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Abstract6

We prove the existence of domain walls for the Bénard–Rayleigh convection7

problem. Our approach relies upon a spatial dynamics formulation of the hydro-8

dynamic problem, a center manifold reduction, and a normal forms analysis of an9

eight-dimensional reduced system. Domain walls are constructed as heteroclinic10

solutions connecting suitably chosen periodic solutions of this reduced system.11
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1. Introduction13

The Bénard–Rayleigh convection is one of the most studied, both analytically14

and experimentally, and it is perhaps the best understood pattern-forming system.15

This hydrodynamic problem is concerned with the flow of a viscous fluid filling16

the region between two horizontal planes and heated from below. The difference of17

temperature between the two horizontal planes modifies the fluid density, tending18

to place the lighter fluid below the heavier one. Having an opposite effect, gravity19

induces, through the Archimedian force, an instability of the simple “conduction20

regime” leading to a “convective regime”. While the fluid is at rest and the temper-21

ature depends linearly on the vertical coordinate in the conduction regime, various22

steady regular patterns, such as rolls, hexagons, or squares, are formed in the con-23

vective regime. The fluid viscosity prevents this instability up to a certain level, and24

there is a critical value of the temperature difference, below which nothing happens25

and above which a steady convective regime bifurcates. In dimensionless variables,26

this bifurcation occurs at a critical value of the Rayleigh number Rc. The value Rc,27

which depends on the chosen boundary conditions, has already been computed in28

the forties by Pellew and Southwell [22]. Starting in the sixties, there has been ex-29

tensive study of regular convective patterns and numerous mathematical existence30
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results have been obtained. Without being exhaustive, we refer to the first works31

by Yudovich et al. [27,30–32], Rabinowitz [23], Görtler et al. [7]; see also [16,25],32

the monograph [17] for further references, and the recent work [2] on existence of33

quasipatterns.34

The governing equations of the Bénard–Rayleigh convection consist of the35

Navier–Stokes system completed with an equation for energy conservation. We36

consider the Boussinesq approximation in which the dependency of the fluid density37

ρ on the temperature T is given by the relationship38

ρ = ρ0 (1 − γ (T − T0)) ,39

where γ is the (constant) volume expansion coefficient, T0 and ρ0 are the tem-40

perature and the density, respectively, at the lower plane. In Cartesian coordinates41

(x, y, z) ∈ R
3, where (x, y) are the horizontal coordinates and z is the vertical42

coordinate, after rescaling variables, the fluid occupies the domain R
2 × (0, 1).43

Inside this domain, the particle velocity V = (Vx , Vy, Vz), the deviation of the44

temperature from the conduction profile θ , and the pressure p satisfy the system45

R−1/2�V + θez − P−1(V · ∇)V − ∇ p = 0, (1.1)46

R−1/2�θ + Vz − (V · ∇)θ = 0, (1.2)47

∇ · V = 0. (1.3)48

Here ez = (0, 0, 1) is the unit vertical vector, and the dimensionless constants R49

and P are the Rayleigh and the Prandtl numbers, respectively, defined as50

R = γ gd3(T0 − T1)

νκ
, P = ν

κ
, (1.4)51

where ν is the kinematic viscosity, κ the thermal diffusivity, g the gravitational52

constant, d the distance between the planes, and T1 the temperature at the upper53

plane. For notational simplicity, we set54

μ = R1/2.55

This system is a steady version of the formulation derived in [17] in which V56

and θ are rescaled by R1/2 and R, respectively. The equations (1.1)–(1.3) are57

completed by boundary conditions, and we consider here either the case of “rigid-58

rigid” boundary conditions59

V|z=0,1 = 0, θ |z=0,1 = 0, (1.5)60

or the case of “free-free” boundary conditions61

Vz |z=0,1 = ∂z Vx |z=0,1 = ∂z Vy |z=0,1 = 0, θ |z=0,1 = 0. (1.6)62

With these boundary conditions, the equations (1.1)–(1.3) are invariant under hor-63

izontal translations, reflections, and rotations, and the vertical reflection symmetry64

z �→ 1 − z. These symmetries play an important role in our analysis. We point65

out that the vertical symmetry only exists in these two cases where the boundary66

conditions are of the same type (“rigid-rigid” or “free-free”), the symmetry being67
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Domain Walls for the Bénard–Rayleigh Convection Problem

(a) (b) (c)

Fig. 1. In Cartesian coordinates (x, y, z), schematic plots of two-dimensional rolls (periodic
in y and constant in x), rotated rolls, and domain walls. In the (x, y)-horizontal plane, a two-
dimensional rolls (dashed lines) and rolls rotated by an angle α (solid lines); b symmetric
domain walls constructed as heteroclinic connections between rolls rotated by opposite
angles ±α. c In the vertical (y, z)-plane, streamlines of two-dimensional rolls (cross-section
through the dashed lines in (a))

lost in the case of “rigid-free” boundary conditions. We refer to [14, Vol. II] for a68

very complete discussion and bibliography on this problem, and in particular on69

the various geometries and boundary conditions.70

At least locally, the most frequently observed patterns are convective rolls71

aligned along a certain direction (see Fig. 1a, c). However, such a pattern is only72

observed in a part of the apparatus, while the rolls take another direction in an-73

other part of the apparatus. The connection between the two regimes is quite sharp,74

occurring along a plane, and the two regimes of rolls make a definite angle be-75

tween them (see Fig. 1b and [1,4,11,18] for experimental evidences not all on pure76

Bénard–Rayleigh convection). These line defects are referred to as domain walls77

or grain boundaries. In the present paper, we consider the case where two systems78

of rolls connect symmetrically with respect to a plane, even though such a perfectly79

symmetric pattern is not yet observed experimentally.80

The aim of this paper is to prove mathematically that such domain walls are81

indeed solutions of the steady Navier–Stokes–Boussinesq equations (1.1)–(1.3).82

Despite constant interest over the years, there is so far no existence result for these83

fluid dynamics equations. Many works gave tentative justifications of the existence84

of such patterns using formally derived amplitude equations (see [6,20,21] and85

the references therein). Beyond amplitude equations, the only mathematical results86

have been obtained for the Swift-Hohenberg equation, a toy model which exhibits87

many of the properties of the Bénard–Rayleigh convection problem [10,26] (see88

also [19]). The domain walls constructed in [10] are symmetric, connecting rolls89

rotated by opposite angles ±α, for α ∈ (0, π/3). This result has been extended to90

arbitrary angles α ∈ (0, π/2) in [26]. We point out that there are no such results91

for domain walls which are not symmetric.92

For the existence proof, we extend to the Navier–Stokes–Boussinesq system93

(1.1)–(1.3) the spatial dynamics approach used in [10] for the Swift-Hohenberg94

equation. The starting point of the analysis is a formulation of the steady problem as95

an infinite-dimensional dynamical system, in which one of the horizontal variables96

is taken as evolutionary variable. This idea goes back to the work of Kirchgässner97

[15], and since then it has been extensively used to prove the existence of nonlinear98

waves and patterns in many concrete problems arising in applied sciences, and in99
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particular in fluid mechanics (see for instance [8] and the references therein). This100

infinite-dimensional dynamical system is typically ill-posed, but of interest are its101

small bounded solutions. An efficient way of finding these solutions is with the102

help of center-manifold techniques which reduce the infinite-dimensional system103

to a locally equivalent finite-dimensional dynamical system. An important property104

of this reduced system is that it preserves the symmetries of the original problem.105

Then normal forms and dynamical systems methods can be employed to construct106

bounded solutions of this reduced system.107

We construct the domain walls as solutions of the steady Navier–Stokes–108

Boussinesq equations (1.1)–(1.3) which are periodic in the horizontal coordinate y109

(see Fig. 1b). In our spatial dynamics formulation, we take as evolutionary variable110

the horizontal coordinate x and the boundary conditions, including the periodicity111

in y, determine the choice of the associated phase space and domain of definition112

of operators. An infinite-dimensional dynamical system is obtained as in the case113

of the Navier–Stokes equations in [12]. The rolls which are periodic in y and inde-114

pendent of x are then equilibria of this infinite-dimensional dynamical system, and115

through horizontal rotations they provide a family of periodic solutions. Domain116

walls are found as heteroclinic solutions of this infinite-dimensional dynamical117

system connecting two symmetric periodic solutions in this family.118

We expect domain walls to bifurcate in the convective regime, at the same119

critical value Rc of the Rayleigh number as the rolls. In the bifurcation problem,120

we take the Rayleigh number R as bifurcation parameter, fix the Prandtl number121

P and also fix the wavenumber ky in y of the solutions. We choose ky = kc cos α,122

where kc is the wavenumber of the two-dimensional rolls bifurcating at Rc in the123

classical convection problem and α is a rotation angle. Then ky represents the124

wavenumber in y of these bifurcating rolls rotated by the angle α.125

The nature of the bifurcation is determined by the purely imaginary spectrum of126

the operator obtained by linearizing the dynamical system at the state of rest. Here,127

this operator has purely point spectrum and the number of its purely imaginary128

eigenvalues depends on the rotation angle α. We restrict to the simplest situation in129

which α ∈ (0, π/3). Then the linear operator possesses two pairs of complex con-130

jugated purely imaginary eigenvalues ±ikc, ±ikx , where ±ikc are algebraically131

double and geometrically simple, and ±ikx are algebraically quadruple and geo-132

metrically double. In addition, 0 is a simple eigenvalue due to an invariance of our133

spatial dynamics formulation (see Fig. 2 for a plot of these eigenvalues and their134

continuation for Rayleigh numbers R close to Rc). Except for the 0 eigenvalue,135

the other purely imaginary eigenvalues are of the same type as those found for136

the Swift-Hohenberg equation in [10]. Upon increasing the angle α in the interval137

(π/3, π/2), the number of purely imaginary eigenvalues increases, and there are138

infinitely many eigenvalues when α = π/2. For the Swift-Hohenberg equation,139

this case has been considered in [26].140

The next step of our analysis is a center manifold reduction. The dimension141

of the reduced system being equal to the sum of the algebraic multiplicities of the142

purely imaginary eigenvalues above, we obtain here a reduced system of dimension143

13. Due to the absence of the eigenvalue 0, the dimension of this reduced system144

was equal to 12 for the Swift-Hohenberg equation [10]. However, this additional145
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(a) (b) (c)

Fig. 2. Spectrum of the linearized operator Lμ lying on or near the imaginary axis, for a
wave number ky = kc cos α with α ∈ (0, π/3): a for R < Rc, b for R = Rc, c for
R > Rc. Eigenvalues are either simple, double or quadruple denoted by a dot, a simple
cross or a double cross, respectively

dimension is easily eliminated, and then in the cases of “rigid-rigid” and “free-146

free” boundary conditions we use the reflection in the vertical coordinate to further147

eliminate 4 dimensions. This additional reduction of the dimension of the system148

has not been done in [10], but it is very helpful here, our reduced equations being149

much more complicated. The resulting system is 8-dimensional and the question150

of existence of domain walls consists now in the construction of a heteroclinic151

connection for this system.152

In contrast to the Swift-Hohenberg equation, where the leading order terms153

of the reduced system have been computed explicitly, here the Navier–Stokes–154

Boussinesq equations are far too complicated to compute all these terms. We there-155

fore need to extend the normal forms analysis of the particular reduced system found156

in [10] to a normal forms analysis for general 8-dimensional vector fields. On the157

other hand, the dimension of the reduced vector field being 8, it is too difficult to158

use the same methods for finding a general normal form, to any order, as usually159

done for lower dimensional vector fields (as for instance for four-dimensional vec-160

tor fields in [8]). Instead, we restrict our computation of the normal form to cubic161

order, and using a standard normal form characterization, and the symmetries of the162

reduced system, we directly identify all possible resonant monomials, those which163

appear in the normal form. By this method it is not possible to obtain a normal164

form to any order, but a cubic normal form is enough for our purposes, and often165

in problems of this type.166

The remaining part of the existence proof is based on the arguments from [10].167

An appropriate change of variables allows us to identify a leading order system,168

determined by the cubic order terms of the normal form, for which the existence of169

a heteroclinic connection has been proved in [28]. Based on a variational method170

[24], this existence result requires that the quotient g of two coefficients in the171

cubic normal form is larger than 1. In [10] this quotient was equal to 2 and it was172

easily computed. Here, g depends on the angle α and on the Prandtl number P173

through complicated formulas (see (B.12)). We prove analytically that its value174

in the limit angle α = 0 is also equal to 2, and for arbitrary angles and Prandtl175
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numbers, we determine its numerical values using the package Maple. It turns out176

that indeed the condition g > 1 holds for all angles α ∈ (0, π/3) and all positive177

Prandtl numbers P , for both “rigid-rigid” and “free-free” boundary conditions. The178

final step consists in showing that this heteroclinic connection found for the leading179

order system persists for the full system. We extend the persistence result in [10]180

from the case g = 2 to values g ∈ (1, 4 + √
13), which implies the existence of181

domain walls for any Prandtl numbers P and any angles α ∈ (0, α∗(P)), for some182

positive α∗(P) � π/3. A Maple computation allows us to identify the angles α and183

the Prandtl numbers P for which this property holds (see Figs. 4 and 5). We point184

out that the persistence of the heteroclinic connection for g � 4 + √
13 remains an185

open problem. We summarize our main result in the next theorem.186

Theorem 1. Consider the Navier–Stokes–Boussinesq system (1.1)–(1.3) with ei-187

ther “rigid-rigid” boundary conditions (1.5) or “free-free” boundary conditions188

(1.6). Denote by Rc the critical Rayleigh number at which convective rolls with189

wavenumbers kc bifurcate from the conduction state. Then for any Prandtl number190

P , there exists a positive number α∗(P) � π/3 such that for angles α ∈ (0, α∗(P)),191

a symmetric domain wall bifurcates for Rayleigh numbers R = Rc +ε, with ε > 0192

sufficiently small. The domain wall connects two rotated rolls which are the ro-193

tations by opposite angles ±(α + O(ε)) of a roll with wavenumber kc + O(ε),194

continuously linked to the amplitude which is of order O(ε1/2).195

In our presentation we focus on the case of “rigid-rigid” boundary conditions.196

In Sect. 2 we briefly recall the classical convection problem and give a short proof197

of the existence of convective rolls. The spatial dynamics formulation is given in198

Sect. 3 and the bifurcation problem is analyzed in Sect. 4. The center manifold199

reduction is done in Sect. 5 and the normal forms analysis in Sect. 6. The existence200

of the heteroclinic connection is proved in Sect. 7. Finally, in Sect. 8, we discuss the201

differences which occur in the case of “free-free” boundary conditions, and briefly202

comment on the case of “rigid-free” boundary conditions. Some technical results,203

including the proof of the cubic normal form and the formula for g, are given in204

“Appendices A and B”.205

2. The Classical Bénard–Rayleigh Convection206

In the classical approach, the steady system (1.1)–(1.3) is written in the form207

Lμu + B(u, u) = 0, (2.1)208

where u = (V, θ) lies in a suitable function space of divergence free velocity fields209

V and the pressure term in (1.1) is eliminated via a projection on the divergence210

free vector field (see, for instance, [8, Chapter 5]). Then Lμu is the linear part and211

B(u, u) is the nonlinear part, quadratic in (V, θ), of the equations (1.1) and (1.2).212

The Prandtl number P which only appears in the quadratic part is kept fixed, and213

the square root μ of the Rayleigh number is taken as bifurcation parameter. We214

recall below some of the basic results which are used later in the paper.215
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2.1. Two-Dimensional Convection216

