3h_1 + u_1h_2, \quad x_2q = -u_3h_2 + u_2h_1 \\
 q^2 &= u_1u_2h_0 - u_3h_3, \quad 2x_1x_2q = (2u_1u_2 - u_3^2)h_0 - u_3h_3.
\end{align*}
\]
Replacing \(x_j \) by \(-i\partial_{\xi_j}\) and \(q_\beta \) by \(-i\partial_{\mu_\beta}\) we infer from Proposition 4 an equality of differential operators. Applying them to \(e^f \) we obtain
\[
P(-i\partial_{\xi}, -i\partial_{\mu})\tilde{f} = \sum_{\alpha \in A} Q_\alpha \left((-i\partial_{\xi})^m (\alpha - i\partial_{\mu})^\beta (-i\partial_{\mu})\right) h_\alpha (-i\partial_{\xi}, -i\partial_{\mu}) \tilde{f}
\]
\[
= \sum_{\alpha \in A} Q_\alpha (-i\partial_\lambda, 0) h_\alpha (-i\partial_{\xi}, -i\partial_{\mu}) \tilde{f}
\]
in view of (19) and the commutativity of differential operators. In particular all derivatives \(\partial^\rho \partial^\sigma \tilde{f} \) may be written in this form with polynomials \(Q_\alpha \) depending on \(\rho, \sigma \) whence, by Taylor’s formula on the variables \((\xi, \mu) \),
\[
\tilde{f}(\xi, \lambda, \mu) = \sum_{\alpha \in A} Q_{\alpha \rho \sigma} (-i\partial_\lambda, 0) h_\alpha (-i\partial_{\xi}, -i\partial_{\mu}) \tilde{f}(0, \lambda, 0) \frac{\xi^\rho \mu^\sigma}{\rho! \sigma!} \tag{22}
\]
where \(\sum \) runs over all \(\rho \in \mathbb{N}^n, \sigma \in \mathbb{N}^{N-n} \) and \(\alpha \in A \). Remembering (12) (13) \(-i\partial_{\xi} \tilde{f} = x_1 \tilde{f}, -i\partial_{\mu_\beta} \tilde{f} = x^\beta \tilde{f}\) we have \(h_\alpha (-i\partial_{\xi}, -i\partial_{\mu}) \tilde{f} = (h_\alpha (x, q) \tilde{f}) \) with \(q_\beta = x^\beta \) for \(\beta \in B \).

Lemma 5 For all \(\alpha \) there exists a positive integer \(C_\alpha \) such that, when replacing each \(q_\beta \) by \(x^\beta \) for \(\beta \in B \),
\[
h_\alpha (x, q) = h_\alpha (x, (x^\beta)_{\beta \in B}) = C_\alpha x^\alpha.
\]
Proof. For \(\alpha \in \mathbb{N}^n \) we have
\[
D^\alpha x^\alpha = \sum_{\beta \in B} q_\beta \partial^\beta x^\alpha = \sum_{\beta \in B} \frac{\alpha!}{(\alpha - \beta)!} q_\beta x^{\alpha - \beta}
\]
\[
D^2 x^\alpha = \sum_{\beta, \gamma \in B} \frac{\alpha!}{(\alpha - \beta - \gamma)!} q_\beta q_\gamma x^{\alpha - \beta - \gamma}
\]
etc (the coefficients being 0 unless \(\beta \leq \alpha \), resp. \(\beta + \gamma \leq \alpha \)). When replacing \(q_\beta \) by \(x^\beta, q_\gamma \) by \(x^\gamma \) etc, the polynomials \(D^\alpha x^\alpha, D^2 x^\alpha \) etc thus become \(x^\alpha \) times a positive integer coefficient. The same holds for \(h_\alpha = e^D x^\alpha \), whence the lemma. ■
Going back to (22) we have \(h_\alpha (-i\partial_\xi, -i\partial_\mu) \tilde{f} = C_\alpha \hat{x}_\alpha f \) and we conclude that, for \((\xi, \lambda, \mu) \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^{N-n}\),

\[
\tilde{f}(\xi, \lambda, \mu) = \sum_{\rho, \sigma, \alpha} C_\alpha Q_{\alpha \rho \sigma} (-i\partial_\lambda, 0)(\hat{x}_\alpha f)(0, \lambda, 0) \frac{\varepsilon^\rho \mu^\sigma}{\rho! \sigma!}.
\]

Therefore the restriction to all \((0, \lambda, 0)\) of the \(m^n\) functions \(\hat{x}_\alpha f\), \(\alpha \in A\), determines \(f\). In other words, the Cauchy problem for (19) is well-posed with the Cauchy data \(h_\alpha (-i\partial_\xi, -i\partial_\mu) \tilde{f} = C_\alpha \hat{x}_\alpha f\) on the \(n\)-plane of \(\mathbb{R}^{n+N}\) defined by \(\xi = \mu = 0\).

