§1 Holomorphic functions in several variables

Literature: Gunning, Koebe and Karp

Defn. Let $U \subseteq \mathbb{C}^n$ be an open set, denote by z_1, \ldots, z_n the coordinates.

A differentiable $(\geq C^\infty)$ function $f: U \rightarrow \mathbb{C}$ is holomorphic in $\alpha=(a_1, \ldots, a_n) \in U$ if

\[\forall j=1 \ldots n \quad z_j \mapsto f(a_1, \ldots, a_{j-1}, z_j, a_{j+1}, \ldots, a_n) \]

is holomorphic in a_j.

Rem. Equivalent definitions:

* if differentiable and $\frac{\partial f}{\partial z_j}(a) = \frac{1}{2} \left(\frac{\partial f}{\partial x_j} + i \frac{\partial f}{\partial y_j} \right)(a) = 0 \quad \forall j=1 \ldots n$
* if differentiable and $df|_a: \mathbb{C}^n \rightarrow \mathbb{C}$ is \mathbb{C}-linear.

Defn. Let $a \in \mathbb{C}^n$ be a point, $R \in (\mathbb{R}^*)^n$. The polydisc around a with multiradii R is the open set

\[D(a, R) := \{ z \in \mathbb{C}^n \mid |z_j-a_j| < R_j \quad \forall j=1 \ldots n \} \]

If $a=0$, $R=(1, \ldots, 1)$ we call $D^n = D(0, R)$ the unit disc.

The set $P(a, R) := \{ z \in \mathbb{C}^n \mid |z_j-a_j| = R_j \quad \forall j=1 \ldots n \}$

is called the distinguished boundary of $D(a, R)$.
Rem: For \(n \geq 2 \), the distinguished boundary \(\partial \Omega(0, R) \) is not the topological boundary of \(D(0, R) \).

Cauchy's Thm: \(U \subset \mathbb{C}^n \) open, \(f: U \to \mathbb{C} \) differentiable.

\(f \) is holomorphic on \(U \) iff

i) \(\forall z \in \Omega \exists \Omega(z) \) polydisc \(\text{st.} \)

\[
f(z) = \frac{1}{2\pi i} \oint_{\Gamma(z)} \frac{f(z)}{(z-w_1)\cdots(z-w_n)} \, dw_1 \cdots dw_n.
\]

ii) For every polydisc \(D(0, R) \subset U \) and \(\omega \in D(0, R) \) we have

\[
f(z) = (\frac{A}{2\pi i})^n \oint_{\Gamma(0, R)} \frac{f(z)}{(z-w_1)\cdots(z-w_n)} \, dw_1 \cdots dw_n.
\]

Corollary (exercise sheet 1)

Let \(D(0, R) \) be a polydisc and \(f: D(0, R) \to \mathbb{C} \) a holomorphic function.

If \(f \) has a local maximum in some point \(\omega \in D(0, R) \) then \(f \) is constant.

Def: \(U \subset \mathbb{C}^n \) open, \(f: U \to \mathbb{C}^n \) differentiable map is holomorphic in \(U \) if

\[
f_{11}, \ldots, f_{nn} \text{ holom. in } U.
\]
Def.: A holom. map \(f: U \to \mathbb{C}^n \) is biholomorphic on \(U \) if its image \(V = f(U) \) is bijective and \(f^{-1}: V \to U \) is holomorphic.

Def.: Let \(f: U \to \mathbb{C}^m \) be a holom. map. The Jacobian of \(f \) at a point \(a \in U \) is the matrix
\[
J_f(a) := \left(\frac{\partial f_k}{\partial z_j}(a) \right)_{1 \leq k \leq m, 1 \leq j \leq n}
\]

Rank theorem: Let \(f: U \to \mathbb{C}^m \) be a holom. map, suppose that for some \(a \in U \) the Jacobian has rank \(\leq k \) in a neighborhood of \(a \).

Then \(\exists \, V = U \) open, \(\Omega \subset \mathbb{C}^m \) open and \(f(a) \) biholomorphic maps \(\phi \) and \(\psi \) such that
\[
\begin{align*}
\phi: & \quad \mathbb{C}^k \to U \\
\psi: & \quad \mathbb{C}^m \to V
\end{align*}
\]

\[
(z_1, \ldots, z_n) \mapsto (z_1, \ldots, z_k, \zeta, \ldots, \zeta)
\]
§ 2 Analytic sets

Defn: Let $V \subset \mathbb{C}^n$ be an open set, $f_1, \ldots, f_m : V \to \mathbb{C}$ holom.