The simple classical convection problem restricts to velocity fields217

V = (0, Vy, Vz) which are two-dimensional and functions which are indepen-218

dent of x and periodic in y. The corresponding function space for the system (2.1)219

is220

H = {u ∈ {0} × (L2
per (�))3 ; ∇ · V = 0, Vz = 0 on z = 0, 1},221

where � = R × (0, 1) and the subscript per means that the functions are 2π/k-222

periodic in y, for some fixed k > 0. The boundary conditions (1.5) are included in223

the domain D of the linear operator Lμ by taking224

D = {u ∈ {0} × (H2
per (�))3 ; ∇ · V = 0, Vy = Vz = θ = 0 on z = 0, 1}.225

In this setting, the linear operator Lμ is selfadjoint with compact resolvent and the226

quadratic operator B in (2.1) is symmetric and bounded from D to H.227

As a consequence of the invariance of the equations (1.1)–(1.3) under horizontal228

translations and reflections, the system (2.1) is O(2)-equivariant: both its linear and229

quadratic parts commute with the one-parameter family of linear maps (τ a)a∈R/2πZ230

and the discrete symmetry S2 defined through231

τ au(y, z) = u(y + a/k, z), S2u(y, z) = (0,−Vy, Vz, θ)(−y, z),232

for any u ∈ H, and satisfying233

τ aS2 = S2τ−a, τ 0 = τ 2π = I.234

An additional equivariance, under the action of the symmetry S3 defined through235

S3u(y, z) = (0, Vy,−Vz,−θ)(y, 1 − z),236

which commutes with τ a and S2, is obtained from the invariance of the equations237

(1.1)–(1.3) under the vertical reflection z �→ 1 − z.238

Instabilities and bifurcations are determined by the kernel of Lμ. Elements in239

the kernel of Lμ are found by looking for solutions of the form eiky ûk(z) for the240

linear equation241

Lμu = 0, (2.2)242

and the boundary conditions Vy = Vz = θ = 0 on z = 0, 1. A direct computation243

(see also [3]) gives244

eiky ûk(z) = eiky

⎛

⎜

⎜

⎝

0
i
k DV

V
θ

⎞

⎟

⎟

⎠

, (2.3)245

where D = d/dz denotes the derivative with respect to z, and the functions V =246

V (z) and θ = θ(z) are real-valued solutions of the boundary value problem247

(D2 − k2)2V = μk2θ, V = DV = 0 in z = 0, 1, (2.4)248
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(D2 − k2)θ = −μV, θ = 0 in z = 0, 1. (2.5)249

Yudovich [30] showed that, for any fixed k > 0, there is a countable sequence250

of parameter values μ0(k) < μ1(k) < μ2(k) < . . . for which the boundary251

value problem (2.4)–(2.5) has a unique, up to a multiplicative constant, nontrivial252

solution (Vj , θ j ), and that the function V0 is positive for μ = μ0(k). The vertical253

reflection symmetry z �→ 1− z further implies that V0 is symmetric with respect to254

z = 1/2. The functions μ j (k) are analytic in k and in an analogous case Yudovich255

[29] showed that they tend to ∞ as k tends to 0 or ∞. Of particular interest for256

the classical bifurcation problem, and also in our context, is the global minimum257

of μ0(k). Combining analytical arguments and numerical calculations, Pellew and258

Southwell [22] computed a unique global minimum μc = μ0(kc), for some k = kc,259

but a complete analytical proof of this property is not available, so far. Solving the260

boundary value problem (2.4)–(2.5) using the symbolic package Maple leads to the261

numerical values262

kc ≈ 3.116, μc ≈ 41.325, μ′′
0(kc) ≈ 6.265, (2.6)263

which are consistent with the ones found in [22].264

Going back to the kernel of Lμ, as expected by the general theory of O(2)-265

equivariant systems, for μ = μ0(k) and any k sufficiently close to the minimum266

kc, the kernel of Lμ0(k) is two-dimensional and spanned by the vectors267

ξ0 = eiky ûk(z), ξ0 = e−iky ûk(z), (2.7)268

satisfying269

τ aξ0 = eiaξ0, S2ξ0 = ξ0, S3ξ0 = −ξ0.270

Since the operator has compact resolvent, this shows that 0 is an isolated double271

semi-simple eigenvalue of Lμ0(k). Furthermore, all other eigenvalues are negative,272

so that the selfadjoint operator Lμ0(k) is nonpositive with a two-dimensional kernel.273

This property is a key ingredient in the proof of existence of rolls, which bifurcate274

from the trivial solution at μ = μ0(k), for any fixed k sufficiently close to kc, in a275

steady bifurcation with O(2) symmetry.276

2.2. Existence of Rolls277

We give below a short and simple proof of the existence of convective rolls.278

This type of proof was first made by Yudovich [31].279

The O(2) symmetry of the system (2.1) allows to restrict the existence proof to280

solutions u which are invariant under the action of S2, and then the one-parameter281

family of linear maps (τ a)a∈R/2πZ gives the non-symmetric solutions (a “circle”282

of solutions). Using the Lyapunov-Schmidt method, symmetric rolls can be con-283

structed as convergent series in D, under the form284

u =
∑

n∈N

δnun, for μ = μ0(k) +
∑

n∈N

δnμn, (2.8)285
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and fixed k close enough to kc. We insert these expansions into (2.1), and solve the286

resulting equations at orders δ, δ2 and δ3.287

The equality at order δ shows that u1 belongs to the kernel of L0 = Lμ0(k),288

which by the restriction to symmetric solutions is one-dimensional, so that289

u1 = ξ0 + ξ0. (2.9)290

Next, by taking the L2-scalar product of the equality found at order δ2 with u1, we291

find292

μ1〈L1u1, u1〉 = −〈B(u1, u1), u1〉,293

where L1 = d
dμ

Lμ

∣

∣

μ=μ0(k)
. A direct computation gives (dropping the index 0 in294

V0 and θ0)295

〈L1u1, u1〉 = 2 Re〈L1ξ0, ξ0〉 = 2

k2μ2 〈(D2 − k2)V, (D2 − k2)V 〉296

+ 2

μ2 (‖Dθ‖2 + k2‖θ‖2) > 0, (2.10)297

and a remarkable property of the Navier–Stokes equations is that298

〈B(u, u), u〉 = 0, (2.11)299

for any real-valued u ∈ D. Consequently, μ1 = 0 and then u2 is a symmetric300

solution of301

L0u2 = −B(u1, u1)302

Without loss of generality, u2 may be chosen orthogonal to u1. Finally, the scalar303

product of the equality found at order δ3 with u1, leads to304

μ2〈L1u1, u1〉 = −〈2B(u1, u2), u1〉.305

Writing the equality (2.11) for u = u1 + tu2 and taking the term linear in t , we306

find that307

〈2B(u1, u2), u1〉 + 〈B(u1, u1), u2〉 = 0,308

hence309

μ2 = 〈B(u1, u1), u2〉
〈L1u1, u1〉 = −〈L0u2, u2〉

〈L1u1, u1〉 . (2.12)310

The sign of μ2 determines the type of the bifurcation. We have 〈L1u1, u1〉 > 0311

by (2.10), and 〈L0u2, u2〉 < 0, since L0 is a nonpositive selfadjoint operator and312

u2 is orthogonal to its kernel. Consequently, μ2 > 0, implying that rolls bifurcate313

supercritically, for μ > μ0(k) (see Fig. 3a). Summarizing, for any fixed k close314

enough to kc, for any μ > μ0(k), sufficiently close to μ0(k), there exists a “circle”315

of rolls τ a(uk,μ), a ∈ R/2πZ, in which uk,μ and τπ (uk,μ) are invariant under the316

action of S2 and exchanged by the action of S3. These two solutions correspond to317

values δ in the expansion (2.8) with opposite signs, and we choose δ > 0 for uk,μ.318

For the convection problem, we obtain a periodic pattern with adjacent cells, with319

vertical separations, having half the period (see Fig. 1c).320
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(a) (b)

Fig. 3. a Graph of μ0(k). Two-dimensional rolls bifurcate into the shaded region situated
above the curve μ0(k). For μ > μc sufficiently close to μc, two-dimensional rolls exist
for wavenumbers k ∈ (k1, k2) with μ = μ0(k1) = μ0(k2). b Plot of the wavenumbers
ky = k cos α in y of the rolls rotated by angles α ∈ (0, π/2), for k = k1, kc, k2. For μ > μc
sufficiently close to μc, rotated rolls exist in the shaded region. In the bifurcation analysis
we fix ky = kc cos α, for some α ∈ (0, π/3)

3. Spatial Dynamics321

The starting point of our analysis is a formulation of the steady system (1.1)-322

(1.3) as a dynamical system in which the evolutionary variable is the horizontal323

spatial coordinate x .324

Set V = (Vx , V⊥), where V⊥ = (Vy, Vz), and consider the new variables325

W = μ−1∂x V − pex , φ = ∂xθ, (3.1)326

in which we write W = (Wx , W⊥), and W⊥ = (Wy, Wz). Using the equation (1.3)327

we obtain the formula for the pressure,328

p = −μ−1∇⊥ · V⊥ − Wx . (3.2)329

Then we write the system (1.1)–(1.3) in the form330

∂x U = LμU + Bμ(U, U), (3.3)331

in which U is the 8-components vector332

U = (Vx , V⊥, Wx , W⊥, θ, φ),333

and the operators Lμ and Bμ are linear and quadratic, respectively, defined by334

LμU =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−∇⊥ · V⊥
μW⊥

−μ−1�⊥Vx

−μ−1�⊥V⊥ − θez − μ−1∇⊥(∇⊥ · V⊥) − ∇⊥Wx

φ

−�⊥θ − μVz

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,335
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Bμ(U, U) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
0

P−1
(

(V⊥ · ∇⊥)Vx − Vx (∇⊥ · V⊥)
)

P−1
(

(V⊥ · ∇⊥)V⊥ + μVx W⊥
)

0
μ
(

(V⊥ · ∇⊥)θ + Vxφ
)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.336

We look for solutions of (3.3) which are periodic in y and satisfy the boundary337

conditions (1.5) or (1.6). For such solutions we have338

d

dx

∫

�per

Vx dy dz = −
∫

�per

∇⊥ · V⊥ dy dz = −
∫

∂�per

n · V⊥ ds = 0,339

where the subscript per means that the integration domain is restricted to one340

period. This property implies that the flux341

F(x) =
∫

�per

Vx dy dz342

is constant, or, equivalently, that the dynamical system (3.3) leaves invariant the343

subspace orthogonal to the vector ψ0 = (1, 0, 0, 0, 0, 0, 0, 0). We restrict to this344

subspace, hence fixing the constant flux to 0. Including this property and the bound-345

ary conditions (1.5) in the definition of the phase space X of the dynamical system346

(3.3) we take347

X = {

U ∈ (H1
per (�))3 × (L2

per (�))3 × H1
per (�) × L2

per (�) ;348

Vx = V⊥ = θ = 0 on z = 0, 1, and
∫

�per

Vx dy dz = 0
}

.349

As in Sect. 2, � = R × (0, 1) and the subscript per means that the functions350

are 2π/ky-periodic in y, for some fixed ky > 0. (In order to distinguish between351

periodicity in x and y, we add the subscript y in the notation of the wavenumber352

k.) The phase space X is a closed subspace of the Hilbert space353

˜X = (H1
per (�))3 × (L2

per (�))3 × H1
per (�) × L2

per (�),354

so that it is a Hilbert space endowed with the usual scalar product of ˜X . Accordingly,355

we define the domain of definition Z of the linear operator Lμ by356

Z = {

U ∈ X ∩ (H2
per (�))3 × (H1

per (�))3 × H2
per (�) × H1

per (�) ;357

∇⊥ · V⊥ = W⊥ = φ = 0 on z = 0, 1
}

,358

so that Lμ is closed and its domain Z is dense and compactly embedded in X . In359

particular, this latter property implies that Lμ has purely point spectrum consisting360

of isolated eigenvalues with finite algebraic multiplicities.361

The dynamical system (3.3) inherits the symmetries of the original system (1.1)–362

(1.5). As for the two-dimensional convection, horizontal translations y → y+a/ky363
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along the y direction give a one-parameter family of linear maps (τ a)a∈ R/2πZ364

defined on X through365

τ aU(y, z) = U(y + a/ky, z), (3.4)366

and which commute with Lμ and Bμ. The reflection x �→ −x now gives a re-367

versibility symmetry368

S1U(y, z) = (−Vx , V⊥, Wx ,−W⊥, θ,−φ)(y, z),369

for U ∈ X , which anti-commutes with Lμ and Bμ, and the reflections y �→ −y370

and z �→ 1 − z give the symmetries371

S2U(y, z) = (Vx ,−Vy, Vz, Wx ,−Wy, Wz, θ, φ)(−y, z),372

S3U(y, z) = (Vx , Vy,−Vz, Wx , Wy,−Wz,−θ,−φ)(y, 1 − z),373

for U ∈ X , which both commute with Lμ and Bμ. Notice that374

τ aS2 = S2τ−a, τ 0 = τ 2π = I,375

so that the system (3.3) is O(2)-equivariant, and that S3 commutes with τ a .376

In addition to these symmetries inherited from the original system (1.1) -377

(1.5), the dynamical system (3.3) has a specific invariance due to the new vari-378

able W = (Wx , W⊥) in (3.1). While W⊥ satisfies the same boundary conditions379

as V⊥, included in the domain of definition Z of the linear operator, there are no380

such conditions for Wx because the pressure p in the definition of Wx is only de-381

fined up to a constant. As a consequence, the dynamical system is invariant upon382

adding any constant to Wx , i.e., the vector field is invariant under the action of the383

one-parameter family of maps (T b)b∈R, defined on X through384

T bU = U + bϕ0, ϕ0 = (0, 0, 0, 1, 0, 0, 0, 0)t . (3.5)385

This invariance introduces the vectorϕ0 in the kernel of Lμ (see Lemma 4.1 below).386

4. The Bifurcation Problem387

As for the two-dimensional convection, we fix the Prandtl number P and take388

the square root μ of the Rayleigh number as bifurcation parameter.389

4.1. Domain Walls as Heteroclinic Solutions390

The equilibria U ∈ Z of the dynamical system (3.3) can be found as solutions391

u ∈ D of the two-dimensional problem in Sect. 2, through the projection392

u = �U = (Vx , V⊥, θ). (4.1)393

The remaining components of an equilibrium U are obtained from (3.1),394

(Wx , W⊥, φ) = (−p, 0, 0, 0),395
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with the pressure p determined, up to a constant, from the equation (1.1). In partic-396

ular, for any ky = k > 0 fixed close enough to kc, the rolls in Sect. 2 give a circle397

of equilibria τ a(U∗
k,μ), for a ∈ R/2πZ, which bifurcate for μ > μ0(k) sufficiently398

close to μ0(k), belong to D, and satisfy399

S1U∗
k,μ = S2U∗

k,μ = U∗
k,μ, S3U∗

k,μ = τπ U∗
k,μ. (4.2)400

Due to the rotation invariance of the three-dimensional problem (2.1), horizon-401

tally rotated rolls are solutions of (2.1) and also of the dynamical system (3.3). For402

any angle α ∈ R/2πZ, we have the rotated rolls RαU∗
k,μ, where the horizontal403

rotation Rα acts on the 4-components vector u = �U through404

Rαu(x, y, z) = (Rα(Vx , Vy), Vz, θ)(R−α(x, y), z), (4.3)405

in which406

Rα(x, y) = (x cos α − y sin α, x sin α + y cos α).407

(We do not need here the more complicated representation formula for the 8-408

components vector U.) These rotated rolls are periodic functions in both x and409

y with wavenumbers k sin α and k cos α, respectively. As solutions of the dynam-410

ical system (3.3), they belong to the phase space X provided ky = k cos α, and in411

this case they are 2π/k sin α-periodic solutions in x (see Fig. 3b for a plot of the412

possible wavenumbers ky in y for μ > μc sufficiently close to μc). For the partic-413

ular angles α = 0 and α = π the rotated rolls are equilibria in the phase-space X414

with ky = k. For the orthogonal angles α = π/2 and α = 3π/2, they are solutions415

2π/k-periodic in x , for any ky > 0.416

The invariance of U∗
k,μ under the action of the symmetry S2 implies that rolls417

rotated by angles α and π + α coincide:418

RαU∗
k,μ = Rπ+αU∗

k,μ.419

Upon rotation, rolls loose their invariance under the horizontal reflections x → −x420

and y → −y, the actions of S1 and S2 on a roll rotated by an angle α /∈ {0, π}421

gives the same roll but rotated by the opposite angle:422

S1(RαU∗
k,μ(x)) = R−αU∗

k,μ(−x), S2RαU∗
k,μ = R−αU∗

k,μ.423

These equalities imply that rotated rolls keep a reversibility symmetry:424

S1S2(RαU∗
k,μ(x)) = RαU∗

k,μ(−x). (4.4)425

The last equality in (4.2) remains valid for angles α /∈ {π/2, 3π/2}, whereas for426

angles α = π/2 and α = 3π/2 the rotated rolls are invariant under the action of427

the entire family of linear maps (τ a)a∈ R/2πZ.428

We construct the domain walls as reversible heteroclinic solutions of the dynam-429

ical system (3.3) connecting two rotated rolls, RαU∗
k,μ at x = −∞ and R−αU∗

k,μ430

at x = ∞. In the bifurcation problem, we will suitably fix ky ∈ (0, kc) and take μ,431

close to μc, as bifurcation parameter. The next step of our analysis is to determine432

the purely imaginary eigenvalues of the linear operator Lμc .433

205 1584
Jour. No Ms. No.