In terms of Radon transforms we obtain the following result.

Theorem 6 A function \(f \in \mathcal{D}(\mathbb{R}^n)\) is uniquely determined by the \(m^n\) nonlinear Radon transforms \(R(x_\alpha^m)(t, \lambda, 0)\) (with \(\alpha \in \mathbb{N}^n\), \(0 \leq \alpha_j < m\), \(t \in \mathbb{R}\), \(\lambda \in \mathbb{R}^n \setminus \{0\}\)), that is by the integrals of each \(x_\alpha^m f\) on the hypersurfaces

\[
\lambda_1 x_1^m + \cdots + \lambda_n x_n^m = t.
\]

5 Inversion Formulas

Let us now look for an inversion formula for the nonlinear Radon transform. The nonlinear Fourier transform \(\tilde{f}\) is greatly overdetermined, with \(n+N\) variables \((\xi, \lambda)\) instead of \(n\) for \(f\). As in Section 3 we shall restrict \(\tilde{f}\) to \(\xi = 0\) and, assuming the monomials \(x_\alpha^m\) are ordered as \(x_1^m, \ldots, x_n^m\) first, followed by the other \(x_\beta^m\)'s, it turns out that (as in the final remark of Section 3) we can also restrict to \(\lambda = (\lambda_1, \ldots, \lambda_n, 0, \ldots, 0)\), written as \(\lambda \in \mathbb{R}^n\) for short. Then

\[
\tilde{f}(0, \tau \lambda) = \int_{\mathbb{R}^n} e^{i\tau \sum_1^n \lambda_j x_j^m} f(x) dx = \tilde{Rf}(\tau, \lambda) \quad \text{with} \quad \tau \in \mathbb{R}, \lambda \in \mathbb{R}^n.
\]

5.1 First Case: \(m\) odd

Let \(U\) denote the dense open subset of \(\mathbb{R}^n\) defined by \(x_j \neq 0\) for all \(j\). For \(m\) odd the map \(\psi : x \mapsto y = x^m := (x_1^m, \ldots, x_n^m)\) is a diffeomorphism of \(U\) onto itself. Then

\[
\tilde{Rf}(\tau, \lambda) = \int_{\mathbb{R}^n} e^{i\lambda \cdot y} g(y) dy \equiv \hat{g}(\tau \lambda)
\]

with \(\lambda \cdot y = \sum_1^n \lambda_j y_j\) and

\[g(y) := m^{-n} |y_1 \cdots y_n|^{(1/m)-1} f(y^{1/m}) , \quad y \in \mathbb{R}^n.\]

As above \(\hat{g}\) denotes the classical \(n\)-dimensional Fourier transform and \(\tilde{Rf}\) is the \(1\)-dimensional Fourier transform with respect to \(t\).

The change \(x \mapsto y\) thus reduces the nonlinear Radon transform \(R\) to the linear one considered in the introduction: \(Rf(t, \lambda) = R_0 g(t, \lambda)\). But \(g\) is not necessarily smooth, \(\hat{g}(\lambda) = \tilde{Rf}(1, \lambda)\) is not necessarily rapidly decreasing and the inversion formula (2) may become invalid here. However \(g\) is integrable on \(\mathbb{R}^n\) and vanishes outside a compact set, therefore defines a tempered distribution. Denoting by \(\mathcal{F}\) the
inverse Fourier transform for tempered distributions on \mathbb{R}^n we have $g = \mathcal{F}\hat{g}$ hence, for any $u \in \mathcal{D}(U)$,

$$
\int_U f(x) u(x^m) dx = \int_U g(y) u(y) dy = \langle \mathcal{F}\hat{g}(y), u(y) \rangle \\
= \langle (\psi^*\mathcal{F}\hat{g})(x), \det \psi'(x) u(\psi(x)) \rangle \\
= \langle m^n(x_1 \cdots x_n)^{m-1} (\psi^*\mathcal{F}\hat{g})(x), u(x^m) \rangle,
$$

using the pullback by ψ of the distribution $\mathcal{F}\hat{g}$ on U (cf. [6] p. 80). The absolute value may be skipped here since $m - 1$ is even and $\det \psi' > 0$. Therefore, for $f \in \mathcal{D}(\mathbb{R}^n)$,

$$f(x) = m^n(x_1 \cdots x_n)^{m-1} (\psi^*\mathcal{F}\hat{R}f(1, \cdot))(x), \quad (25)$$

an equality of distributions on U.

5.2 Second Case: m even

The above map $\psi : x \mapsto y$ is no more a bijection: given y with all $y_j > 0$, the equations $y = \frac{x^m}{m}$ now have 2^n solutions $x = \left(\pm y_1^{1/m}, \ldots, \pm y_n^{1/m} \right)$.

