Publications in international journals

-   Most representative publications :

Mathematics and Fluid Mechanics : [6], [11], [14], [38], [44], [46], [52], [63], [65], [68], [79], [85], [90], [93], [96], [97], [98], [99]

Physics and Fluid Mechanics : [27], [28], [40]

Applied Mathematics : [20], [21], [33], [49], [69], [83]

Math-Physics : [29], [31], [40], [61], [62], [82], [86], [89], [92], [94]


Classification by themes:

Normal forms: [29], [30], [31], [93], [96], [99], [M5]

Exponentially small remainders: [66], [69], [74], [82], [83]

Small divisors: [20], [21], [33], [42], [46], [67], [68], [72], [79], [85], [86], [87], [88], [89], [90]. [92], [94]

Bénard-Rayleigh convection: [16], [39], [93], [95], [97], [98], [99], [M5]

Couette-Taylor: [25], [26], [27], [28], [32], [48], [M5]

Water waves: [41], [46], [50], [51], [52], [53], [59], [60], [63], [64], [66], [68], [71], [72], [75], [79], [80], [85], [M5]

Lattices: [58], [61], [62], [73], [78]


Most cited papers (july 2020):

cited at least 150 times:  [29], [40], [45], [46], [49], [61], [M1], [M2], [M3], [M4], [M5]

citations 80≤  <150 : [11], [20], [38], [41], [50], [62], [63], [68]

citations 37≤  <80   : [6], [24], [27],  [30], [33], [36], [42], [44], [52], [59], [69], [73], [79]-[M7], [85], [C12], [C19a], [C30], [C32]

-  Complete list, where * indicates the most important ones

[1] J.P.Guiraud, G.I. Sur la stabilité des écoulements laminaires. C.R.Acad. Sci. Paris, I, 266, 1283-1286, 1968.

[2] G.I. Application de la théorie des semi-groupes à l’étude de la stabilité des écoulements laminaires. J. de Mécanique, 8, 4, 477-507, 1969.

[3] G.I. Sur la théorie de la stabilité non linéaire des écoulements laminaires. C.R.Acad. Sci. Paris, I, 269, 333-336, 1969.

[4] G.I. Théorie non linéaire de la stabilité des écoulements visqueux incompressibles. La Recherche Aérospatiale, 1,7-14, 1970.

[5] G.I. Estimation au voisinage de t=0, pour un exemple de problème d’évolution oè il y a incompatibilité entre les conditions initiales et aux limites. C.R.Acad. Sci. Paris, I, 271, 187-190, 1970.

*[6] G.Iooss. Théorie non linéaire de la stabilité des écoulements laminaires dans le cas de l’échange des stabilités. Arch. Rat. Mech. Anal. 40, 3, 166-208, 1971.

[7] G.I. Bifurcation des solutions périodiques de certains problèmes d’évolution. C.R.Acad. Sci. Paris, I, 273, 624-627, 1971.

[8] G.I. Sur la stabilité de la solution périodique secondaire intervenant dans certains problèmes d’évolution. C.R.Acad. Sci. Paris, I, 273, 912-915, 1971.

[9] G.I. Stabilité de la solution périodique secondaire intervenant dans certains problèmes d’évolution. C.R.Acad. Sci. Paris, I, 274, 108-111, 1972.

[10] G.I. Bifurcation d’une solution T-périodique vers une solution nT-périodique, pour certains problèmes d’évolution. C.R.Acad. Sci. Paris, I, 275, 935-938, 1972.

*[11] G.Iooss. Existence et stabilité de la solution périodique secondaire intervenant dans les problèmes d’évolution du type Navier-Stokes. Arch. Rat. Mech. Anal. 47, 4, 301-329, 1972.

[12] G.I., G.Tronel. Exemples de bifurcations. C.R.Acad. Sci. Paris, I, 276, 1353-1356, 1973.

[13] G.I. Bifurcation of a periodic solution into an invariant torus for Navier-Stokes equations. Arch. Rat. Mech. Anal. 58, 1, 35-56, 1975.

*[14] G.Iooss. Sur la deuxième bifurcation d’une solution stationnaire de systèmes du type Navier-Stokes. Arch. Rat. Mech. Anal. 64, 4, 339-369, 1977.