B Dispatch: 24/10/2020
Total pages: 49
Disk Received
Disk Used

Journal: ARMA
Not Used
Corrupted
Mismatch



R
ev

is
ed

Pr
oo

f

M. Haragus, G. Iooss

4.2. Connection with the Classical Linear Problem434

Solutions U = (Vx , V⊥, Wx , W⊥, θ, φ) ∈ Z of the eigenvalue problem435

LμU = iωU, (4.5)436

are linear combinations of vectors of the form Uω,n(y, z) = einky y
̂Uω,n(z), with437

n ∈ Z, due to periodicity in y. Projecting with � given by (4.1), we obtain a438

solution439

uω,n(x, y, z) = ei(ωx+nky y) �̂Uω,n(z)440

of the linearized three-dimensional classical problem (2.1), and rotating by a suit-441

able angle α we find a solution eiky ûk(z) of the linear equation (2.2), with442

k2 = ω2 + n2k2
y . (4.6)443

The angle α is determined by the equalities444

ω = k sin α, nky = k cos α, (4.7)445

and we have the relationship446

�̂Uω,n(z) = R−αûk(z).447

Consequently, for a given ky > 0, the eigenvectors Uω,n associated with purely448

imaginary eigenvalues ν = iω of Lμ are obtained by rotating with R−α the ele-449

ments in the kernel of Lμ given by (2.3), through the relationship (4.7) and450

�Uω,n(y, z) = einky y�̂Uω,n(z) = einky yR−αûk(z). (4.8)451

This holds for all eigenvectors Uω,n such that �Uω,n �= 0. We obtain in this way452

all purely imaginary eigenvalues of Lμ with associated eigenvectors U such that453

�U �= 0. Using the properties of the kernel of Lμ in Sect. 2.1, we obtain the454

following result, for μ = μ0(k).455

Lemma 4.1. Assume that ky and k are positive numbers. Then the linear operator456

Lμ0(k) has the complex conjugated purely imaginary eigenvalues457

± iωn(k), ωn(k) =
√

k2 − n2k2
y > 0 (4.9)458

for any integer 0 � n < k/ky,1 and the following properties hold:459

(i) For n = 0, ω0(k) = k and the complex conjugated eigenvalues ±ik are460

geometrically simple with associated eigenvector of the form461

Uk,0(y, z) = ̂Uk,0(z)462

for the eigenvalue ik, and the complex conjugated vector for the eigenvalue463

−ik.464

1 If k/ky ∈ N, then the linear operator has an additional eigenvalue 0 which is geomet-
rically triple. This situation is excluded from our bifurcation analysis.
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(ii) For 0 < n < k/ky, the complex conjugated eigenvalues ±iωn(k) are geo-465

metrically double with associated eigenvectors of the form466

Uωn(k),±n(y, z) = e±inky y
̂Uωn(k),±n(z)467

for the eigenvalue iωn(k), and the complex conjugated vectors for the eigen-468

value −iωn(k).469

(iii) If the derivative μ′
0(k) does not vanish, then the eigenvalues are semi-simple.470

(iv) The vectors ̂Uk,0(z) and ̂Uω1(k),±1(z) are given by2
471

̂Uk,0(z) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

i
k DVk

0
Vk

− 1
μ0(k)k2 D3Vk

0
ik

μ0(k)
Vk

1
μ0(k)k2 (D2 − k2)2Vk

i
μ0(k)k (D2 − k2)2Vk

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,472

̂Uω1(k),±1(z) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

iω1(k)

k2 DVk

± iky

k2 DVk

Vk

− 1
μ0(k)k2 (D2 − k2

y)DVk

∓ kyω1(k)

μ0(k)k2 DVk
iω1(k)
μ0(k)

Vk
1

μ0(k)k2 (D2 − k2)2Vk
iω1(k)

μ0(k)k2 (D2 − k2)2Vk

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,473

where the function Vk is a real-valued solution of the boundary value problem474

(D2 − k2)3Vk + μ0(k)2k2Vk = 0,475

Vk = DVk = (D2 − k2)2Vk = 0 in z = 0, 1. (4.10)476

Proof. First, notice that for eigenvectors U with �U = 0, the eigenvalue problem477

(4.5) is reduced to the system478

μW⊥ = 0479

0 = iωWx480

−∇⊥Wx = 0481

φ = 0482

for the variables (Wx , W⊥, φ). The only nontrivial solution of this system is483

(Wx , 0, 0, 0), with Wx a constant function, when ω = 0. This implies that 0 is484

2 For our purposes, we do not need the explicit formulas for n > 1.
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an eigenvalue of Lμ with associated eigenvector ϕ0 given by (3.5), and that all485

other eigenvalues have associated eigenvectors U with �U �= 0. In particular,486

nonzero purely imaginary eigenvalues of Lμ and their associated eigenvectors are487

all determined from the properties of the kernel of the operator Lμ in Sect. 2.1488

through the equalities (4.6), (4.7), and (4.8).489

For μ = μ0(k), we obtain the eigenvalues given by (4.9). The uniqueness, up490

to a multiplicative constant, of the element in the kernel of Lμ0(k) given by (2.3),491

implies that the eigenvalues ±ik, for n = 0, are geometrically simple, and since492

opposite numbers ±n give the same pair of eigenvalues ±iωn(k), for n �= 0, these493

eigenvalues are geometrically double. This proves (i) and (i i). In “Appendix A.2”,494

we show that in the case μ′
0(k) �= 0 the algebraic multiplicity of each of these495

eigenvalues is equal to its geometric multiplicity, which proves (i i i). Finally, the496

equalities (4.8) and (2.3), allow to compute the projections �Uk,0 and �Uωn(k),±n497

of the eigenvectors and the remaining components (W, φ) are found from (3.1) and498

(3.2). We obtain the formulas in (iv), which completes the proof of the lemma. ��499

4.3. The Center Spectrum of Lμc500

Lemma 4.1 shows that the linear operator Lμc has the purely imaginary eigen-501

values502

±i
√

k2
c − n2k2

y503

for positive integers n such that 0 � n < kc/ky . Upon decreasing ky , the number504

of pairs of eigenvalues increases. For ky > kc, there is one pair of purely imaginary505

eigenvalues with n = 0, for kc � ky > kc/2 there are two pairs with n = 0,±1,506

and more generally for kc/N � ky > kc/(N + 1) there are N + 1 pairs with507

n = 0,±1, . . . ,±N . For the construction of domain walls we need at least one508

pair of purely imaginary eigenvalues with opposite Fourier modes ±n �= 0. We509

restrict here to the simplest situation when kc > ky > kc/2 and Lμc has two pairs510

of purely imaginary eigenvalues: ±ikc, for n = 0, and ±i
√

k2
c − k2

y , for n = ±1.511

For notational convenience, we set512

ky = kc cos α, kx = kc sin α, (4.11)513

and take α ∈ (0, π/3). In the following lemma we give a complete description of514

the purely imaginary spectrum of the linear operator Lμc :515

Lemma 4.2. Assume that ky = kc cos α with α ∈ (0, π/3). Then the center spec-516

trum σc(Lμc ) of the linear operator Lμc consists of five eigenvalues,517

σc(Lμc ) = {0,±ikc,±ikx }, kx = kc sin α, (4.12)518

with the following properties:519

(i) The eigenvalue 0 is simple with associated eigenvector ϕ0 given by (3.5),520

which is invariant under the actions of S1, S2, S3, and τ a.521
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(ii) The complex conjugated eigenvalues ±ikc are algebraically double and ge-522

ometrically simple with associated generalized eigenvectors of the form523

ζ 0(y, z) = ̂U0(z), �0(y, z) = ̂�0(z)524

for the eigenvalue ikc, and the complex conjugated vectors for the eigenvalue525

−ikc, such that526

(Lμc − ikc)ζ 0 = 0, (Lμc − ikc)�0 = ζ 0,527

and528

S1ζ 0 = ζ 0, S2ζ 0 = ζ 0, S3ζ 0 = −ζ 0, τ aζ 0 = ζ 0,529

S1�0 = −�0, S2�0 = �0, S3�0 = −�0, τ a �0 = �0.530

(iii) The complex conjugated eigenvalues ±ikx are algebraically quadruple and531

geometrically double with associated generalized eigenvectors of the form532

ζ±(y, z) = e±iky y
̂U±(z), �±(y, z) = e±iky y

̂�±(z) (4.13)533

for the eigenvalue ikx , and the complex conjugated vectors for the eigenvalue534

−ikx , such that535

(Lμc − ikx )ζ± = 0, (Lμc − ikx )�± = ζ±,536

and537

S1ζ+ = ζ−, S2ζ+ = ζ−, S3ζ+ = −ζ+, τ aζ+ = eiaζ+,538

S1ζ− = ζ+, S2ζ− = ζ+, S3ζ− = −ζ−, τ aζ− = e−iaζ−,539

S1�+ = −�−, S2�+ = �−, S3�+ = −�+, τ a �+ = eia�+,540

S1�− = −�+, S2�− = �+, S3�− = −�−, τ a �− = e−ia�−.541

Proof. The result in Lemma 4.1 shows that ±ikc and ±ikx are purely imaginary542

eigenvalues of Lμc and the first part of its proof implies that 0 is an eigenvalue of543

Lμc . Since μc is the unique global minimum of μ0(k), there are no other eigenvalues544

with zero real part. This proves the property (4.12). Furthermore, the eigenvalue 0 is545

geometrically simple, with associated eigenvector ϕ0 given by (3.5), and the eigen-546

values ±ikc and ±ikx have geometric multiplicities one and two, respectively. The547

associated eigenvectors ζ 0 and ζ± are computed from the formulas in Lemma 4.1,548

by taking n = 0 and n = ±1, respectively, for k = kc and ky = kc cos α. We549

obtain550

ζ 0(y, z) = ̂U0(z), ζ±(y, z) = e±iky y
̂U±(z),551
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where552

̂U0(z) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

i
kc

DV

0
V

− 1
μck2

c
D3V

0
ikc
μc

V
1

μck2
c
(D2 − k2

c )2V
i

μckc
(D2 − k2

c )2V

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, ̂U±(z) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

i sin α
kc

DV

± i cos α
kc

DV

V
− 1

μck2
c
(D2 − k2

c cos2 α)DV

∓ sin α cos α
μc

DV
ikc sin α

μc
V

1
μck2

c
(D2 − k2

c )2V
i sin α
μckc

(D2 − k2
c )2V

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,(4.14)553

and the function V is a real-valued solution of the boundary value problem554

(D2 − k2
c )3V + μ2

ck2
c V = 0,555

V = DV = (D2 − k2
c )2V = 0 in z = 0, 1. (4.15)556

This boundary value problem being equivalent to (2.4)- (2.5) for μ = μc, the557

function V is positive and symmetric with respect to z = 1/2. The latter property558

and the explicit formulas above imply the symmetry properties of ζ 0 and ζ± in (i i)559

and (i i i).560

Next, the algebraic multiplicity of the eigenvalue 0 is directly determined by561

solving the equation562

Lμcϕ1 = ϕ0.563

Up to an element in the kernel of Lμc , we find564

ϕ1 =
(μc

2
z(1 − z), 0, 0, 0, 0, 0, 0, 0

)t
.565

The first component of ϕ1 does not satisfy the zero average condition in the def-566

inition of the phase space X , which implies that ϕ1 /∈ X and proves that 0 is an567

algebraically simple eigenvalue. The invariance of ϕ0 under the actions of S1, S2,568

S3, and τ a is easily checked, which completes the proof of part (i).569

For the algebraic multiplicities of the nonzero eigenvalues ±ikc and ±ikx ,570

we use their continuation as eigenvalues of Lμ, for μ > μc close to kc. For any571

μ > μc sufficiently close to μc, there are precisely two values k1 and k2 such that572

μ = μ0(k1) = μ0(k2) (see Fig. 3a), and the spectrum close to the imaginary axis of573

Lμ consists of the purely imaginary eigenvalues of the operators Lμ0(k1) and Lμ0(k2)574

in Lemma 4.1. Since μ′
0(k) �= 0 for k close to kc, these eigenvalues are semi-simple,575

±ik1 and ±ik2 which are algebraically simple, and ±iω1(k1) and ±iω1(k2) which576

are algebraically double. Taking the limit μ → μc, the values k1 and k2 tend to577

kc, and a standard continuation argument then shows that the eigenvalues ±ikc and578

±ikx of Lμc are algebraically double and quadruple, respectively.579

Finally, we compute the generalized eigenvectors �0 and �± associated with580

the eigenvalues ikc and ikx , respectively, from the eigenvectors associated with581
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the eigenvalues ik and iω1(k) of Lμ0(k) given in Lemma 4.1. Differentiating the582

eigenvalue problems583

Lμ0(k)Uk,0 = ikUk,0, Lμ0(k)Uω1(k),±1 = iω1(k)Uω1(k),±1584

with respect to k at k = kc, and using the properties585

μ′
0(kc) = 0, ω′

1(kc) = kc
√

k2
c − k2

y

= 1

sin α
,586

we obtain the equalities587

(Lμc − ikc)

(

d

dk
Uk,0

∣

∣

k=kc

)

= iζ 0,588

(Lμc − ikx )

(

d

dk
Uω1(k),±1

∣

∣

k=kc

)