For $x, y \in \mathbb{R}^n$ we write $xy := (x_1 y_1, \ldots, x_n y_n)$. Let $E := \{1, -1\}^n$ denote the set of all $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n)$ with $\varepsilon_j = \pm 1$ and

$$\mathbb{R}_+^n := \{ x \in \mathbb{R}^n \mid x_j > 0 \text{ for } 1 \leq j \leq n \}. $$

Viewing the integral (23) as a sum of integrals over the quadrants $\varepsilon\mathbb{R}_+^n$, $\varepsilon \in E$, we obtain, by the change of variables $x \mapsto y$ with $x_j = \varepsilon_j y_j^{1/m}$, $y_j > 0$, on $\varepsilon\mathbb{R}_+^n$,

$$\mathcal{F}\hat{R}f(\tau, \lambda) = \hat{f}(0, \tau \lambda) = \int_{\mathbb{R}_+^n} e^{i\tau \lambda \cdot y} g(y) dy
$$

with $\tau \in \mathbb{R}$, $\lambda \in \mathbb{R}^n$ and, for $y \in \mathbb{R}_+^n$,

$$g(y) := m^{-n} (y_1 \cdots y_n)^{(1/m)-1} \sum_{\varepsilon \in E} f(\varepsilon y^{1/m}).$$

Let H denote the Heaviside function $H(y) = 1$ if $y \in \mathbb{R}_+^n$, $H(y) = 0$ otherwise. Equation (24) is now replaced by

$$\mathcal{F}\hat{R}f(\tau, \lambda) = \int_{\mathbb{R}_+^n} e^{i\tau \lambda \cdot y} H(y) g(y) dy = \mathcal{F}\hat{H}_g(\tau \lambda).$$

Again H_g is integrable and vanishes outside a compact set, hence tempered on \mathbb{R}^n, and as above the Fourier inversion $H_g = \mathcal{F}\mathcal{F}\hat{H}_g$ implies the following equality of distributions on \mathbb{R}_+^n

$$\sum_{\varepsilon \in E} f(\varepsilon x) = m^n (x_1 \cdots x_n)^{m-1} (\psi^*\mathcal{F}\hat{R}f(1, \cdot))(x). \quad (26)$$
This gives \(f \) if its support is contained in some quadrant \(\mathbb{R}^n_+ \). Otherwise we must separate the components \(f(\varepsilon x) \), which can be achieved by replacing \(f \) with \(x^\alpha f \) for suitably chosen \(\alpha \)'s as follows.

With each \(\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n) \in E \) we associate the monomial

\[
p_\varepsilon(x) := x_{i_1} \cdots x_{i_k}
\]

where \(1 \leq i_1 < \cdots < i_k \leq n \) is the (ordered) set of indices \(i \) such that \(\varepsilon_i = -1 \); for instance, \(n = 4 \) and \(\varepsilon = (-1, 1, -1, 1) \) yield \(p_\varepsilon(x) = x_1 x_3 \). The map \(\varepsilon \mapsto p_\varepsilon \) is a bijection of \(E \) onto the set of divisors of \(x_1 \cdots x_n \).

Let \(\varepsilon, \eta \in E \). A minus sign occurs in \(p_\varepsilon(\eta x) = p_\varepsilon(\eta_1 x_1, \ldots, \eta_n x_n) \) each time there is a factor \(x_i \), that is \(\varepsilon_i = -1 \), and the corresponding \(\eta_i \) is \(-1\). Therefore

\[
p_\varepsilon(\eta x) = a_{\varepsilon, \eta} p_\varepsilon(x) \quad \text{with} \quad a_{\varepsilon, \eta} := (-1)^{k(\varepsilon, \eta)},
\]

where \(k(\varepsilon, \eta) \) denotes the number of indices \(i \) such that \(\varepsilon_i = \eta_i = -1 \).

Example. For \(n = 2 \) the matrix \((a_{\varepsilon, \eta}) \) is given by the table:

\[
\begin{array}{cccccc}
\varepsilon & 1 & x_1 & x_2 & x_1 x_2 & \\
\eta & ++ & -+ & ++ & -- & \\
++ & 1 & 1 & 1 & 1 & \\
-+ & 1 & -1 & 1 & -1 & \\
+- & 1 & 1 & -1 & -1 & \\
-- & 1 & -1 & -1 & 1 & \\
\end{array}
\]

Our inversion formula for \(R \) will be inferred from the following combinatorial lemma.

Lemma 7 The set \(E = \{1, -1\}^n \) being provided with some ordering, the \(2^n \times 2^n \) matrix \(A = (a_{\varepsilon, \eta})_{\varepsilon, \eta \in E} \) is symmetric and \(A^2 = 2^n I \) (where \(I \) is the unit matrix).

Proof. The symmetry is clear by the definition of \(k(\varepsilon, \eta) \).