[15] G.I., D.D.Joseph. Bifurcation and stability of nT-periodic solutions branching from T-periodic solutions at points of resonance. Arch. Rat. Mech. Anal. 66, 2, 135-172, 1977.

[16] G.I., R.Lozi. Convection entre deux plaques planes en rotation et effet dynamo résultant d’une bifurcation secondaire. J. de Mécanique, 16,5, 675-703, 1977.

[17] A.Chenciner, G.I. Bifurcation of a 2-torus into a 3-torus. C.R.Acad. Sci. Paris, I, 284, 1207-1210, 1977.

[18] G.I., H.True, H.B.Nielsen. Bifurcation of the stationary Ekman flow in a stable periodic flow. Arch. Rat. Mech. Anal. 68, 3, 227-256, 1978.

[19] R.Bouc, M.Defilippi, G.I. Sur un problème d’oscillations forcées non linéaires. Exemple numérique de bifurcation vers un tore invariant. Nonlinear Anal., Theo., Methods and Applications 2, 2, 211-224, 1978.

*[20] A.Chenciner, G.Iooss. Bifurcations de tores invariants. Arch. Rat. Mech. Anal. 69, 2, 109-198, 1979.Ch-Io79a

*[21] A.Chenciner, G.Iooss. Persistance et bifurcations de tores invariants. Arch. Rat. Mech. Anal. 71, 4, 301-306, 1979.Ch-Io79b

[22] G.I. Persistance d’un cercle invariant par une application voisine de "l’application temps t " d’un champ de vecteurs integrable. Partie I : en dehors de la bifurcation de Hopf. C.R.Acad. Sci. Paris, I, 296, 27-30, 1983.

[23] G.I. Persistance d’un cercle invariant par une application voisine de "l’application temps t " d’un champ de vecteurs integrable. Partie II : voisinage d’une bifurcation de Hopf. Exemples d’applications. C.R.Acad. Sci. Paris, I, 296, 113-116, 1983.

[24] J.Hofbauer, G.I. A Hopf bifurcation theorem for difference equations approximating a differential equation. Monatshefte für Math. 98, 99-113, 1984.

[25] P.Chossat, G.I. Primary and secondary bifurcations in the Couette-Taylor problem. Japan J. of Applied Maths, 2, 1, 37-68, 1985.

[26] Y.Demay, G.I. Calcul des solutions bifurquées pour le problème de Couette-Taylor avec les deux cylindres en rotation. J.M.T.A. special issue on "Bifurcations et Comportements chaotiques", 193-216, 1985.

*[27] G.Iooss. Secondary bifurcations of the Taylor vortices into wavy inflow or outflow boundaries. J. of Fluid Mech., 173, 273-288, 1986.

*[28] P.Chossat, Y.Demay, G.Iooss. Interactions de modes azimutaux dans le problème de Couette-Taylor. Arch. Rat. Mech. Anal. 99, 3, 213-248, 1987.

*[29] C.Elphick, E.Tirapegui, M.Brachet, P.Coullet, G.Iooss. A simple global characterization for normal forms of singular vector fields. Physica 29D, 95-127, 1987.ETBCIo87

[30] C.Elphick, E.Tirapegui, G.I. Normal form reduction for time periodically driven differential equations. Phys. Letters A, 120, 9, 459-463, 1987.

*[31] G.Iooss. Global characterization of the normal form for a vector field near a closed orbit. J. Diff. Equations, 76, 47-76, 1988.Io88

[32] F.Signoret, G.I. Une singularité de codimension 3 dans le problème de Couette-Taylor. JMTA 7, 5, 545-572, 1988.

*[33] G.Iooss., J.Los. Quasigenericity of bifurcations to high dimensional invariant tori for maps. Com. Maths. Phys. 119, 453-500, 1988.Io-Los88

[34] G.I., M.Rossi. Nonlinear evolution of the bidimensional Rayleigh-Taylor flow. Europ. J. Mech. B/Fluids 8, 1, 1-22, 1989.

[35] G.I., M.Rossi. Hopf bifurcation with spherical symmetry. Analytical results. SIAM J. Math. Anal. 20 , 3, 511-532, 1989.Io-Ro89

[36] W.Eckhaus, G.I. Strong selection or rejection of spatially periodic patterns in degenerate bifurcations. Physica 39D , 124-146, 1989.