= i

sin α
ζ±.589

Consequently, the generalized eigenvectors are given by590

�0 = −i

(

d

dk
Uk,0

∣

∣

k=kc

)

, �± = −i sin α

(

d

dk
Uω1(k),±1

)

∣

∣

k=kc
. (4.16)591

In particular, they have the same form,592

�0(y, z) = ̂�0(z), �±(y, z) = e±iky y
̂�±(z),593

as the eigenvectors Uk,0 and Uω1(k),±1 given in Lemma 4.1. Furthermore, since594

the function Vk in the expressions of ̂Uk,0(z) and ̂Uω1(k),±1(z) is symmetric with595

respect to z = 1/2, just as the function V in (4.15), the eigenvectors Uk,0 and596

Uω1(k),±1 have the same symmetry properties as the eigenvectors ζ 0 and ζ±, respec-597

tively. Together with the formulas (4.16), this implies that�0 and�± have the sym-598

metry properties given in (i i) and (i i i), and completes the proof of the lemma. ��599

5. Reduction of the Nonlinear Problem600

The next step of our analysis is the center manifold reduction. Using the symme-601

tries of the system (3.3), we identify an eight-dimensional invariant submanifold of602

the center manifold, which contains the heteroclinic solutions of (3.3) correspond-603

ing to domain walls.604

5.1. Center Manifold Reduction605

We set ε = μ − μc and write the dynamical system (3.3) in the form606

∂x U = Lμc U + R( U, ε), (5.1)607

where608

R(U, ε) = (Lμ − Lμc )U + Bμ(U, U)609
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is a smooth map from Z × Ic, Ic = (−μc,∞), into X . Furthermore,610

R(0, ε) = 0, DUR(0, 0) = 0,611

so that R satisfies the hypotheses of the center manifold theorem (see [8, Section612

2.3.1]). We also have to check two hypotheses on the linear operator Lμc . The first613

one requires that the center spectrum of Lμc consists of finitely many purely imag-614

inary eigenvalues with finite algebraic multiplicities and the result in Lemma 4.2615

shows that this hypothesis holds. The second one is the estimate on the norm of616

resolvent of Lμc obtained by taking μ = μc in the lemma below.617

Lemma 5.1. For any μ > 0, there exist positive constants Cμ and ωμ such that618

‖(Lμ − iω)−1‖L(X ) � Cμ

|ω| (5.2)619

for any real number ω, with |ω| > ωμ.620

Proof. We write Lμ = Aμ + Cμ, where621

AμU =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−∇⊥ · V⊥
μW⊥

−μ−1�⊥Vx

−μ−1�⊥V⊥ − μ−1∇⊥(∇⊥ · V⊥) − ∇⊥Wx

φ

−�⊥θ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, CμU =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
0
0

−θez

0
−μVz

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.622

Since the operator Cμ is bounded in X , the resolvent equality623

(Lμ − iω)−1 = (I + (Aμ − iω)−1Cμ)(Aμ − iω)−1
624

implies that it is enough to prove the result for Aμ. The action of Aμ on the625

components (V, W) and (θ, φ) of U being decoupled, the operator is diagonal,626

Aμ = diag(ASt
μ ,Aso

μ ), where ASt
μ acting on (V, W) is a Stokes operator and Aso

μ627

acting on (θ, φ) is a Laplace operator. The estimate (5.2) has been proved for the628

Stokes operator ASt
μ in [12, Appendix 2], and it is easily obtained for the Laplace629

operator Aso
μ . This implies the result for Aμ and completes the proof of the lemma.630

��631

Denote by Xc the spectral subspace associated with the center spectrum of Lμc ,632

by Pc the corresponding spectral projection, and set Zh = (I − Pc)Z . Applying633

the center manifold theorem [8, Section 2.3.1] , for any arbitrary, but fixed, k � 3,634

there exists a map � ∈ Ck(Xc × Ic,Zh), with635

�(0, ε) = 0, DU�(0, 0) = 0, (5.3)636

and a neighborhood U1 × U2 of (0, 0) in Z × Ic such that for any ε ∈ U2 , the637

manifold638

Mc(ε) = {Uc +�(Uc, ε) ; Uc ∈ Xc}, (5.4)639

has the following properties:640
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(i) Mc(ε) is locally invariant, i.e., if U is a solution of (5.1) satisfying U(0) ∈641

Mc(ε) ∩ U1 and U(x) ∈ U1 for all x ∈ [0, L], then U(x) ∈ Mc(ε) for all642

x ∈ [0, L];643

(ii) Mc(ε) contains the set of bounded solutions of (5.1) staying in U1 for all644

x ∈ R, i.e., if U is a solution of (5.1) satisfying U(x) ∈ U1 for all x ∈ R,645

then U(0) ∈ Mc(ε);646

(iii) the invariant dynamics on the center manifold is determined by the reduced647

system648

dUc

dx
= Lμc

∣

∣Xc
Uc + PcR(Uc +�(Uc, ε), ε)

de f= f (Uc, ε), (5.5)649

where650

f (0, ε) = 0, DUc f (0, 0) = Lμc

∣

∣Xc
;651

(iv) the reduced system (5.5) inherits the symmetries of (5.1), i.e., the reduced652

vector field f (·, ε) anti-commutes with S1, commutes with S2, S3, and τ a ,653

and is invariant under the action of T b.654

An immediate consequence of these properties is that the heteroclinic solu-655

tions of (5.1) representing domain walls belong to the center manifold Mc(ε), for656

sufficiently small ε, and can be constructed as solutions of the reduced system (5.5).657

5.2. Reduced System658

According to Lemma 4.2, the center space Xc has dimension 13 and we can659

write660

Uc = wϕ0 + A0ζ 0 + B0�0 + A+ζ+ + B+�+ + A−ζ− + B−�−661

+ A0ζ 0 + B0�0 + A+ζ+ + B+�+ + A−ζ− + B−�−, (5.6)662

where w ∈ R and X = (A0, B0, A+, B+, A−, B−) ∈ C
6. Then the reduced system663

(5.5) takes the form664

dw

dx
= h(w, X, X , ε), (5.7)665

d X

dx
= F(w, X, X , ε), (5.8)666

in which h is real-valued and F = ( f0, g0, f+, g+, f−, g−) has six complex-valued667

components. This system is completed by the complex conjugated equation of (5.8)668

for X . Notice that the symmetries of the reduced system act on these variables669

through670

S1(w, A0, B0, A+, B+, A−, B−) = (w, A0,−B0, A−,−B−, A+,−B+),671

S2(w, A0, B0, A+, B+, A−, B−) = (w, A0, B0, A−, B−, A+, B+),672

S3(w, A0, B0, A+, B+, A−, B−) = (w,−A0,−B0,−A+,−B+,−A−,−B−),673

τ a(w, A0, B0, A+, B+, A−, B−) = (w, A0, B0, eia A+, eia B+, e−ia A−, e−ia B−),674

T b(w, A0, B0, A+, B+, A−, B−) = (w + b, A0, B0, A+, B+, A−, B−).675

Using the last three symmetries above, we obtain676
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Lemma 5.2. For any ε sufficiently small, the reduced system (5.7)–(5.8) has the677

following properties:678

(i) the reduced vector field (h, F) does not depend on w;679

(ii) the components ( f0, g0)of F are odd functions in the variables (A0, B0, A0, B0)680

and even functions in the variables (A+, B+, A−, B−, A+, B+, A−, B−);681

(iii) the components ( f+, g+, f−, g−) of F are even functions in the variables682

(A0, B0, A0, B0) and odd functions in the variables (A+, B+, A−, B−,683

A+, B+, A−, B−).684

Proof. Due to the invariance of the reduced system (5.7)- (5.8) under the action of685

T b, the vector field (h, F) satisfies686

(h, F)(w + b, X, X , ε) = (h, F)(w, X, X , ε)687

for any real number b. This implies that (h, F) does not depend on w and proves688

(i).689

Next, the vector field F , which only depends on X and X , commutes with the690

symmetries τπ and S3τπ acting on these components through691

τπ (A0, B0, A+, B+, A−, B−) = (A0, B0,−A+,−B+,−A−,−B−),692

S3τπ (A0, B0, A+, B+, A−, B−) = (−A0,−B0, A+, B+, A−, B−).693

The first equality implies the parity properties of the components694

( f0, g0, f+, g+, f−, g−)of F in the variables (A+, B+, A−, B−, A+, B+, A−, B−)695

and the second one implies the parity properties in the variables (A0, B0, A0, B0).696

This proves the properties (i i) and (i i i). ��697

An immediate consequence of the first property in the lemma above being that698

the two equations (5.7) and (5.8) are decoupled, we can first solve (5.8) for X , and699

then integrate (5.7) to determine w. We therefore restrict our existence analysis to700

the equation701

d X

dx
= F(X, X , ε), (5.9)702

which, together with the complex conjugate equation for X , forms a 12-dimensional703

system. For this system, the parity properties of the vector field F in Lemma 5.2,704

imply that there exist two invariant subspaces:705

E0 =
{

(X, X), X ∈ C
6 ; (A+, B+, A−, B−) = 0

}

,706

which is 4-dimensional, and707

E± =
{

(X, X), X ∈ C
6 ; (A0, B0) = 0

}

,708

which is 8-dimensional. Each of these subspaces gives an invariant submanifold of709

the center manifold.710

Solutions in the submanifold associated with E0 are invariant under the action711

of the family of maps (τ a)a∈ R/2πZ and therefore correspond to solutions of the full712
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dynamical system (3.3) which do not depend on y. Solutions in the submanifold713

associated with E± are invariant under the action of S3τπ and correspond to three-714

dimensional solutions of the full dynamical system (3.3). For the construction of715

domain walls we restrict to this 8-dimensional invariant submanifold.716

6. Leading Order Dynamics717

We determine the leading order dynamics of the restriction to E± of the reduced718

system (5.9) with the help of a normal forms transformation to cubic order, followed719

by suitable scalings of variables. For the resulting systems, we identify particular720

solutions which correspond to rotated rolls.721

6.1. Cubic Normal Form of the Reduced System722

We write the reduced system (5.9) restricted to the invariant 8-dimensional723

subspace E± in the from724

dY

dx
= G(Y, Y , ε), (6.1)725

in which Y = (A+, B+, A−, B−) ∈ C
4. Taking into account the properties of726

the reduced system (5.5), the formula (5.6), and the choice for the generalized727

eigenvectors in Lemma 4.2, we find728

G(0, 0, ε) = 0, DY G(0, 0, 0) = L0, DY G(0, 0, 0) = 0,729

where L0 is a Jordan matrix acting on Y through730

L0 =

⎛

⎜

⎜

⎝

ikx 1 0 0
0 ikx 0 0
0 0 ikx 1
0 0 0 ikx

⎞

⎟

⎟

⎠

. (6.2)731

Using a general normal forms theorem for parameter-dependent vector fields in the732

presence of symmetries (e.g., see [8, Chapter 3]), we determine a normal form of733

the system (6.1) up to cubic order.734

Lemma 6.1. For any k � 3, there exist neighborhoods V1 and V2 of 0 in C
4 and R,735

respectively, such that for any ε ∈ V2, there is a polynomial Pε : C
4 × C4 → C

4
736

of degree 3 in the variables (Z , Z), such that for Z ∈ V1, the polynomial change737

of variable738

Y = Z + Pε(Z , Z) (6.3)739

transforms the equation (6.1) into the normal form740

d Z

dx
= L0 Z + N (Z , Z , ε) + ρ(Z , Z , ε), (6.4)741

with the following properties:742
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(i) the map ρ belongs to Ck(V1 × V1 × V2, C
4), and743

ρ(Z , Z , ε) = O(|ε|2‖Z‖ + ε‖Z‖3 + ‖Z‖5);744

(ii) both N (·, ·, ε) and ρ(·, ·, ε) anti-commute with S1 and commute with S2, S3,745

and τ a, for any ε ∈ V2;746

(iii) the four components (N+, M+, N−, M−) of N are of the form747

N+ = i A+ P+ + A− R+748

M+ = i B+ P+ + B− R+ + A+Q+ + i A−S+749

N− = i A− P− − A+ R+750

M− = i B− P− − B+ R+ + A−Q− − i A+S+751

in which752

P+ = β0ε + β1 A+ A+ + iβ2(A+ B+ − A+ B+) + β3 A− A−753

+iβ4(A−B− − A− B−)754

P− = β0ε + β3 A+ A+ + iβ4(A+B+ − A+B+) + β1 A− A−755

+iβ2(A− B− − A− B−)756

Q+ = b0ε + b1 A+ A+ + ib2(A+ B+ − A+ B+) + b3 A− A−757

+ib4(A− B− − A−B−)758

Q− = b0ε + b3 A+ A+ + ib4(A+B+ − A+B+) + b1 A− A−759

+ib2(A−B− − A− B−)760

R+ = γ5(A+ B− − A− B+), S+ = c5(A+B− − A−B+),761

where (A+, B+, A−, B−) are the four components of Z and the coefficients762

β j , b j , γ5 and c5 are all real.763

The proof of this lemma can be found in “Appendix B.1”. We point out that the764

result is valid for any system of the form (6.1) which has a linear part as in (6.2)765

and the symmetries S1 , S2, S3, and τ a given in Sect. 5.2.766

6.2. Rotated Rolls as Periodic Solutions767

The normal form (6.4) truncated at cubic order has the property to leave invariant768

the two 4-dimensional subspaces769

E+ =
{

(Z , Z), Z ∈ C
4 ; (A−, B−) = 0

}

,770

E− =
{

(Z , Z), Z ∈ C
4 ; (A+, B+) = 0

}

,771

which is not the case for the full system (6.4). The systems obtained by restricting772

the normal form truncated at cubic order to E+ and E− being similar, we consider773

the one restricted to E+,774

d A+
dx

= ikx A+ + B+ + i A+ P+ (6.5)775

205 1584
Jour. No Ms. No.