The vanishing set (or zero set) of f_1, \ldots, f_m is

$$Z(f_1, \ldots, f_m) = \{ z \in V \mid f_1(z) = \ldots = f_m(z) = 0 \}$$

Example: 1) $f : \mathbb{C}^2 \to \mathbb{C}$,

$$f(z_1, z_2) \mapsto z_1^2 - z_2^3$$

$$Z(f) = \{ \}$$

2) $f_1 : \mathbb{C}^3 \to \mathbb{C}$,

$$f_1(z_1, z_2, z_3) \mapsto z_3^2 - z_2$$

$f_2 : \mathbb{C}^3 \to \mathbb{C}$,

$$f_2(z_1, z_2, z_3) \mapsto z_1 z_2$$

Defn: Let $V \subset \mathbb{C}^n$ open. A subset $A \subset V$ is analytic if

$$\forall a \in V \exists \forall \epsilon > 0 \text{ open and holom. \phi}_a : \mathbb{C}^n \to \mathbb{C}$$

such that $A \cap \mathbb{V} = Z(f_1, \ldots, f_m)$.

Rem: An analytic subset of V is closed in V.
How to measure the "size" of an analytic set?

Ex 1) Looks like a curve, \(\mathcal{E} \times \mathbb{L} = \text{an} \times \text{line and plane} \)

Defn: \(V \subset \mathbb{C}^n \text{ open}, \ A \subset V \) an analytic set. Fix \(a \in A \).

- We say that \(A \) has codimension \(s \) at \(a \) (written \(s = \text{codim}_a A \)) if
 i) \(\exists s \)-dimensional affine space \(\Pi \subset \mathbb{C}^n \) s.t. \(a \) is an isolated point of \(\Pi \cap A \).

ii) there is no \(s+1 \)-dimensional space with this property.

- If the codimension of \(A \) is equal to \(s \) (\(\text{at all } a \in A \)) we say that \(A \) has dimension \(n-s \).

Example: \(\mathbb{Z}(z^2 - z^3) \subset \mathbb{C}^2 \) has dimension 1.

Exercise! In \((96)\) take \(n = \{ x_2 = 0 \} \)

Lemma \(V \subset \mathbb{C}^n \text{ open}, f: X \to \mathbb{C} \text{ holomorphic. Then } \forall \ a \in \mathbb{Z}(f) \text{ we have } \text{codim}_a \mathbb{Z}(f) = 1 \).

Proof: i) Take a line \(\Pi \subset \mathbb{C}^n \) s.t. \(a \in \Pi \), but \(\Pi \not\subset \mathbb{Z}(f) \) (existence).

Then \(\Pi \cap \mathbb{Z}(f) = \mathbb{Z}(f|_{\Pi}) \).

If \(a \) is not an isolated point of \(\mathbb{Z}(f|_{\Pi}) \), then \(f|_{\Pi} \equiv 0 \) by identity principle. \(\Rightarrow \) \(\Pi \not\subset \mathbb{Z}(f) \).
Hartogs's thm: \(V \subset \mathbb{C}^n \) open, \(A \subset V \) analytic set.

Suppose that \(A \) has co-dimension \(\geq 2 \) in every point \(a \in A \).

\[\text{Let } f: V \setminus A \to \mathbb{C} \text{ be holomorphic. Then} \]
\[\exists \tilde{f}: V \to \mathbb{C} \text{ holom. s.t. } f = \tilde{f} \big|_{V \setminus A}. \]

Rem: no hypothesis on boundedness as in Riemann's rem. sing. thm.

Corollary: \(\text{Let } D^n \text{ be unit disc, } f: D^n \to \mathbb{C} \text{ holom, and } n \geq 2 \)

Suppose that \(f(z) \neq 0 \ \forall z \neq 0 \). Then \(f(0) \neq 0 \).

Proof: \(\frac{1}{f} \) is holom. on \(D^n \setminus 0 \) and extends by Hartogs.

\(\star \)

ii) Suppose \(P \subset \mathbb{C}^n \) is linear subspace of dim \(\geq 2 \).

Then \(P \cap \mathbb{Z}(f) = \mathbb{Z}(f|_P) \) so if \(a \) is an isolated point, \(P \cap \mathbb{Z}(f) = \mathbb{Z}(f|_P) \) so if \(a \) is an isolated point, \(f|_P \) has an isolated zero \(\in P \) to corollary \(\star \)

Fact (not trivial!)

