ÉQUIVALENTS

Dans toute la suite f désigne une fonction strictement positive et continue par morceaux sur une demi-droite $[a, \infty[$. On suppose que l'intégrale $\int_a^\infty f(t)dt$ est divergente.

1.a. Soit $g:[a,\infty[\to\mathbb{C}]]$ une autre fonction continue par morceaux, avec $g(x)\sim f(x)$ lorsque $x\to\infty$. Montrer que, pour $x\to\infty$,

$$\int_{a}^{x} g(t) dt \sim \int_{a}^{x} f(t) dt.$$

b. Énoncer et démontrer le résultat analogue pour les séries numériques. [On pourra reprendre la démonstration de **a**, ou l'appliquer directement.]

2.a. On suppose f continûment dérivable, avec $f'(x)/f(x) \to 0$ quand $x \to \infty$. Montrer que, pour $n \to \infty$,

$$f(n) \sim f(n+1) \sim \int_{n}^{n+1} f(t) dt$$
.

[On pourra intégrer de n à t l'inégalité $|f'(x)/f(x)| \le \varepsilon$.]

b. En déduire l'équivalent, pour $n \to \infty$,

$$\sum_{a \le k \le n} f(k) \sim \int_a^n f(t) \ dt \ .$$

3. On suppose f continûment dérivable, avec $xf'(x)/f(x) \to \alpha$ quand $x \to \infty$ (hypothèse plus forte qu'en **2.a**) et $\alpha > -1$. Montrer que, pour $x \to \infty$,

$$\int_{a}^{x} f(t) dt \sim \frac{xf(x)}{\alpha + 1} .$$

[On pourra appliquer **1.a** avec g(x) = (xf(x))'.]

4. Application aux nombres premiers. On note $(p_n)_{n\geq 1}$ la suite des nombres premiers $(p_1=2, p_2=3,...)$ et $\pi(x)$ le nombre de nombres premiers inférieurs ou égaux au réel x; ainsi $\pi(p_n)=n$. On admettra l'équivalent pour $x\to\infty$

$$\pi(x) \sim \frac{x}{\ln x}$$

(théorème des nombres premiers).

a. Montrer que $p_n \sim n \ln n$ quand $n \to \infty$.

b. En déduire un équivalent, lorsque $x \to \infty$, de la moyenne des nombres premiers p_1, \ldots, p_n qui sont inférieurs ou égaux à x:

$$\frac{1}{n}\left(p_1+\cdots+p_n\right)\sim\frac{x}{2}.$$

c. Montrer de même que

$$\frac{1}{p_1} + \dots + \frac{1}{p_n} \sim \ln(\ln x) .$$

Références.

Pour 1 à 3 : Dieudonné, Calcul infinitésimal, p.93-104.

Pour 4.a: Hardy and Wright, An introduction to the theory of numbers, p.10.