B Dispatch: 24/10/2020
Total pages: 49
Disk Received
Disk Used

Journal: ARMA
Not Used
Corrupted
Mismatch



R
ev

is
ed

Pr
oo

f

Domain Walls for the Bénard–Rayleigh Convection Problem

d B+
dx

= ikx B+ + i B+ P+ + A+Q+ (6.6)776

with777

P+ = β0ε + β1 A+ A+ + iβ2(A+ B+ − A+ B+),778

Q+ = b0ε + b1 A+ A+ + ib2(A+ B+ − A+B+).779

Notice that (6.5)–(6.6) is the system found at cubic order in the case of the classical780

reversible 1 : 1 resonance bifurcation, or reversible Hopf bifurcation. In our case,781

the reversibility symmetry is given by S1S2. This system is integrable and we refer782

to [8, Section 4.3.3] for a detailed discussion of its bounded solutions.783

We consider here the periodic solutions of (6.5)–(6.6) with wavenumbers kx +θ784

close to kx , for small ε. According to [8, Section 4.3.3], these periodic solutions785

are determined, up to the action of (τ a)a∈ R/2πZ and to translations in x , by the786

reversible periodic solutions787

A+ = r0ei(kx +θ)x , B+ = iq0ei(kx +θ)x , (6.7)788

with real numbers r0 > 0 and q0 satisfying the equalities789

θ = q0

r0
+ β0ε + β1r2

0 + 2β2r0q0,790

0 = q2
0 + r2

0

(

b0ε + b1r2
0 + 2b2r0q0

)

,791

obtained by replacing (6.7) into the system (6.5)–(6.6). Solving for q0 and r0, we792

find793

q0 = r0
(

θ − β0ε − β1r2
0

)

1 + 2β2r2
0

,794

r2
0 = −b0

b1
ε − 1

b1
θ2 + O(|εθ | + |ε|2 + |θ |3), (6.8)795

as (ε, θ) → (0, 0). For ε such that b0ε/b1 < 0, the right hand side in the formula796

for r2
0 is positive for small ε and θ small enough, and we have a solution (A+, B+)797

given by (6.7) for the system (6.5)–(6.6). Notice that θ must be O(|ε|1/2)-small798

when b1 > 0, which, as we shall see later in this section, is the case here.799

For the 8-dimensional normal form (6.4) truncated at cubic order we obtain the800

solutions (A+, B+, 0, 0) which belong to the invariant subspace E+. The persis-801

tence of these solutions for the full normal form (6.4) can be proved via the implicit802

function theorem, for instance, by adapting the method used in the case of reversible803

1 : 1 resonance bifurcations in [13, Section III.1]. For small ε such that b0ε/b1 < 0804

and θ small enough, we obtain a family of reversible periodic solutions˜Zε,θ of the805

normal form (6.4), which are uniquely determined by their leading order part806

(r0ei(kx +θ)x , 0, 0, 0), r2
0 = −b0

b1
ε − 1

b1
θ2, r0 > 0. (6.9)807

This leading order part belongs to E+, which is not the case for ˜Zε,θ , and it is808

the same as the one of the solutions (6.7) of the truncated system. As it follows809
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from the implicit function theorem, the periodic solutions τ a(˜Zε,θ ), a ∈ R/2πZ,810

are, up to translations in x , the only periodic solutions of the system (6.4) with811

leading order part of the form (6.9) in E+ and wavenumbers kx + θ sufficiently812

close to kx , for sufficiently small ε. Notice that there are precisely two reversible813

solutions, ˜Zε,θ with r0 > 0 and τπ
˜Zε,θ with r0 < 0. We show below that the814

solutions˜Zε,θ correspond to solutions of dynamical system (3.3) which are rotated815

rolls R−βU∗
k,μ, with k and μ sufficiently close to kc and μc, respectively. We use816

this correspondence to compute the coefficients b0 and b1 of the normal form.817

Consider the rotated roll R−βU∗
k,μ, for μ > μc close to μc, wavenumber k818

close to kc such that819

k ∈ (k1, k2), μ0(k1) = μ0(k2) = μ,820

(see Fig. 3), and rotation angle β ∈ (0, π/2) chosen such that the rotated roll is a821

solution of the dynamical system (3.3), i.e., such that822

k cos β = ky = kc cos α. (6.10)823

The rotation angle β ∈ (0, π/2) is uniquely determined through this formula, and824

from the Taylor expansion of μ0(k),825

μ0(k) = μc + 1

2
μ′′

0(kc)(k − kc)
2 + O(|k − kc|3), (6.11)826

for k close to kc, we find that the unique values k1 and k2 above are O(|μ−μc|1/2)-827

close to kc. The rotated roll R−βU∗
k,μ is periodic in x with wavenumber828

k′
x = k sin β =

√

k2 − k2
c cos2 α829

= kc sin α + 1

sin α
(k − kc) + O(|k − kc|2), (6.12)830

where we used (6.10) to obtain the second equality, and has the reversibility sym-831

metry (4.4). According to the formulas (2.8), (2.9), and (2.7) from Sect. 2, we have832

that833

R−β	U∗
k,μ(x, y, z) = δei(k′

x x+ky y)R−β ûk(z)834

+δe−i(k′
x x+ky y)R−β ûk(z) + O(δ2), (6.13)835

where δ > 0 is the small parameter in (2.8) and ûk(z) is given by (2.3). Furthermore,836

from (4.8) we obtain837

eiky yR−β ûk(z) = 	Uω1(k),1(y, z) = 	ζ+(y, z) + O(|k − kc|), (6.14)838

where Uω1(k),1 and ζ+ are the eigenvectors in Lemma 4.1 and Lemma 4.2, respec-839

tively.840

For μ = μc +ε, the rotated roll R−βU∗
k,μ is a solution of the dynamical system841

(5.1), which is the same as (3.3). From (2.8) and (6.11) we obtain the relationship842

ε = (μ − μ0(k)) + (μ0(k) − μc)843
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= μ2δ
2 + 1

2
μ′′

0(kc)(k − kc)
2 + O(|δ|3 + |k − kc|3), (6.15)844

implying that δ = O(ε1/2) and |k − kc| = O(ε1/2), since the values μ2 and845

μ′′
0(kc) given by (2.12) and (2.6), respectively, are positive. In particular, the rotated846

roll R−βU∗
k,μ has small amplitude of order O(ε1/2) and therefore belongs to the847

center manifold (5.4) of (5.1), provided ε is sufficiently small. Furthermore, we848

saw in Sect. 4.1 that for rotation angles β ∈ (0, π/2), the rolls R−βU∗
k,μ are849

invariant under the action of S3τπ . This implies that R−βU∗
k,μ belongs to the850

center submanifold associated to E± found in Sect. 5.2. Consequently, it provides851

a periodic solution of the reduced system (6.1), from which we obtain a periodic852

solution for the normal form system (6.4) through the change of variables (6.3).853

These periodic solutions inherit the reversibility symmetry (4.4) of the rotated rolls.854

We set855

θ = k′
x − kx = k′

x − kc sin α = 1

sin α
(k − kc) + O(|k − kc|2), (6.16)856

where k′
x is the wavenumber given by (6.12), and denote by Zε,θ the periodic857

solution of the normal form (6.4) corresponding to R−βU∗
k,μ. The parameters858

(ε, θ) are related to (k, μ) through the equalities ε = μ − μc and (6.16), which859

define a one-to-one map (k, μ) → (ε, θ), for k in a neighborhood of kc and any860

μ. Comparing the expressions of 	R−βU∗
k,μ given by (6.13) and by the formulas861

(5.4) and (5.6) for the solutions on the center manifold, using the equalities (6.14)862

and (6.16), we obtain the expansion863

Zε,θ (x) =
(

δei(kx +θ)x , 0, 0, 0
)

+ O(|δ||θ | + |δ|2), (6.17)864

with δ > 0 determined through (6.15) and (6.16),865

δ2 = 1

μ2
ε − μ′′

0(kc) sin2 α

2μ2
θ2 + O(|ε|3/2 + |ε|1/2|θ |2 + |θ |3). (6.18)866

The existence and the above properties of the periodic solutions Zε,θ of the867

normal form system (6.4) are directly obtained from the existence and properties868

of the rotated rolls R−βU∗
k,μ, without using the solutions ˜Zε,θ found from the869

periodic solutions (6.7) of the truncated system. With˜Zε,θ , the solutions Zε,θ share870

the property of being reversible periodic solutions of the system (6.4) with leading871

order parts in E+ and wavenumbers kx + θ sufficiently close to kx , for sufficiently872

small ε. The solutions ˜Zε,θ and τπ
˜Zε,θ being the only ones with these properties,873

taking into account that δ in (6.17) and r0 in (6.9) are both positive, we deduce that874

Zε,θ and ˜Zε,θ are the same solutions of the system (6.4), for sufficiently small ε875

and θ . In particular, their leading order parts are the same. Identifying the leading876

order part of δ2 in (6.18) with r2
0 in (6.9), we can compute the coefficients877

b0 = − 2

μ′′
0(kc) sin2 α

< 0, b1 = 2μ2

μ′′
0(kc) sin2 α

> 0. (6.19)878

The signs of these two coefficients are needed in the subsequent arguments.879
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Remark 6.2. As usual in this type of approach, the coefficient b0 can be determined880

from the property that the eigenvalues of the matrix obtained by linearizing the881

normal form (6.4) at Z = 0 are equal to the continuation of the eigenvalues ±ikx882

of Lμc as eigenvalues of Lμ for μ = μc + ε and sufficiently small ε. In the883

proof of Lemma 4.2 we saw that the latter eigenvalues are the purely imaginary884

eigenvalues ±iω1(k1) and ±iω1(k2) given by (4.9), with k1 < kc < k2 such that885

μ = μ0(k1) = μ0(k2). Computing the eigenvalues of the normal form (6.4) we886

obtain887

iω1(k1) = i
(

kx −√−b0ε + O(ε)
)

,888

whereas from (4.9) we find889

iω1(k1) = i
√

k2
1 − k2

c cos2 α = i

(

kc sin α + 1

sin α
(k1 − kc) + O(|k1 − kc|2)

)

.890

These two equalities and the Taylor expansion (6.11) of μ0(k), taken at k = k1,891

give the value of b0 in (6.19). Furthermore, by replacing the expansions (6.17) and892

(6.18) with θ = 0 into the equation for B+ of the normal form (6.4) and identifying893

the coefficients of the terms of order O(ε3/2), we easily obtain that b1 = −μ2b0.894

These arguments give an alternative way for the computation of b0 and b1, without895

using the solutions˜Zε,θ .896

6.3. Leading Order System897

From now on we restrict to ε > 0, which corresponds to values μ > μc for898

which rolls exist. We further transform the normal form (6.4) by introducing new899

variables900

x̂ = |b0ε|1/2x, A±(x) =
∣

∣

∣

∣

b0ε

b1

∣

∣

∣

∣

1/2

eikx x C±(̂x),901

(6.20)902

B±(x) = |b0ε|
|b1|1/2 eikx x D±(̂x).903

Taking into account the signs of b0 and b1 in (6.19), we obtain the first order system904

C ′+ = D+ + ̂f+(C±, D±, C±, D±, e±ikx x̂/|b0ε|1/2
, ε1/2), (6.21)905

D′+ =
(

−1 + |C+|2 + g|C−|2
)

C+906

+ ĝ+(C±, D±, C±, D±, e±ikx x̂/|b0ε|1/2
, ε1/2), (6.22)907

C ′− = D− + ̂f−(C±, D±, C±, D±, e±ikx x̂/|b0ε|1/2
, ε1/2), (6.23)908

D′− = (−1 + g|C+|2 + |C−|2)C−909

+ ĝ−(C±, D±, C±, D±, e±ikx x̂/|b0ε|1/2
, ε1/2), (6.24)910

in which g is the quotient911

g = b3

b1
, (6.25)912
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and ̂f±, ĝ± are Ck-functions in their arguments of the form913

̂f± = ̂f±,0 + ̂f±,1, ĝ± = ĝ±,0 + ĝ±,1,914

̂f±,0 = ̂f±,0(C±, D±, C±, D±, ε1/2) = O(ε1/2(|C±| + |D±|)),915

̂f±,1 = ̂f±,1(C±, D±, C±, D±, e±ikx x̂/|b0ε|1/2
, ε1/2) = O(ε3/2(|C±| + |D±|)),916

ĝ±,0 = ĝ±,0(C±, D±, C±, D±, ε1/2) = O(ε1/2(|C±| + |D±|)),917

ĝ±,1 = ĝ±,1(C±, D±, C±, D±, e±ikx x̂/|b0ε|1/2
, ε1/2) = O(ε(|C±| + |D±|)).918

Solving the equations (6.21) and (6.23) for D+ and D−, respectively, we rewrite919

the first order system (6.21)–(6.24) as a second order system920

C ′′+ =
(

−1 + |C+|2 + g|C−|2
)

C+921

+ h+(C±, C ′±, C±, C ′±, e±ikx x/|b0ε|1/2
, ε1/2), (6.26)922

C ′′− =
(

−1 + g|C+|2 + |C−|2
)

C−923

+ h−(C±, C ′±, C±, C ′±, e±ikx x/|b0ε|1/2
, ε1/2), (6.27)924

where we replaced x̂ by x , for notational convenience, and h± are Ck-functions in925

their arguments of the form926

h± = h±,0 + h±,1,927

h±,0 = h±,0(C±, D±, C±, D±, ε1/2) = O(ε1/2(|C±| + |D±|)),928

h±,1 = h±,1(C±, D±, C±, D±, e±ikx x/|b0ε|1/2
, ε1/2) = O(ε(|C±| + |D±|)).929

Notice that both systems above inherit the symmetries of the normal form (6.4).930

Through the change of variables (6.21), after rescaling θ , from the periodic931

solutions Zε,θ of the normal form (6.4) we obtain a family of solutions Pε,θ of the932

second order system (6.26)–(6.27). The properties below are easily obtained from933

the ones found for Zε,θ in Sect. 6.2.934

Lemma 6.3. For any ε > 0 and θ sufficiently small, the system (6.26)–(6.27)935

possesses a two-parameter family of solutions Pε,θ with the following properties:936

(i) e−iθx Pε,θ is periodic in x with wavenumber θ + kx/|b0ε|1/2;937

(ii) S1S2(Pε,θ (x)) = Pε,θ (−x), for all x ∈ R;938

(iii) Pε,θ (x) = (

(1 − θ2)1/2eiθx , 0
)+ O(ε1/2), as (ε, θ) → (0, 0);939

(iv) Pε,θ corresponds to a solution of the system (3.3) which is a rotated roll940

R−βU∗
k,μ with941

cos β = ky/k, μ = μc + ε, k = kc + |b0ε|1/2θ sin α + O(εθ2). (6.28)942

Notice that Pε,θ is periodic in x when θ = 0, whereas for θ �= 0 it is a943

quasiperiodic function. This comes from the change of variables (6.21) where in944

the expressions of A± and B± we only factored out the exponential eikx x , instead945

of the exponential ei(kx +θ)x which would have preserved periodicity. This lack of946
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periodicity does not pose any problem for the remaining arguments, in which we947

only use the properties (ii)–(iv) above.948

The second property in Lemma 6.3 shows that the solutions Pε,θ are reversible,949

the reversibility symmetry being S1S2. Using the reversibility symmetry S1, we950

obtain a second family of solutions of the system (6.26)–(6.27),951

Qε,θ (x) = S1(Pε,θ (−x)) =
(

0, (1 − θ2)1/2eiθx
)

+ O(ε1/2). (6.29)952

These solutions have the properties (i) and (ii) in Lemma 6.3 and correspond to the953

rotated rolls RβU∗
k,μ satisfying (6.28). In addition, the family of maps (τ a)a∈ R/2πZ954

provides the circles of solutions τ a(Pε,θ ) and τ a(Qε,θ ), a ∈ R/2πZ.955

The existence proof in the next section requires that the quotient g in (6.25)956

takes values in the interval (1, 4+√
13). The lemma below shows that this property957

holds at least for small angles α.958

Lemma 6.4. For any Prandtl number P , there exists an angle α∗(P) ∈ (0, π/3]959

such that 1 < g < 4 + √
13, for any α ∈ (0, α∗(P)).960

Proof. We compute the coefficient g in “Appendix B.2”. The result in formula961

(B.12) shows that the limit as α tends to 0 of g is equal to 2, which proves the962

result. ��963

A symbolic computation, using the package Maple, of g shows that the inequal-964

ity g > 1 holds for any Prandtl number P > 0 and any angle α ∈ (0, π/3), and that965

the inequality g < 4+√
13 holds in a region of the (α,P)-plane which includes all966

positive values of the Prandtl number P , for sufficiently small angles α � α∗, with967

α∗ ≈ π/9.112, and all angles α ∈ (0, π/3), for sufficiently large Prandtl numbers968

P � P∗, with P∗ ≈ 0.126 (see Fig. 4).969

7. Existence of Domain Walls970

We construct domain walls as reversible heteroclinic solutions of (6.26)–(6.27)971

connecting the solutions Qε,θ as x → −∞ with Pε,θ as x → ∞, for a suitable972

θ = θ(ε1/2) and ε > 0 sufficiently small. While the asymptotic solutions Pε,θ and973