1) \(\text{Let } A = \mathbb{Z}(f_1, \ldots, f_m) \subset \mathbb{C}^n \) be an analytic set, \(f_i \) not constant.

then \(\forall a \in A \) \(\text{codim}_a A \leq m. \)

2) \(\text{If } A \subset V \subset \mathbb{C}^n \) has \(\text{codim} = 1 \) in every point \(a \in A \), then (locally) \(A = \mathbb{Z}(f) \) for some \(f: V \to \mathbb{C} \) holom.
Rem: In general it is not possible to find f_1, \ldots, f_m s.t.
$$\text{codim}_\alpha A = m.$$ (tough exercises)

However

Prop: Let $A = Z(f_1, \ldots, f_m) \subset \mathbb{C}^n$ be an analytic set.
Let $a \in A$ be a point s.t. $\text{rk} J_a (f_1, \ldots, f_m) = m$.
Then $\text{codim}_\alpha A = m$; in fact (up to replacing V by a smaller open set) we have
$$A \sim D^{n-s}.$$

Proof: Note first that $\text{rk} J_z (f_1, \ldots, f_m) = m$ at z in a neighborhood of a.

By the rank theorem up to coordinate change we have
$$f_1, \ldots, f_m: X \to \mathbb{C}^m$$
$$(x_1, \ldots, x_n) \mapsto (z_1, \ldots, z_m)$$

In particular $\mathbb{C} (f_1, \ldots, f_m) \cong \{ z \in \mathbb{C} \mid z_1 = \ldots = z_m = 0 \}$, so $A \sim D^{n-s}$.

For codim. statement up to permuting z_i we have
$$\text{rk} \left(\frac{\partial f_k}{\partial z_j} \right)_{1 \leq k \leq m, 1 \leq j \leq m} = m.$$

Then $A \cap \{ z_{m+1} = \ldots = z_n = 0 \}$ has a as an isolated point.
(Observe that $f_1, \ldots, f_m, z_{m+1}, \ldots, z_n$ is not biholom.)
§3 Complex manifolds

Last section: analytic sets \(A \subset V \subset \mathbb{C}^n \)

holom open

Easiest case \(A = V \subset \mathbb{C}^n \) open.

Now: glue these objects to obtain more interesting objects.

Defn: A complex manifold of dimension \(n \) is

- a connected topological space \(X \) that is Hausdorff.
- s.t. there exists an open covering \((U_i)_{i \in I} \) \(X \) is manifolds

and homeomorphisms

\[\varphi_i : U_i \to V_i \subset \mathbb{C}^n \text{ open} \]

s.t. \(\forall i, j \in I \)

\[\varphi_i \circ \varphi_i^{-1} : \varphi_i(U_i \cap U_j) \to \varphi_j(U_i \cap U_j) \]

is biholomorphic.

We call \((U_i, \varphi_i) \) an atlas.

Defn: The complex manifold \(X \) is compact if the top space is compact.
Rem: • Generalisation: complex space, where
\[\phi_i: U_i \rightarrow V_i \text{ is an analytic set} \]
(see exercises)

• Variant: real manifold, where
\[\phi_i: U_i \rightarrow V_i \text{ is } \mathbb{R}^n \]
and \(\phi_i \circ \phi_j^{-1} \) is a diffeomorphism.

Easy fact: A complex manifold of dimension \(n \) is always a real manifold of (real) dimension \(2n \).
However: \(X_1 \not\approx X_2 \) \(\Rightarrow \) \(X_1 \not\sim X_2 \)
(see exercises)

Examples:

1) \(\Lambda = \mathbb{C}^n \) lattice of rank \(2n \), i.e.
\[\Lambda = \bigoplus_{i=1}^{2n} \mathbb{Z}w_i \]
\[\text{s.t. } w_1, \ldots, w_{2n} \text{ is an } \mathbb{R}-basis of } \mathbb{C}^n. \]

\[\Rightarrow \text{ } X := \mathbb{C}^n/\Lambda \text{ is a compact complex manifold, called a } \]
\[n \text{-dimensional torus.} \]

Proof for \(n = 1 \)

Take \(V_i = \mathbb{C} \) s.t. \(\pi: \mathbb{C} \rightarrow \mathbb{C}/\Lambda \) is bijective onto its image.