[37] G.I., M.Rossi, P.Laure. Linear stability of a compressed spherical gas bubble in an incompressible viscous fluid. Phys. Fluids A, 1 , 6, 915-923, 1989.

*[38] G.Iooss., A.Mielke, Y.Demay. Theory of steady Ginsburg-Landau equation in hydrodynamic stability problems. Europ. J. Mech. B/Fluids 8 , 3, 229-268, 1989.Io-Mi-De

[39] S.Gauthier, T.Desmarais, G.I. Steady compressible convection. Europhys. Lett. 10 , 6, 543-548, 1989.

*[40] P.Coullet, G.Iooss. Instabilities of one-dimensional cellular patterns. Phys. Rev. Lett. 64 , 8, 866-869, 1990.Co-Io

[41] G.I., K.Kirchgässner. Bifurcation d’ondes solitaires en présence d’une faible tension superficielle. C. R. Acad. Sci. Paris, 311 , I, 265-268, 1990.

[42] G.I., J.Los. Bifurcation of spatially quasi-periodic solutions in hydrodynamic stability problems. Nonlinearity, 3 , 851-871, 1990.Io-Lo90

[43] S.Gauthier, A.Gamess, G.I. Chaotic behavior in oscillating compressible convection in extended boxes for small Prandtl numbers. EuroPhys. Lett., 13 , (2),117-122, 1990.

*[44] G.Iooss., A.Mielke. Bifurcating time-periodic solutions of Navier-Stokes equations in infinite cylinders. J.Nonlinear Sci., 1 , 1, 107-146, 1991.Io-Mi91

[45] A.Vanderbauwhede, G.Iooss. Center manifold theory in infinite dimensions. Dynamics Reported, 1 new series , 123-163, 1992.Va-Io

*[46] G.Iooss., K.Kirchgässner. Water waves for small surface tension. An approach via normal form. Proc. Roy. Soc. Edinburgh, 122A , 267-299, 1992.Io-Ki92

[47] G.I., A.Mielke. Time-periodic Ginzburg-Landau equations for one-dimensional patterns with large wave length. Z. Angew. Math. Phys. 43 , 1, 125-138, 1992.

[48] Y.Demay, G.I., P.Laure. Wave patterns in small gap Couette-Taylor problem. Europ. J. Mech.B/Fluids, 11 ,5, 621-634, 1992.

*[49] G.Iooss., M.C.Pérouème. Perturbed homoclinic solutions in reversible 1:1 resonance vector fields. J.Diff. Equ. 102 , 1, 62-88, 1993.Io-Pe

[50] F.Dias, G.I. Capillary solitary waves with damped oscillations. Physica D 65 , 399-423, 1993.

[51] F.Dias, G.I. Ondes solitaires noires à l’interface entre deux fluides en présence de tension superficielle. Note aux C.R.Acad. Sci. Paris, I,319 , 89-93, 1994.

*[52] G.Iooss, P.Kirrmann. Capillary gravity waves on the free surface of an inviscid fluid of infinite depth - Existence of solitary waves. Arch. Rat. Mech. Anal. 1996, 136 , p. 1-19.Io-Kirr

[53] F.Dias, G.I. Capillary-gravity interfacial waves in deep water. Europ. J.Mech.B/Fluids 1996, 15 , 3, 367-393.

[54] G.I. Existence d’orbites homoclines à un équilibre elliptique, pour un système réversible. C.R.Acad.Sci. Paris, 1997, 324 , I , 993-997.

[55] G.I., M.Padula. On the linearized problem for a second grade fluid, around the 3D Poiseuille flow. C.R.Acad.Sci. Paris, 1997, 325,I, 557-563.

[56] G.I. Sur une transformation conforme, utile dans le problème des ondes de gravité stationnaires. C.R.Acad.Sci. Paris, 1997, 325,I , 1131-1136.

[57] G.I., M.Padula. Structure of the linearized problem for compressible parallel fluid flows. Annali di Ferrara Sez. VII D Mat., 43, 1997, p.157-171.Io-Pa

[58] G.I., K.Kirchgässner. Ondes progressives périodiques dans une chaîne d’oscillateurs non linéaires couplés. C.R.Acad. Sci. Paris, 1998, 327,I , 855-860, 1998

[59] G.Iooss. Capillary and Capillary-Gravity periodic travelling waves for two superposed fluid layers, one being of infinite depth . J. Math. Fluid Mech. 1 , p. 24-61, 1999.Iojmfm

[60] G.Iooss. Semi-analytic theory of standing waves in deep water, for several dominant modes. Proc. Roy. Soc. London A, 455 , p.3513-3526, 1999.