Qε,θ have the reversibility symmetry S1S2, the heteroclinic solutions will have the974

reversibility symmetry S1.975

Following the approach developed in [10], we start by constructing a hete-976

roclinic solution for the leading order system obtained at ε = 0 and then using977

the implicit function theorem we show that it persists for the full system. In con-978

trast to the reduced system in [10] which was 12-dimensional, we have here an979

8-dimensional system, only. This simplifies a part of the proof of Lemma 7.3 be-980

low. On the other hand, the quotient g takes here different values depending on981

the Prandtl number P and the angle α (see Fig. 4), whereas g = 2 in [10]. We982

therefore need to extend the arguments from [10] to more general values g. We983

obtain a persistence result for g ∈ (1, 4 + √
13).984
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Fig. 4. “Rigid-rigid” case. In the (�,P)-plane, with � = sin2 α, Maple plot of the curve
along which g = 4 + √

13, for � ∈ (0, 1). The inequality g < 4 + √
13 holds in the shaded

regions, whereas the inequality g > 1 holds everywhere. Domain walls are constructed in
the shaded region situated to the left of the vertical line � = sin2(π/3) = 0.75

7.1. Leading Order Heteroclinic985

Consider the leading order system986

C ′′+ =
(

−1 + |C+|2 + g|C−|2
)

C+, (7.1)987

C ′′− =
(

−1 + g|C+|2 + |C−|2
)

C−, (7.2)988

obtained by setting ε = 0 in (6.26)–(6.27). According to Lemma 6.3, this system989

has the solutions990

P0,θ (x) =
(

(1 − θ2)1/2eiθx , 0
)

, Q0,θ (x) =
(

0, (1 − θ2)1/2eiθx
)

,991

with θ sufficiently small. The leading order heteroclinic is constructed for θ = 0,992

as a real-valued solution of (7.1)–(7.2) connecting the equilibrium Q0,0 = (0, 1)993

as x → −∞ with the equilibrium P0,0 = (1, 0) as x → ∞.994

Under the assumption that g > 1, 3 the existence of such a heteroclinic solution995

has been proved in [28]. According to [28, Theorem 5], for any g > 1, the system996

(7.1)–(7.2) possesses a heteroclinic solution (C∗+, C∗−), where C∗± are smooth real-997

valued functions defined on R and have the following properties:998

(i) lim
x→−∞(C∗+(x), C∗−(x)) = (0, 1) and lim

x→∞(C∗+(x), C∗−(x)) = (1, 0);999

(i i) C∗+(x) = C∗−(−x), ∀ x ∈ R;1000

(i i i) C∗+(x)2 + C∗−(x)2 � 1 and C∗+(x) + C∗−(x) � min(1, 2/
√

g + 1), ∀ x ∈ R;1001

3 It turns out that this condition is necessary and sufficient.
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(iv) (C∗′+ (x))2 + (C∗′− (x))2 = 1

2

(

C∗+(x)2 + C∗−(x)2 − 1
)2

1002

+ (g − 1)C∗+(x)2C∗−(x)2, ∀ x ∈ R.1003

The second property above shows that (C∗+, C∗−) is reversible, with reversibility1004

symmetry S1. The last property is a consequence of the Hamiltonian structure of1005

the system (7.1)–(7.2), which was one of the key ingredients in the existence proof1006

in [28]. Notice that the equilibria (1, 0) and (0, 1) of the system (7.1)–(7.2) are both1007

saddles having a two-dimensional stable manifold and a two-dimensional unstable1008

manifold. The heteroclinic connection (C∗+, C∗−) belongs to the intersection of1009

the two-dimensional stable manifold of (1, 0) with the two-dimensional unstable1010

manifold of (0, 1).1011

In addition to these properties, in the proof of Lemma 7.3 below we need the1012

two results in the following lemma:1013

Lemma 7.1. Consider the heteroclinic solution (C∗+, C∗−) of the system (7.1)–(7.2).1014

(i) For any g > 1, the functions C∗+ and C∗− have the asymptotic behavior1015

C∗+(x) = α∗e
√

g−1 x + O(e(
√

g−1+δ∗)x ),1016

C∗−(x) = 1 − β∗ed∗ x + O(e(d∗+δ∗)x ), (7.3)1017

as x → −∞, for some positive constants α∗, d∗, δ∗ and β∗ � 0.1018

(ii) For any g ∈ (1, 4 + √
13), the functions C∗+ and C∗− satisfy the inequality1019

3C∗2+ (x) + gC∗2− (x) > 1, ∀ x ∈ R. (7.4)1020

Proof. (i) The heteroclinic connection (C∗+, C∗−) being included in the unstable1021

manifold of the equilibrium (0, 1), the functions C∗+ and 1−C∗− decay exponentially1022

to 0, as x → −∞. This implies the behavior of C∗− and by taking into account the1023

behavior of the different terms in the equation (7.1), we obtain the result for C∗+.1024

(i i) For g ∈ (3/2, 4 + √
13) the property (7.4) is an immediate consequence1025

of the inequality1026

C∗+(x) + C∗−(x) � min(1, 2/
√

g + 1), ∀ x ∈ R1027

given above. We set1028

fg(x) = 3C∗2+ (x) + gC∗2− (x) − 1,1029

so that fg is a smooth function defined on R and fg is positive for any g ∈ (3/2, 4+1030 √
13). Assuming that there exists g ∈ (1, 3/2] such that (7.4) does not hold, since1031

fg has positive limits at x = ±∞,1032

lim
x→−∞ fg(x) = g − 1 > 0, lim

x→∞ fg(x) = 2,1033

and since the property holds for any g ∈ (3/2, 4 + √
13), there exists g ∈ (1, 3/2]1034

and x∗ ∈ R such that1035

fg(x∗) = 0, f ′
g(x∗) = 0, f ′′

g (x∗) � 0, (7.5)1036
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i.e., fg vanishes at a local minimum x∗.1037

For notational simplicity, we set1038

U = C∗2+ (x∗), V = C∗2− (x∗), X = (C ′+(x∗))2, Y = (C ′−(x∗))2.1039

Then the two equalities in (7.5) imply1040

3U + gV = 1, 9U X = g2V Y,1041

and from the property (iv) above we find that1042

X + Y = 1

2
(U + V − 1)2 + (g − 1)U V .1043

Consequently, we can write V, X, Y as functions of U :1044

V = 1

g
(1 − 3U ),1045

X = 1

2

(1 − 3U )((5g2 − 9)U 2 + 6(1 − g)U − (g − 1)2)

g(3(g − 3)U − g)
,1046

Y = 9

2

U ((5g2 − 9)U 2 + 6(1 − g)U − (g − 1)2)

g2(3(g − 3)U − g)
,1047

and then compute1048

f ′′
g (x∗) = 2(3X + gY + 3U (−1 + U + gV ) + gV (−1 + gU + V )1049

=
(

18(g − 1)(g2 − 9)U 3 + (12g(9 − g2) − 27(3 + g2))U 2
1050

+2g(g2 + 6g − 9)U + (g − 1)(g − 3)
)

/(g(g − 3(g − 3)U )).1051

For g ∈ (1, 3/2) and U ∈ (0, 1) we find that f ′′
g (x∗) < 0 , which proves the result.1052

��1053

Remark 7.2. (i) As pointed out in [28], the system (7.1)–(7.2) is integrable in the1054

case g = 3, and the heteroclinic solution (C∗+, C∗−) can be explicitly computed1055

in this case. We find that1056

C∗±(x) = 1

2

(

1 ± tanh

(

x√
2

))

.1057

These formulas allow as to easily check the properties in Lemma 7.1, and also1058

the ones in Lemma 7.3 below, in this particular case.1059

(ii) The heteroclinic connection (C∗+, C∗−) being real-valued, it is in fact a solution1060

of the 4-dimensional system obtained by restricting (7.1)–(7.2) to the invariant1061

subspace of real-valued solutions. As a solution of the (complex) 8-dimensional1062

system, it belongs to the circle of heteroclinic solutions τ a(C∗+, C∗−), for a ∈1063

R/2πZ, and all these heteroclinic solutions are reversible. Notice that such a1064

property does not hold for the circle of solutions τ a(Pε,θ ) found in Sect. 6.3,1065

the reason being that the reversibility symmetries are different, S1 for (C∗+, C∗−)1066

and S1S2 for Pε,θ .1067
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7.2. Persistence of the Heteroclinic1068

The heteroclinic solution (C∗+, C∗−) is a particular reversible solution of the1069

system (6.26)–(6.27) for ε = 0, and its persistence for small ε > 0 is proved1070

by applying the implicit function theorem in a space of reversible exponentially1071

decaying functions1072

X r
η = {(C+, C−, C+, C−) ∈ Xη ; C+(x) = C−(−x), x ∈ R}, (7.6)1073

where, for η > 0,1074

Xη =
{

(C+, C−, C+, C−) ∈ (L2
η)

4
}

,1075

L2
η =

{

f : R → C ;
∫

R

e2η|x || f (x)|2 < ∞
}

.1076

A key step of the proof is the analysis of the operator obtained by linearizing the1077

leading order system (7.1)–(7.2), together with the complex conjugated equations,1078

at (C∗+, C∗−), i.e., the linear operator L∗ acting on (C+, C−) through1079

L∗
(

C+
C−

)

=
(

C ′′+ − (−1 + 2C∗2+ + gC∗2−
)

C+
C ′′− − (−1 + gC∗2+ + 2C∗2−

)

C−

)

1080

+
(−C∗2+ C+ − gC∗+C∗−(C− + C−)

−C∗2− C− − gC∗+C∗−(C+ + C+)

)

.1081

In the space of exponentially decaying functions Xη, the operator L∗ is closed with1082

dense domain1083

Yη =
{

(C+, C−, C+, C−) ∈ (H2
η )4
}

,1084

H2
η =

{

f : R → C ; f, f ′, f ′′ ∈ L2
η

}

, (7.7)1085

and the subspaceX r
η of reversible functions is invariant under the action ofL∗, due to1086

the reversibility of both the system (6.26)–(6.27) and the heteroclinic (C∗+, C∗−). The1087

following lemma extends the result in [10, Lemma 4.1] to values g ∈ (1, 4+√
13):1088

Lemma 7.3. Assume that g ∈ (1, 4+√
13). For any η > 0 sufficiently small, the op-1089

erator L∗ acting in X r
η is Fredholm with index −1. The kernel of L∗ is trivial, and the1090

one-dimensional kernel of its L2-adjoint is spanned by (iC∗+,−iC∗−,−iC∗+, iC∗−).1091

Proof. Taking as new variables the real and imaginary parts of C±,1092

U± = 1

2
(C± + C±), V± = 1

2i
(C± − C±),1093

we obtain the matrix operator1094

M∗ =
(

Mr 0
0 Mi

)

,1095
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with1096

Mr

(

U+
U−

)

=
(

U ′′+ − (−1 + 3C∗2+ + gC∗2−
)

U+ − 2gC∗+C∗−U−
U ′′− − (−1 + gC∗2+ + 3C∗2−

)

U− − 2gC∗+C∗−U+

)

,1097

Mi

(

V+
V−

)

=
(

V ′′+ − (−1 + C∗2+ + gC∗2−
)

V+
V ′′− − (−1 + gC∗2+ + C∗2−

)

V−

)

,1098

acting in, respectively,1099

Xr
η =

{

(U+, U−) ∈ (L2
η)

2 ; U+(x) = U−(−x), x ∈ R

}

,1100

Xi
η =

{

(V+, V−) ∈ (L2
η)

2 ; V+(x) = −V−(−x), x ∈ R

}

.1101

The properties of L∗ are found from the ones of Mr and Mi . In the case g = 2,1102

the operator Mr has been studied in [9, Lemma 4.6] and the operator Mi in [10,1103

Lemma 4.1]. Using the same arguments, it is straightforward to show that, for any1104

g > 1, the operator Mr is Fredholm with index 0, whereas the operator Mi is1105

Fredholm with index −1, has a trivial kernel, and the one-dimensional kernel of1106

its L2-adjoint is spanned by (C∗+,−C∗−). To complete the proof it remains to show1107

that the kernel of Mr is trivial. In this part of the proof, we use the two properties1108

given in Lemma 7.1, the second one leading to the restriction g ∈ (1, 4 + √
13).1109

Elements in the kernel of Mr are couples of functions (U+, U−) ∈ Xr
η, solving1110

the linear system1111

U ′′+ =
(

−1 + 3C∗2+ + gC∗2−
)

U+ + 2gC∗+C∗−U−, (7.8)1112

U ′′− =
(

−1 + gC∗2+ + 3C∗2−
)

U− + 2gC∗+C∗−U+. (7.9)1113

Due to the translation invariance of the leading order system (7.1)–(7.2), the deriva-1114

tive (C∗′+ , C∗′− ) is a solution of this linear system, but it does not satisfy the reversibil-1115

ity condition U+(x) = U−(−x), and therefore it does not belong to the kernel of1116

Mr . We show below that the space of bounded solutions of this linear system is1117

one-dimensional, hence spanned by the derivative (C∗′+ , C∗′− ) of the heteroclinic1118

solution. This implies that the kernel of Mr is trivial and proves the result.1119

In the limit x = −∞, the system (7.8)–(7.9) is autonomous, and the equations1120

are decoupled,1121

U ′′+ = (g − 1)U+, U ′′− = 2U−.1122

Consequently, the set of solutions of (7.8)–(7.9) which are bounded as x → −∞1123

is a two-dimensional vector space consisting of pairs (U+, U−) of exponentially1124

decaying functions. Taking into account the exponential decay of solutions of the1125

autonomous system and the asymptotic behavior of the heteroclinic solution in1126

(7.3) we obtain that1127

U+(x) = α+e
√

g−1 x + O(e(
√

g−1+δ∗)x ), (7.10)1128

as x → −∞, for some α+ ∈ R and δ∗ > 0. We show below that α+ �= 0, which1129

implies that the space of bounded solutions of this linear system is one-dimensional.1130
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Indeed, assuming that there are two linearly independent solutions of (7.8)–(7.9),1131

then a suitable linear combination of these solutions gives a solution with α+ = 0,1132

which contradicts the property α+ �= 0.1133

Assume that α+ = 0. Then the exponential decay of U+ is given to leading order1134

by the coupling term 2gC∗+C∗−U− in (7.8). The product 2gC∗+C∗− being positive,1135

this implies that U+ and U− have the same sign as x → −∞. Since both functions1136

decay exponentially as x → −∞, they have constant signs on an interval (−∞, m),1137

for some real number m. Assume, for instance, that they are both positive for x in1138

(−∞, m), and take the first local maximum x∗ of U−, hence satisfying1139

U−(x∗) > 0, U ′−(x∗) = 0, U ′′−(x∗) � 0, U−(x) > 0, ∀ x < x∗.1140

From the equation (7.9) we find that1141

2gC∗+(x∗)C∗−(x∗)U+(x∗) � −
(

−1 + gC∗2+ (x∗) + 3C∗2− (x∗)
)

U−(x∗),1142

which, together with the property (7.4) in Lemma 7.1 and the positivity of U−(x∗),1143

C∗+, and C∗−, implies that U+(x∗) < 0. We claim that U+(x) < 0, for all x � x∗.1144