For \(\varepsilon, \eta, \zeta \in E \) we have \(k(\varepsilon, \eta \zeta) = k(\varepsilon, \eta) + k(\varepsilon, \zeta) \) since \(\varepsilon_i = \eta_i \zeta_i = -1 \) is equivalent to \(\varepsilon_i = -1 \) and \(\eta_i = -1 \), \(\zeta_i = 1 \) or (exclusive or) \(\varepsilon_i = -1 \) and \(\eta_i = 1 \), \(\zeta_i = -1 \). Therefore

\[
a_{\varepsilon, \eta} a_{\varepsilon, \zeta} = a_{\varepsilon, \eta \zeta}.
\]

Besides, for fixed \(\eta \in E \),

\[
\prod_{i=1}^n (1 + \eta_i x_i) = 1 + \sum_i \eta_i x_i + \sum_{i<j} \eta_i \eta_j x_i x_j + \cdots + \eta_1 \cdots \eta_n x_1 \cdots x_n = \sum_{\varepsilon \in E} p_\varepsilon(\eta x) = \sum_{\varepsilon \in E} a_{\varepsilon, \eta} p_\varepsilon(x).
\]

Taking \(x_1 = \cdots = x_n = 1 \) this gives the sum of elements in each column (or row) of \(A \):

\[
\sum_{\varepsilon \in E} a_{\varepsilon, \eta} = \prod_{i=1}^n (1 + \eta_i) = \begin{cases} 2^n & \text{if } \eta = (1, \ldots, 1) \\
0 & \text{otherwise.} \end{cases}
\]
Now (28) implies
\[\sum_{\zeta \in E} a_{\varepsilon, \eta} a_{\varepsilon, \zeta} = \begin{cases} 2^n & \text{if } \eta \zeta = (1, \ldots, 1) \\ 0 & \text{otherwise.} \end{cases}\]

But \(\eta \zeta = (1, \ldots, 1)\) is equivalent to \(\eta_i = \zeta_i\) for all \(i\), that is \(\eta = \zeta\). Remembering the symmetry of \(A\), we infer that \(A^2 = 2^n I\).

Let us consider \(S f(x) := \sum_{\eta \in E} f(\eta x)\). Replacing \(f\) by \(p \cdot f\) we obtain, in view of (27),
\[S(p \cdot f)(x) = \sum_{\eta \in E} (p \cdot f)(\eta x) = p \cdot (x) \sum_{\eta} a_{\varepsilon, \eta} f(\eta x),\]
which can be inverted by \(A^{-1} = 2^{-n} A\) (Lemma 7) as
\[f(\eta x) = 2^{-n} \sum_{\zeta \in E} a_{\varepsilon, \eta} p \cdot (x)^{-1} S(p \cdot f)(x)\]
for each \(\eta \in E\). By (26) applied to each \(p \cdot f\) we have
\[S(p \cdot f)(x) = m^n (x_1 \cdots x_n)^{m-1} \psi^*(\mathcal{F}R_{p \cdot f}(1, \cdot))(x)\]
on \(\mathbb{R}^n_+\) and the latter equations show that \(f\) can be reconstructed in each quadrant of \(\mathbb{R}^n\) from the \(2^n\) nonlinear Radon transforms \(R f, R(x_1 f), R(x, x_2 f), \ldots, R(x_1 \cdots x_n f)\).

Summarizing we have proved the following theorem. Let us recall our notation: \(\tilde{R} f = Rf(1, \lambda)\) is given by (23) with \(\lambda \in \mathbb{R}^n\), \(\mathcal{F}\) is the inverse Fourier transform of tempered distributions on \(\mathbb{R}^n\), \(\psi^*\) is the pullback of distributions by \(\psi(x) = (x_1^m, \ldots, x_n^m)\), \(E = \{1, -1\}^n\) and \(p \cdot, a_{\varepsilon, \eta}\) are defined before Lemma 7.

Theorem 8 The nonlinear Radon transform (7) is inverted by the following formulas, where \(f \in \mathcal{D}(\mathbb{R}^n)\).

(i) if \(m\) is odd
\[f(x) = m^n (x_1 \cdots x_n)^{m-1} (\psi^* \mathcal{F} \tilde{R} f)(x)\]

(equalities of distributions on the open set \(x_1 \neq 0, \ldots, x_n \neq 0\));

(ii) if \(m\) is even: for \(\eta \in E\),
\[f(\eta x) = \left(\frac{m}{2}\right)^n \sum_{\varepsilon \in E} a_{\varepsilon, \eta} p \cdot (x)^{-1} (x_1 \cdots x_n)^{m-1} (\psi^* \mathcal{F} \tilde{R} p \cdot f)(x)\]

(equalities of distributions on the open set \(x_1 > 0, \ldots, x_n > 0\)).

References