*[61] G.Iooss., K.Kirchgässner. Travelling waves in a chain of coupled nonlinear oscillators. Com. Math. Phys. 211 , 439-464, 2000. IoKi

*[62] G.Iooss. Travelling waves in the Fermi-Pasta-Ulam lattice. Nonlinearity 13 , 849-866, 2000. FPU

*[63] F.Dias, G.Iooss. Water-waves as a spatial dynamical system. Handbook of Mathematical Fluid Dynamics, chap 10, p.443 -499. S.Friedlander, D.Serre Eds., Elsevier 2003. Dia-Io

[64] G.Iooss. On the standing wave problem in deep water. J.Math. Fluid Mechanics 4 , 2, 155-185, 2002.Io Standing

*[65] G.Iooss, E.Lombardi, S.M.Sun. Gravity travelling waves for two superposed fluid layers, one being of infinite depth : a new type of bifurcation. Phil. Trans. Roy. Soc. Lond. A, 360 , 2245-2336, 2002.IoLoSu

[66] E.Lombardi, G.Iooss. Gravity solitary waves with polynomial decay to exponentially small ripples at infinity. Ann. I.H.P. Analyse non linéaire. 20,4, 669-704, 2003. Lo-Io

[67] G.Iooss, P.Plotnikov, J.F.Toland. Standing waves problem on infinite depth. C. R. .Acad. Sci. Paris, 338 (5), (2004), 425-431.

*[68] G.Iooss, P.Plotnikov, J.F.Toland . Standing waves on an infinitely deep perfect fluid under gravity. Arch. Rat. Mech. Anal.177,3, 367-478, 2005. IPT

*[69] G.Iooss, E.Lombardi. Polynomial normal forms with exponentially small remainder for analytical vector fields. J.Diff. Equ. 212 (2005) 1-61. IoLo03

[70] M.Chen, G.Iooss. Standing waves for a two-way model system for water waves. E.J.M.B/Fluids, 24 , 1, 113-124, 2005 . Ch-Io

[71] G.Iooss, P.Plotnikov. Multimodal standing gravity waves : a completely resonant system. J.Math. Fluid Mech., 7, S110-126, 2005. GI-PP1

[72] G.Iooss, P.Plotnikov. Existence of multimodal standing gravity waves. J.Math.Fluid Mech.7, S349-364, 2005. GI-PP2

[73] G.Iooss, G.James. Localized waves in nonlinear oscillator chains. Chaos, 15, 1, 015113 (2005) (15p.) Io-Ja

[74] G.Iooss, E.Lombardi. Normal forms with exponentially small remainder : application to homoclinic connections for the reversible 0 2+ iw resonance. C.R.Acad. Sci. Paris, sér. I, 339 (2004) 831-838. Io-Lo3

[75] M.Barrandon, G.Iooss. Water waves as a spatial dynamical system ; infinite depth case. Chaos, 15,3, 037112 (2005) (9p.) Bar-Io

[76] M.Haragus, G.Iooss. Bifurcation theory. Encyclopedia of Mathematical Physics. p.275-281, Elsevier 2006.Ha-Io

[77] M.Chen, G.Iooss. Periodic wave patterms of two-dimensional Boussinesq systems. EJMB/Fluids 25 (2006) 393-405. Ch-Io1

[78] G.Iooss, D.Pelinovsky. Normal form for travelling kinks in discrete Klein-Gordon lattices. Physica D 216 (2006) 327-345. Io-Peli

*[79] G.Iooss, P.Plotnikov. Small divisor problem in the theory of three-dimensional water gravity waves. Memoirs of AMS. vol. 200, No 940, 2009 (128p.)Io-Plo1

[80] G.Iooss. J.Boussinesq and the standing water waves problem. C. R. Mécanique, 335, 9-10 (2007), 584-589.  Io-Boussi