Indeed, assuming that U+ is not negative, there exists a local maximum at some1145

point x̃∗ < x∗ such that1146

U+(̃x∗) � 0, U ′+(̃x∗) = 0, U ′′+(̃x∗) � 0.1147

Now using the equation (7.8), and arguing as above, we obtain that U−(̃x∗) � 0,1148

which contradicts the positivity of U− for x < x∗. This implies that U+ and U−1149

cannot have the same signs as x → −∞, which contradicts the assumption α+ = 0,1150

and completes the proof. ��1151

The remaining part of the persistence proof consists in applying the implicit1152

function theorem to show the existence of a heteroclinic solution for the full system1153

(6.26)–(6.27), connecting Qε,θ , as x → −∞, to Pε,θ , as x → ∞. The operator1154

L∗ being Fredholm with index −1, the presence of the parameter θ is essential in1155

these last arguments. In the proof, θ plays the role of an additional unknown which1156

is determined as a function of ε when applying the implicit function theorem.1157

Theorem 2. Assume that g ∈ (1, 4 + √
13). For any ε > 0 sufficiently small, there1158

exists θ = O(ε1/2), continuously depending on ε1/2, such that the system (6.26)–1159

(6.27) possesses a reversible heteroclinic solution Cε = (C+,ε, C−,ε) connecting1160

the solutions Qε,θ , as x → −∞, to Pε,θ , as x → ∞.1161

Proof. We follow the proofs in [10, Theorem 2] and [26, Theorem 2].1162

The system (6.26)–(6.27) together with the complex conjugated equations is of1163

the form1164

F(C, C, ε1/2) = 0, C = (C+, C−), (7.11)1165

and it has the particular solutions Pε,θ and Qε,θ found in Sect. 6.3, for sufficiently1166

small θ and ε > 0, and the heteroclinic solution C∗ = (C∗+, C∗−) from Sect. 7.1,1167

for ε = 0. We set1168

˜Pε,θ = Pε,θ − (1, 0) eiθx , ˜Qε,θ = Qε,θ − (0, 1) eiθx ,1169
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and take a smooth function χ : R → [0, 1] such that1170

χ(x) = 1, if x � M, χ(x) = 0, if x � m,1171

for some positive constants m < M . We look for solutions of (7.11) of the form1172

C(x) = eiθx C∗(x) + χ(x)˜Pε,θ (x) + χ(−x)˜Qε,θ (x) + V(x), (7.12)1173

with (V, V) ∈ Yr
η = Yη ∩ X r

η , where X r
η and Yη are defined in (7.6) and (7.7),1174

respectively. Notice that the difference C − Pε,θ (resp. C − Qε,θ ) decays exponen-1175

tially to 0, as x → ∞ (resp. x → −∞), with the same decay rate as V, and that C1176

and V have the same reversibility symmetry S1.1177

Substituting (7.12) into (7.11) we obtain an equation of the form1178

T (V, V, θ, ε1/2) = 0.1179

As shown in [10, Theorem 2], T (V, V, θ, ε1/2) ∈ X r
η , for any (V, V) ∈ Yr

η and1180

(θ, ε1/2) sufficiently small, and from the properties of h± in (6.26)–(6.27) we find1181

that1182

T = T0 + T1, T1 = O(ε), (7.13)1183

with T0 continuously differentiable and T1 continuous and continuously differen-1184

tiable with respect to (V, V, θ). Furthermore,1185

T (0, 0, 0, 0) = F(C∗, C∗, 0) = 0,1186

and a direct calculation shows that1187

DVT (0, 0, 0, 0) = L∗, DθT (0, 0, 0, 0) = L∗
(

i xC∗
−i xC∗

)

=
(

2iC∗′
−2iC∗′

)

.1188

According to Lemma 7.3, the operator L∗ is Fredholm with index −1, injective,1189

and its range is L2-orthogonal to (iC∗+,−iC∗−,−iC∗+, iC∗−). The L2-scalar product1190

of this vector with the differential DθT (0, 0, 0, 0) is given by1191

2
∫

R

(

2C∗′+ (x)C∗+(x) − 2C∗′− (x)C∗−(x)
)

dx1192

= 2
∫

R

(

C∗2+ (x) − C∗2− (x)
)′

dx = 4,1193

(7.14)1194

which implies that DθT (0, 0, 0, 0) does not belong to the range of L∗. Conse-1195

quently, the differential D(V,θ)T (0, 0, 0, 0) is bijective, and the result in the lemma1196

follows from the implicit function theorem [5, Theorems 10.1.1 and 10.1.2] and1197

(7.13). ��1198

205 1584
Jour. No Ms. No.

B Dispatch: 24/10/2020
Total pages: 49
Disk Received
Disk Used

Journal: ARMA
Not Used
Corrupted
Mismatch



R
ev

is
ed

Pr
oo

f

M. Haragus, G. Iooss

Going back to the Bénard-Rayleigh problem, the result in this theorem, to-1199

gether with Lemma 6.3, implies the existence of a symmetric domain wall con-1200

necting two rotated rolls, RβU∗
k,μ, as x → −∞, to R−βU∗

k,μ, as x → ∞, with1201

k = kc + O(ε) and β = α + O(ε), for positive ε = μ − μc sufficiently small.1202

The family of maps (τ a)a∈ R/2πZ provides the circle of reversible heteroclinic so-1203

lutions τ a(C+,ε, C−,ε), for a ∈ R/2πZ, which corresponds to translations in y1204

of the symmetric domain wall. This proves Theorem 1 in the case of “rigid-rigid”1205

boundary conditions. Notice that ε = R−Rc in Theorem 1 is linked to ε = μ−μc1206

in Theorem 2 through R1/2 = μ and R1/2
c = μc.1207

8. Discussion1208

This approach can also be used for other boundary conditions, when one, or1209

both, of the rigid boundaries is replaced by a free boundary. It turns out that the1210

arguments remain the same when both boundaries are free, but a major difference1211

occurs in the case of one rigid and one free boundary. We briefly discuss these two1212

cases below.1213

8.1. “Free-Free” Boundary Conditions1214

In the case of two free boundaries, the “rigid-rigid” boundary conditions (1.5)1215

are replaced by the “free-free” boundary conditions (1.6), the horizontal compo-1216

nents (Vx , Vy) of the velocity field V satisfying now Neumann boundary conditions1217

along the horizontal boundaries z = 0, 1, instead of Dirichlet boundary conditions.1218

The equations in the system (1.1)–(1.3) are the same, and with these boundary con-1219

ditions the system has exactly the same symmetries as in the case of “rigid-rigid”1220

boundary conditions.1221

In the classical two-dimensional convection, the existence of rolls is shown as1222

in Sect. 2.2. The sequence of parameter values μ0(k) < μ1(k) < μ2(k) < . . . has1223

the same properties as in Sect. 2.1, the difference being that in the boundary value1224

problem (2.4)–(2.5) the equality DV = 0 is replaced by D2V = 0. This changes1225

the formula for μ0(k), which is now explicit (see [22]), to1226

μ0(k) = 1

|k|
(

k2 + π2
)3/2

,1227

from which we easily obtain the numerical values1228

kc = π√
2
, μc = 3

√
3

2
π2.1229

The solution V of the boundary value problem (2.4)- (2.5) is also explicit, V (z) =1230

sin(π z).1231

In our approach, we replace the spaces X and Z in the spatial dynamics for-1232

mulation (3.3) by1233

X = {

U ∈ (H1
per (�))3 × (L2

per (�))3 × H1
per (�) × L2

per (�) ;1234
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Fig. 5. “Free-free” case. In the (�,P)-plane, with � = sin2 α ∈ (0, 1), Maple plot of
the curve along which g = 4 + √

13 , in the case of “free-free” boundary conditions. The
inequality g < 4 + √

13 holds in the shaded regions, whereas the inequality g > 1 holds
everywhere. Domain walls are constructed in the shaded region situated to the left of the
vertical line � = sin2(π/3) = 0.75

Vz = θ = 0 on z = 0, 1, and
∫

�per

Vx dy dz = 0
}

,1235

and1236

Z = {

U ∈ X ∩ (H2
per (�))3 × (H1

per (�))3 × H2
per (�) × H1

per (�) ;1237

∂z Vx = ∂z Vy = Wz = φ = 0 on z = 0, 1
}

.1238

The equations in (3.3) and the symmetries τ a , S1, S2, S3, and Tb in Sect. 3 do1239

not change, and the results and arguments in Sects. 4-7, including the existence1240

result in Theorem 2, remain valid. The only differences are at the computational1241

level, in the different boundary value problems involving the component Vz of the1242

velocity field, the equality DVz = 0 being replaced by D2Vz = 0 (for instance, the1243

boundary value problem for V in the proof of Lemma 4.2).1244

The explicit formulas for μ0(k) and for the solution V of the boundary value1245

problem (2.4)–(2.5) given above, make the computation of the quotient g in Sect. B.21246

much simpler in this case. We obtain an explicit formula for b31 in (B.12):1247

b31(�) = 18
√

3π8(1 − �)2

��

(

(� + 2)2 + 9

2
�P−1 + 3�(� + 2)P−2

)

,1248

and a Maple computation of the quotient g gives the result in Fig. 5. This proves1249

the result in Theorem 1 in the case of “free-free” boundary conditions.1250
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8.2. “Rigid-Free” Boundary Conditions1251

In the case of one rigid and one free boundaries, the boundary conditions (1.5)1252

are replaced by the “rigid-free” boundary conditions1253

Vx |z=0 = Vy |z=0 = 0, ∂z Vx |z=1 = ∂z Vy |z=1 = 0,1254

(8.1)1255

Vz |z=0,1 = θ |z=0,1 = 0,1256

and, as in the previous case, the equations (1.1)–(1.3) remain the same. In contrast1257

to the “rigid-rigid” and “free-free” boundary conditions, these “rigid-free” bound-1258

ary conditions are asymmetric and the system looses its reflection symmetry in1259

the vertical coordinate z. As an immediate consequence, in the spatial dynamics1260

formulation, the system (3.3) is not equivariant under the action of the symmetry1261

S3 anymore. While the spectral properties of the linear operator Lμc in Sect. 4 and1262

the center manifold reduction in Sect. 5 remain valid, the parity properties of the1263

reduced vector field in Lemma 5.2 do not hold. Consequently, in this case we do1264

not have an invariant 8-dimensional center submanifold, and we have to treat the1265

full 12-dimensional reduced system. This leads to additional difficulties.1266

First, the normal forms analysis in Sect. 6 becomes more complicated since1267

it has to be done for 12-dimensional vector fields instead of 8-dimensional vector1268

fields. As a result, the leading order normal form leads to the following system of1269

three second order ODEs1270

C ′′
0 =

(

a0 + a1|C0|2 + a2(|C+|2 + |C−|2)
)

C0, (8.2)1271

C ′′+ =
(

b0 + a3|C0|2 + b1|C+|2 + b3|C−|2
)

C+, (8.3)1272

C ′′− =
(

b0 + a3|C0|2 + b3|C+|2 + b1|C−|2
)

C−, (8.4)1273

similar to the one found in [10] for the Swift-Hohenberg equation. The arguments in1274

Sect. 6.2 remain valid showing that b0 < 0, b1 > 0, and assuming that b3/b1 > 1,1275

we obtain a heteroclinic solution (0, C∗+, C∗−), as in Sect. 7.1. Next, the persistence1276

proof from [10], which has been done for particular values of the coefficients in the1277

leading order system, has to be extended to more general systems of the form (8.2)–1278

(8.4). This leads to additional conditions, to be determined, on the coefficients in the1279

system (8.2)–(8.4). Checking these conditions requires further, and much longer,1280

computations. This case is the object of future work.1281
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A. Some Properties of Linear Operators1287

A.1. Adjoint Operator1288

The explicit, but not so obvious, expression of the adjoint of operator Lμ given1289

below is necessary for computing the algebraic multiplicities of eigenvalues and1290

the coefficients of the normal form.1291

Denote by 〈·, ·〉 the scalar product in (L2
per (�))8 and consider the closed subspace1292

H0 = {

U = (Vx , V⊥, Wx , W⊥, θ, φ) ∈ (L2
per (�))8 ;1293

∫

�per

Vx dy dz = 0
} ⊂ (L2

per (�))8,1294

which is the closure in (L2
per (�))8 of both X and the domain of definition Z of the1295

operator Lμ . We compute the adjoint L∗
μ of Lμ from the scalar product 〈LμU, U′〉,1296

for U ∈ Z , and choose U′ ∈ H0 such that U �→ 〈LμU, U′〉 is a linear continuous1297

form on H0. We obtain the linear operator1298

L∗
μU =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−μ−1 (�⊥Wx − 〈�⊥Wx 〉)
∇⊥Vx − μ−1�⊥W⊥ − μ−1∇⊥(∇⊥ · W⊥) − μφez

∇⊥ · W⊥
μV⊥

−Wz − �⊥φ

θ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,1299

where1300

〈�⊥Wx 〉 =
∫

�per

�⊥Wx (y, z) dy dz.1301

The operator L∗
μ is closed in the space X ∗ defined by1302

X ∗ = {

U ∈ (L2
per (�))3 × (H1

per (�))3 × L2
per (�) × H1

per (�) ;1303

Wx = W⊥ = φ = 0 on z = 0, 1, and
∫

�per

Vx dy dz = 0
}

,1304

with domain1305

Z∗ = {

U ∈ X ∗ ∩ (H1
per (�))3 × (H2

per (�))3 × H1
per (�) × H2

per (�) ;1306

V⊥ = ∇⊥ · W⊥ = θ = 0 on z = 0, 1
}

.1307

The adjoint operator L∗
μ has the same center spectrum as the operator Lμ. For1308

our purposes we need to compute its kernel, an eigenvector associated with the1309

eigenvalue −ik of L∗
μ0(k), and one of the eigenvectors associated with the eigenvalue1310

−ikx of L∗
μc

. The kernel of L∗
μ is easily computed by solving the equation L∗

μU = 0,1311

and we find that it is spanned by the vector1312

ϕ∗
0 = (0, 0, 0, z(1 − z), 0, 0, 0, 0, )t .1313
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We use this vector in the computation of the coefficients of the cubic normal form1314

in “Appendix B.2”.1315

Next, for μ = μ0(k), the operator L∗
μ0(k) has the geometrically simple eigenvalues1316

±ik, just as the operator Lμ0(k). In “Appendix A.2” we need the expression of an1317

eigenvector �∗
k,0 associated with the eigenvalue −ik. A direct calculation gives1318

�∗
k,0(y, z) = ̂�

∗
k,0(z), ̂�

∗
k,0(z) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

− 1
μ0(k)k2

(

D3Vk − 〈D3Vk〉
)

0
ik

μ0(k)
Vk

− i
k DVk

0
−Vk

−ikφk

φk

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (A.1)1319

where1320

〈D3Vk〉 =
∫

�per

D3Vk(z) dy dz,1321

Vk is the solution of the boundary value problem (4.10), and φk is the unique solution1322

of the boundary value problem1323

(D2 − k2)φk = Vk, φk |z=0,1 = 0.1324

Notice that the function φk is related to the function θ in the boundary value problem1325

(2.4)–(2.5) through the equality θ = −μ0(k)φk .1326

Finally, in the computations in “Appendix B.2” we also need an eigenvector asso-1327

ciated with the eigenvalue −ikx of L∗
μc

which is of the form1328

�∗+(y, z) = ̂�
∗
+(z)eiky y .1329

We obtain that1330

̂�
∗
+(z) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

− 1
μck2

c
(D2 − k2

c cos2 α)DV

− sin α cos α
μc

DV
ikc sin α

μc
V

− i sin α
kc

DV

− i cos α
kc

DV
−V

−ikc(sin α)φ

φ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,1331

where V is the solution of the boundary value problem (4.15), and φ is the unique1332

solution of the boundary value problem1333

(D2 − k2
c )φ = V, φ|z=0,1 = 0. (A.2)1334

1335

205 1584
Jour. No Ms. No.