Set \(U_i = \pi(V_i) \) and \(\phi_i: U_i \rightarrow V_i \)
\[\pi|_{U_i}^{-1} \]

then \(\phi_i \circ \phi_j^{-1} \) satisfies that \(\phi_i \circ \phi_j^{-1}(z) \in \Lambda \)
(two points mapping to same class differ by elem. of \(\Lambda \)).
2) Projective spaces: \(V \) a \(n+1 \)-dimensional \(\mathbb{C} \) vector space

\[
\text{IP}(V) := \{ \text{sub vector spaces of } V \text{ of dim } L \} \]

\(\pi: V \setminus \{ 0 \} \rightarrow \text{IP}(V), \quad v \mapsto [v] \quad \text{class of line through } cv. \)

is surjective and \(\pi^{-1}(U) = U \setminus \{0\} \) (so \(\text{IP}(V) \cong \mathbb{P}^n \)).

Affine charts: Fix coordinates \(v_0, \ldots, v_n \) on \(V = \mathbb{C}^{n+1} \).

\(\sim \) homogeneous coordinates \([v] = [v_0 : \ldots : v_n] \)

Set \(U_i := \{ v \in \text{IP}(V) \mid v_i \neq 0 \} \) standard open set.

and \(\varphi_i: U_i \rightarrow \mathbb{A}^n, \quad [v] \mapsto \left(\frac{v_0}{v_i}, \ldots, \frac{v_{i-1}}{v_i}, \frac{v_{i+1}}{v_i}, \ldots, \frac{v_n}{v_i} \right) \)

\(\sim \) \(\varphi_j(\varphi_i(U_i \cap U_j)) = \{ (z_1, \ldots, z_n) \in \mathbb{A}^n \mid z_i \neq 0 \} \)

and \(\varphi_i \circ \varphi_j^{-1} \) is given by

\[
(z_1, \ldots, z_n) \quad \mapsto \quad \left(z_1, \ldots, \frac{z_i}{z_j}, \frac{z_j}{z_i}, \ldots, \frac{z_n}{z_i} \right)
\]

Note: \(\text{IP}(V) \) compact since \(\mathbb{V} \setminus \{ 0 \} \rightarrow \text{IP}(V) \) is compact.
3) Hopf manifolds: fix $\lambda \in \mathbb{R}$, $0 < \lambda < 1$

\mathbb{C}^n acts on $\mathbb{C}^n \setminus 0$ by $\mathbb{Z} \times \mathbb{C}^n \setminus 0 \to \mathbb{C}^n \setminus 0$

$((m, z)) \mapsto \lambda^m z$

$H_\lambda = \mathbb{C}^n \setminus 0 / \mathbb{Z}$ is a compact complex manifold.

Defn: Let X^n and Y^m be complex manifolds

$(\psi_i : U_i \to V_i)_{i \in I}$ and $(\phi_j : M_j \to N_j)_{j \in J}$ the atlases of X and Y.

A continuous map $f : X \to Y$ is holomorphic if

$$
\forall i, j \in I \times J \quad \forall \psi_i : V_i \to \mathbb{C}^n \quad \phi_j : M_j \to \mathbb{C}^m \quad \text{the composition } f \circ \psi_i^{-1} : V_i \to M_j \text{ is holomorphic.}
$$

Examples:

1) X is a complex manifold, $f : X \to \mathbb{C}$ constant.

Interesting fact (exercise: show it!): If X is a compact complex manifold and $f : X \to \mathbb{C}$ holomorphic, then f is constant.

Consequence: can't use holomorphic functions to study X.

2) $H = \mathbb{C}^{n}/\mathbb{Z}$ Hopf manifold

\[
\mathbb{P}^{n-1} = \mathbb{C}^{n}/\mathbb{C}^{*} \quad \mathbb{C}^{n}/\mathbb{C}^{*} \xrightarrow{\text{Id}} \mathbb{C}^{n}/\mathbb{C}^{*} \\
\downarrow \quad f \quad \downarrow \\
H \xrightarrow{f} \mathbb{P}^{n-1} \quad \text{Hopf fibration.}
\]

Exercise: $\forall y \in \mathbb{P}^{n-1}$ $f^{-1}(y)$ is a 1-dimensional torus.

Definition: Let X be a complex manifold. A submanifold of codim k is a connected closed set $Y \subseteq X$.

- s.t. $\forall x \in X \subseteq \supset Y$ open and $f : U \rightarrow \mathbb{D}^{k}$ holom.
- s.t. $U \cap Y = f^{-1}(0)$

Example: Projective manifolds

Fix f_{j} homogeneous polynomials of degree d_{j} in $n+1$ variables.