[81] M.Chen, G.Iooss. Asymmetrical periodic travelling wave patterns of two-dimensional Boussinesq systems. PhysicaD 237 (2008) 1539-1552 .Ch-Io2

*[82] G.Iooss, A.M. Rucklidge. On the existence of quasipattern solutions of the Swift-Hohenberg equation. J. Nonlinear Science 20, Issue 3 (2010), 361-394, doi:10.1007/s00332-010-9063-0 Io-Ruck

[83] G.Iooss, E.Lombardi. Approximate invariant manifolds up to exponentially small terms. J. Diff. Equ. 248 (2010), 6, 1410-1431. IoLo09 

[84] G.Iooss, P.Plotnikov. Existence of a directional Stokes drift in asymmetrical three-dimensional travelling gravity waves. C.R.Mécanique 2009, doi: 10.1016/j.crme.2009.09.001. Io-Plo2 

*[85] G.Iooss, P.Plotnikov. Asymmetrical tridimensional travelling gravity waves. Arch. Rat. Mech. Anal. 200, 3 (2011), 789-880. DOI 10.1007/s00205-010-0372-0   (87p.)Io-Plot3

[86] M.Argentina, G.Iooss. Quasipatterns in a parametrically forced horizontal fluid film. PhisicaD: Nonlinear Phenomena (2012) doi:10.1016/j.physicad.2012.04.011 (16p)  Arg-Io

[87] B.Braksmaa, G.Iooss, L.Stolovitch. Existence of quasipatterns solutions of the Swift-Hohenberg equation. Arch. Rat. Mech. Anal. 209, 1 (2013), 255-285. Erratum ARMA 211, 3 (2014), 1065 BIS

[88] G.Iooss. Small divisor problems in Fluid Mechanics. J.Dyn Diff Equ. 27(3), 787-80, 2015, DOI 10.1007/s10884-013-9317-2 Klaus

*[89] B.Braksmaa, G.Iooss, L.Stolovitch. Proof of quasipatterns for the Swift-Hohenberg equation. Com. Math. Phys. 353(1), 37-67, 2017 DOI 10.1007/s00220-017-2878-x  BIS2

*[90] B.Braksmaa, G.Iooss. Existence of Bifurcating quasipatterns in steady Bénard-Rayleigh convection. Arch. Rat. Mech. Anal. 231(3), 1917-1981 (2019) DOI: 10.1007/s00205-018-1313-6 Br-Io

[91] S.Fauve, G.Iooss. Quasipatterns versus superlattices resulting from the superposition of two hexagonal patterns. C.R.Mécanique 347(4) 294-304 (2019) F-I 2018 doi.org/10.1016/j.crme.2019.03.006

*[92] G.Iooss. Existence of quasipatterns in the superposition of two hexagonal patterns. Nonlinearity 32 (9) 3163-3187 doi.org/10.1088/1361-6544/ab230a  GI2018

*[93] M.Haragus, G.Iooss. Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem. Arch. Rat. Mech. Anal. 239(2), 733-781
*DOI* 10.1007/s00205-020-01584-6 2020 HaIo19

*[94] G.Iooss, A.Rucklidge. Patterns and quasipatterns from the superposition of two hexagonal lattices. SIADS 2022,Vol. 21, Iss. 210.1137/20M1372780.https://doi.org/10.1137/20M1372780.  I0-Ruck2020

[95] M.Haragus, G.Iooss. Domain walls for the Bénard-Rayleigh convection problem with "rigid-free" boundary conditions. JDDE, 2021 https://doi.org/10.1007/s10884-021-09986-0. Ha-Io 20b

*[96] B.Buffoni, M.Haragus, G.Iooss. Heteroclinic orbits for a system of amplitude equations for orthogonal domain walls. J. Diff. Equ, 2023 https://doi.org/10.1016/j.jde.2023.01.026. BHI

[97] G.Iooss. Convection de Bénard-Rayleigh. Cas libre-libre. 2023. CR mécanique. https://doi.org/10.5802/crmeca.216 CRmeca

*[98] G.Iooss. Heteroclinic for a 6-dimensional reversible system occuring in orthogonal domain walls in convection. Submitted 2023. heteroclinic

*[99] G.Iooss. Existence of orthogonal domain walls in Bénard-Rayleigh convection. Submitted 2023. orthodomainwalls