B Dispatch: 24/10/2020
Total pages: 49
Disk Received
Disk Used

Journal: ARMA
Not Used
Corrupted
Mismatch



R
ev

is
ed

Pr
oo

f

Domain Walls for the Bénard–Rayleigh Convection Problem

A.2. Algebraic Multiplicities of ±i k and ±iω1(k)1336

Consider the geometrically simple eigenvalues ±ik and the geometrically double1337

eigenvalues ±iω1(k) of the operator Lμ0(k) given in Lemma 4.1. We assume that1338

μ′
0(k) �= 0, and show that the algebraic multiplicities of these eigenvalues are1339

equal to their geometric multiplicities. We prove the result for the eigenvalue ik,1340

the arguments being the same for the eigenvalue iω1(k).1341

Assuming that the algebraic multiplicity of the eigenvalue ik is larger than its1342

geometric multiplicity, there exists a vector �k,0 such that1343

(Lμ0(k) − ik)�k,0 = Uk,0. (A.3)1344

Differentiating the eigenvalue problem1345

Lμ0(k)Uk,0 = ikUk,01346

with respect to k leads to the equality1347

(Lμ0(k) − ik)

(

d

dk
Uk,0

)

=
(

i − μ′
0(k)

∂

∂μ
Lμ

∣

∣

μ=μ0(k)

)

Uk,0.1348

Since μ′
0(k) �= 0, this identity and the equality (A.3) imply that there is a solution1349

�k,0 of the linear equation1350

(Lμ0(k) − ik)�k,0 = ∂

∂μ
Lμ

∣

∣

μ=μ0(k)
Uk,0. (A.4)1351

As a consequence, the vector in the right hand side of the above equation is or-1352

thogonal to the kernel of the adjoint operator (L∗
μ0(k) + ik), and in particular to1353

the eigenvector �∗
k,0 given by (A.1). A direct computation shows that their scalar1354

product is equal to the positive number1355

1

μ2
0(k)k2

(

‖D2Vk‖2 + 2k2‖DVk‖2 + k4‖Vk‖2
)

+ ‖Dφk‖2 + k2‖φk‖2 > 0.1356

This contradicts the orthogonality condition, and proves that the algebraic multi-1357

plicity of the eigenvalue ik is equal to its geometric multiplicity.1358

B. Cubic Normal Form1359

B.1. Proof of Lemma 6.11360

Proof. The existence of the polynomial Pε and the first two properties in Lemma 6.11361

follow from the general normal form theorems in [8, Sections 3.2.1, 3.3.1, and1362

3.3.2]. In addition, N (·, ·, ε) is an odd polynomial of degree 3 such that N (0, 0, ε) =1363

0 and the identity1364

DZ N (Z , Z , ε)L∗
0 Z + DZ N (Z , Z , ε)L∗

0 Z = L∗
0 N (Z , Z , ε), (B.1)1365

205 1584
Jour. No Ms. No.

B Dispatch: 24/10/2020
Total pages: 49
Disk Received
Disk Used

Journal: ARMA
Not Used
Corrupted
Mismatch



R
ev

is
ed

Pr
oo

f

M. Haragus, G. Iooss

in which L∗
0 is the adjoint of L0, holds for any Z ∈ C

4 and ε ∈ V2. We write1366

N (Z , Z , ε) = N1(Z , Z)ε + N3(Z , Z),1367

where N1 and N3 denote the linear and cubic terms, respectively, of N . It is now1368

straightforward to check that the linear part N1 has the form in Lemma 6.1 (i i i),1369

and it remains to check the cubic terms N3.1370

We set N3 = (˜N+, ˜M+, ˜N−, ˜M−). Then the identity (B.1) becomes1371

(D∗ + ikx )˜N+ = 0, (D∗ + ikx )˜M+ = ˜N+,1372

(D∗ + ikx )˜N− = 0, (D∗ + ikx )˜M− = ˜N−,1373

in which1374

D∗ = −ikx A+
∂

∂ A+
+ (A+ − ikx B+)

∂

∂ B+
− ikx A−

∂

∂ A−
+ (A− − ikx B−)

∂

∂ B−
1375

+ikx A+
∂

∂ A+
+ (A+ + ikx B+)

∂

∂ B+
+ ikx A−

∂

∂ A−
+ (A− + ikx B−)

∂

∂ B−
.1376

Due to the equivariance of the normal form under the action of the symmetry S2,1377

it is enough to determine (˜N+, ˜M+), the components (˜N−, ˜M−) being obtained by1378

switching the indices + and − in the expressions of (˜N+, ˜M+).1379

Cubic monomials are of the form1380

Ap++ A+
q+ Br++ B+

s+ Ap−− A−
q− Br−− B−

s−
,1381

with nonnegative exponents such that1382

p+ + q+ + r+ + s+ + p− + q− + r− + s− = 3. (B.2)1383

We claim that the cubic monomials in ˜N+ and ˜M+ also satisfy1384

S± = p+ − q+ + r+ − s+ + p− − q− + r− − s− = 1. (B.3)1385

Indeed, for any monomial as above, we have1386

D∗ (Ap++ A+
q+ Br++ B+

s+ Ap−− A−
q− Br−− Bs−−

)

=1387

−ikx S± Ap++ A+
q+ Br++ B+

s+ Ap−− A−
q− Br−− B−

s−
1388

+r+ Ap++1
+ A+

q+ Br+−1
+ B+

s+ Ap−− A−
q− Br−− B−

s−
1389

+s+ Ap++ A+
q++1

Br++ B+
s+−1

Ap−− A−
q− Br−− B−

s−
1390

+r− Ap++ A+
q+ Br++ B+

s+ Ap−+1
− A−

q− Br−−1
− B−

s−
1391

+s− Ap++ A+
q+ Br++ B+

s+ Ap−− A−
q−+1

Br−− B−
s−−1

,1392

implying that the subspace of monomials for which the sum in the left hand side1393

of (B.3) is constant is invariant under the action of D∗. Ordering the monomials by1394

decreasing exponents p+, q+, r+, s+, p−, q−, r−, and s−, this action is represented1395

by a lower triangular matrix with equal elements on the diagonal given by −ikx S±.1396
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Consequently, the polynomials ˜N+ and ˜M+, which belong to the kernel and gen-1397

eralized kernel of D∗ + ikx , respectively, belong to the subspace for which (B.3)1398

holds. This proves the claim. Furthermore, the commutativity of N3 and τ a , implies1399

that monomials in (˜N+, ˜M+) also satisfy1400

p+ − q+ + r+ − s+ − p− + q− − r− + s− = 1. (B.4)1401

Collecting all possible monomials in (˜N+, ˜M+) for which the conditions (B.2)–1402

(B.4) hold, we compute1403

(D∗ + ikx )(A2+ A+) = 0,1404

(D∗ + ikx )(A2+ B+) = (D∗ + ikx )(A+ A+B+) = A2+ A+,1405

(D∗ + ikx )(A+ B+B+) = A2+B+ + A+ A+B+,1406

(D∗ + ikx )(A+ B2+) = 2A+ A+ B+,1407

(D∗ + ikx )(B2+B+) = 2A+ B+B+ + A+B2+,1408

and1409

(D∗ + ikx )(A+ A− A−) = 0,1410

(D∗ + ikx )(A+ A− B−) = (D∗ + ikx )(A+ A−B−)1411

= (D∗ + ikx )(B+ A− A−) = A+ A− A−1412

(D∗ + ikx )(A+B−B−) = A+ A− B− + A+ A− B−,1413

(D∗ + ikx )(B+ A−B−) = A+ A− B− + B+ A− A−,1414

(D∗ + ikx )(B+ A−B−) = A+ A− B− + B+ A− A−,1415

(D∗ + ikx )(B+B−B−) = A+ B−B− + B+ A− B− + B+ A− B−.1416

Since ˜N+ and ˜M+ are necessarily linear combinations of these 14 monomials, the1417

equalities above imply that they are of the form1418

˜N+ = A+˜P+(u1, u2, u3, u4) + A−˜R+(u5),1419

˜M+ = B+˜P+(u1, u2, u3, u4) + B−˜R+(u5)1420

+A+˜Q+(u1, u2, u3, u4) + A−˜S+(u5),1421

with ˜P+, ˜R+, ˜Q+,˜S+ linear in their arguments, which are the quadratic expressions1422

u1 = A+ A+, u2 = i(A+ B+ − A+ B+), u3 = A− A−,1423

u4 = i(A− B− − A− B−), u5 = (A+ B− − A−B+).1424

This proves the expressions of the cubic terms of N+ and M+ in (i i i). Finally,1425

taking into account the action of the reversibility S1, it is straightforward to check1426

that the coefficients β j , b j , γ5, and c5 are real. ��1427
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B.2. Computation of the Quotient g = b3/b11428

For the computation of the coefficients b1 and b3, we follow the method in [8,1429

Section 3.4.1]. We restrict to the 8-dimensional center manifold1430

M±(ε) = {Uc +�(Uc, ε) ; Uc ∈ E±}.1431

Recall that solutions on this submanifold are invariant under the action of S3τπ .1432

Combining the transformations from the center manifold reduction in Sect. 5.1 and1433

the normal form in Lemma 6.1, we write1434

U = A+ζ+ + B+�+ + A−ζ− + B−�− + A+ζ+ + B+�+ + A−ζ− + B−�−1435

+˜�(A+, B+, A−, B−, A+, B+, A−, B−, ε),1436

in which Z = (A+, B+, A−, B−) satisfies the normal form (6.4). Substituting U1437

given by this formula in the dynamical system (3.3), and using the expressions of the1438

derivatives of A+, B+, A−, B− given by the normal form in Lemma 6.1, we obtain1439

an equality for the variables A+, B+, A−, B− and their complex conjugates. We1440

find the coefficients of the normal form, and in particular b1 and b3, by identifying1441

the coefficients of suitably chosen monomials in this equality.1442

We denote by �rstu the coefficient of the monomial Ar+ A+
s
At− A−

u
in the ex-1443

pansion of ˜�. Identifying successively the coefficients of the monomials A2+ A+,1444

A+ A− A−, and then A2+, A+ A+, A+ A−, A+ A−, A− A−, we find the equalities1445

iβ1ζ+ + b1�+ = (Lμc − ikx )�2100 + 2Bμc (�2000, ζ+) + 2Bμc (�1100, ζ+),1446

iβ3ζ+ + b3�+ = (Lμc − ikx )�1011 + 2Bμc (�1010, ζ−)1447

+ 2Bμc ( �1001, ζ−) + 2Bμc (�0011, ζ+),1448

and1449

(Lμc − 2ikx )�2000 = −Bμc (ζ+, ζ+), (B.5)1450

Lμc�1100 = −2Bμc (ζ+, ζ+), (B.6)1451

(Lμc − 2ikx )�1010 = −2Bμc (ζ+, ζ−), (B.7)1452

Lμc�1001 = −2Bμc (ζ+, ζ−), (B.8)1453

Lμc�0011 = −2Bμc (ζ−, ζ−). (B.9)1454

We determine the coefficients b1 and b3 by taking the scalar product of the first two1455

equalities above with the vector�∗+ in the kernel of the adjoint operator (Lμc −ikx )
∗

1456

computed in “Appendix A.1”,1457

b1〈�+,�∗+〉 = 〈2Bμc (�2000, ζ+) + 2Bμc (�1100, ζ+),�∗+〉, (B.10)1458

b3〈�+,�∗+〉 = 〈2Bμc (�1010, ζ−) + 2Bμc (�1001, ζ−)1459

+2Bμc (�0011, ζ+),�∗+〉, (B.11)1460

where�2000,�1100,�1010 ,�1001, and�0011 are solutions of the linear equations1461

(B.5)–(B.9).1462
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In the equations (B.5) and (B.7), the linear operator (Lμc − 2ikx ) is invertible,1463

except in the case α = π/6 when 2kx = kc. Nevertheless, we only have to solve1464

the equations in the subspace of vectors which are invariant under the action of1465

S3τπ and the restriction of (Lμc − ikc) to this subspace is invertible, since its two-1466

dimensional kernel is spanned by ζ 0 and ζ 0 which do not belong to this subspace.1467

Consequently, �2000 and �1010 are uniquely determined. In the equations (B.6),1468

(B.8) and (B.9), the linear operator Lμc has a one-dimensional kernel spanned by1469

the vector ϕ0 in Lemma 4.2 (i), and the kernel of its adjoint is spanned by the vector1470

ϕ∗
0 in “Appendix A.1”. The solvability condition is easily checked in all cases, so1471

that we can solve these equations up to an element in the kernel of Lμ. The choice1472

of this element in the kernel does not influence the result from (B.10)–(B.11), since1473

Bμ is invariant upon adding a multiple of ϕ0.1474

After long and intricate computations we obtain that1475

g = b3

b1
= b31(sin2 α) + b31(cos2 α) + b31(0)

1
2 b31(1) + b31(0)

, (B.12)1476

in which1477

b31(�) = A31(�) + B31(�)P−1 + C31(�)P−2,1478

with1479

A31(�) = 2μ3
c〈(D2 − 4k2

c �)2V1, R1〉,1480

B31(�) = 4μ3
c�(〈V1, R2〉 + 〈V2, R1〉) ,1481

C31(�) = −2μc�

k2
c

〈(D2 − 4k2
c �)V2, R2〉,1482

where1483

R1 = V Dφ + (1 − 2�)φDV,1484

R2 =
(

D2 − 4k2
c (1 − �)

)

(V DV ) − 4�(DV )(D2V ),1485

and V1, V2 are the unique solutions of the boundary value problems1486

(D2 − 4k2
c �)3V1 + 4k2

c μ2
c� V1 = R1,

V1 = DV1 = (D2 − 4k2
c �)2V1 = 0 in z = 0, 1,

1487

and1488

(D2 − 4k2
c �)3V2 + 4k2

c μ2
c� V2 = R2,

V2 = (D2 − 4k2
c �)V2 = (D2 − 4k2

c �)DV2 = 0 in z = 0, 1,
1489

respectively. Recall that V and φ are the unique symmetric solutions of the boundary1490

value problems (4.15) and (A.2), respectively. Notice that g → 2, as α → 0, which1491

was the value of g in the case of the Swift-Hohenberg equation in [10].1492
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Remark B.1. In this way we can also compute the coefficient b0. By identifying1493

the coefficients of the terms εA+, and then taking the scalar product with �∗+ we1494

obtain1495

b0〈�+,�∗+〉 = 〈L(1)ζ+,�∗+〉,1496

in which L(1) is the derivative with respect to μ of the operator Lμ in (A.4) taken1497

at μ = μc. A direct computation gives1498

b0〈�+,�∗+〉 = 1

μ2
ck2

c

(

‖D2V ‖2 + 2k2
c ‖DV ‖2 + k4

c ‖V ‖2
)

1499

+‖Dφ‖2 + k2
c ‖φ‖2 > 0, (B.13)1500

and implies that 〈�+,�∗+〉 < 0, since b0 < 0. We point out that it is not obvious1501

to determine the sign of this scalar product directly from the explicit formulas of1502

�+ and �∗+.1503
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