Set $X := \{ x \in \mathbb{P}^{n} \mid f_{1}(x) = \ldots = f_{d}(x) = 0 \}$

NB: $f_{j}(x)$ is not a well-defined complex number (f_{j} not a function)

However, $f_{j}(x) = 0$ well-defined since:

\[
f_{j}(\lambda x_{0}, \ldots, \lambda x_{n}) = \lambda^{d_{j}} f(x_{0}, \ldots, x_{n})
\]

In general X is not a complex manifold (only a complex space)
Prop/Exrc: Consider \(f_1, \ldots, f_k \) as holomorphic functions on \(\mathbb{C}^{n+1} \).

If \(337,142) \(\forall z \in \mathbb{C}^{n+1}, \) \(\text{and } \exists \mathcal{L} \text{ such that } f(z) = 0 \)
then \(X \) is a complex manifold of co-dimension \(s \).

Ex: \(f = x_0^d + x_1^d + x_2^d \)
then \(X = \{ x \in \mathbb{R}^2 \mid f(x) = 0 \} \) is a proper submanifold.

Fun fact: if \(d = 3 \) then \(X \cong \mathbb{C}/\Lambda \)

Defn: Let \(X \) be a complex curve. A meromorphic function on \(X \)
is a \(\Phi \)-form \(f : X_0 \to \mathbb{C} \) where
i) \(X \setminus X_0 \) has only isolated points
ii) \(\forall z \in X \setminus X_0 \) \(\exists \mathcal{U} \subset X \text{ open and } h : \mathcal{U} \to \mathbb{C} \text{ holom.} \)
\(h(z) = \frac{\Phi(z)}{\Phi_0(z)} \)

Rem: If \(\lim_{z \to z_0} |f(z)| = \infty \) we call \(z_0 \) a pole of \(f \).

Generalise definition to arbitrary dimension by setting \(X \setminus X_0 \) is an analytic hypersurface.
Prop: Let X be a complex curve and $f: X \to \mathbb{C}$ merom. For every pole $z_0 \in X$ we set $f(z_0) = \infty$. Then $f: X \to \mathbb{P}^1$ is a holomorphic map.

Proof: Only have to prove that f is holomorphic near poles z_0.

By defn we have loc. $f(z) = \frac{g(z)}{h(z)}$ and since $\lim_{z \to z_0} |f(z)| = \infty$ we have $\frac{g(z)}{h(z)} \neq 0$.

Thus $f: (X \setminus \{z_0\} \to \mathbb{P}^1 \text{ homog. coord.}$

$z \mapsto [1 : \frac{g(z)}{h(z)}] = [h(z) : g(z)]$

$\Rightarrow f: X \to \mathbb{P}^1$ is given by $z \mapsto [h(z) : g(z)]$

and holomorphic in z_0 (use chart $\frac{x_0}{x_1} \to z$).

Fact: Let X be a compact complex curve.

Then for every $z_0 \in X$ there exists $f: X \setminus \{z_0\} \to \mathbb{C}$ merom. s.t. z_0 is a pole of f.

In particular X has "lots of" meromorphic functions.

NB: Not true in higher dimension.
Then: let \(f : X \to Y \) be a holomorphic map between complex curves. Fix \(z_0 \in X \). Then there exist local charts

\[
\varphi : U \to \mathbb{C} \quad \psi : V \to \mathbb{C}
\]

such that \(\psi \circ f \circ \varphi^{-1} : V \to \tilde{V} \) is given by

\[
2 \mapsto z^k
\]

We call \(k \) the multiplicity of \(f \) in \(z_0 \).

Proof: up to translating and restricting we can suppose \(\varphi(z_0) = 0 \), \(\varphi(f(z_0)) = 0 \).

\[
U \cong U_0 \quad \tilde{V} \cong V_0
\]

\[\Rightarrow \text{ get } \psi \circ f \circ \varphi^{-1} : U_0 \to \tilde{V}_0 \text{ holom. s.t. } \hat{\varphi}(0) = 0.\]

Then \(h(z) \neq 0 \) so \(h(\hat{\varphi}(z)) = \hat{g}(z) \) with \(g \) holom.

and \(z \mapsto z^k \) is holomorphic near 0.

Cor: In situation above, let \(w \in \tilde{V} \) be an arbitrary point. Then

\((\psi \circ f \circ \varphi^{-1})'(w) \) consists of \(k \) points if we count multiplicities.

Then: let \(f : X \to Y \) be a proper holomorphic map between complex curves. Fix \(w \in Y \).

Then for every \(w \in Y \), the preimage \(f^{-1}(w) \) consists of \(n \) points (in index of \(w \)) if we count multiplicities.